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How a Generic Library Differs from a Repository 

a Reposit ory-t ake existing software components, classify them, put 
them in as is 

- main effort toward reusability is in proper classification for ease of retrieval 

a Generic Library-commission the creation of software components 
that are highly reusable 

- main effort is in design for high quality and high degree of reusability 



OFF-THE-SHELF SOFTWAKE COMPONENTS 
(Generic Algorithms Approach) 
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Key Ideas of Generic Library 

Use generic algorithms and data types to express general capabilities 

- A generic algorithm is a template for generating an algorithm by plugging in 

a set of types and basic operations 

0 Generate components for specific applications by instantiation 

- Small amount of source code yields large number of useful instances 

- Library users can easily generate new components 

0 Ensure component quality to much higher standard than by usual 
means 

- Get it right once at generic level; to show correctness of an instance just show 

actual parameters meet their requirements 

e Provide highly detailed and cross-referenced documentation 

- New kinds of classifications for generic components (based on abstraction 

mechanisms used) 



How Instantiation Works and How It Uses Ada Capabilities 

Define components generically with templates 

- Parameterized by data type and by basic data operations 

- Ada generic units are such a template mechanism 

0 Obtain specific components (Ada packages and subprograms) by 
plugging in specific types and operations 

- Supported in Ada by generic instance declarations 

- Ada compiler expands instance declaration into regular package or subprogram 



6.5.12 Delete 

Speciflcat ion 
Example from Current Library 

generic 
with function Test (X, Y : - Element) return Boolean; 
function Delete(1tem : Element; S : Sequence) 

return Sequence; 

Description Returns a sequence consisting of a l l  the elements E of S except those for 
which Test(Item,E) is true. S is destroyed. 

Time order nm 

Space 0 

where n = length(S,) and m = average(time for Test) 

Destructive? Yes 

Shares? No 

See also DeleteJf, DeleteJf-Not 

Examples 

declare 
function Delete-When-Divides 

is new Lists .Delete(Test => Divides) ; 
begin - - - - -- 

~how-~ist (~elete,When,~ivides (3, 1&a(15)) ) ; 
-- 1 2 4 5  7 8 10 11 13 14 
end ; 

Implementation 

function Test-Aux is new Make,Test(Item, Test); 
procedure Part it ion,Aur 

is new Algorithms.Invert,Partition(Test,Aux); 
Temp-1, Temp-2: Sequence := Nil; 

begin 
~artition,Aux(S, Temp-1, Temp-2) ; 
Free-Sequence(Temp-1); 
return Invert (Temp-2) ; I 

end Delete; 
I 



Implications of Generic Library Approach 

For software design: 

- Buiding library components is soft ware design activity 

- But compilable, executable designs are result 

For library maintenance: 

- Extensive use of standard Ada compiler environment tools 

- Need special library maintenance t 001s for keeping package specs and bod)-s, 

documentation, test suites consistent with each other 



Current Status of Ada Generic Library 

0 Generic algorithms approach developed and refined 

Volume 1 of Linear Data Structures Packages 

- Overview of generic library approach 

- Overview of Linear data structures 

- Five packages of linked-list algorithms and data structures (1 14 s u  bprograms) 

- Instructions for use of the packages 

0 Volume 2 of Linear Data Structures Packages 

- Three packages (dou ble-ended lists, stacks, outpu t-restricted deques; 62 sub- 

programs) 

- Preliminary examples of generic vector operations 



~ Current Status of Ada Generic Library (continued) 

Preliminary version of library maintenance system 

- Aids maintenance of source code, test suites, and documentation 

I 

- Originally in Scheme on IBM PC, recently converted into Ada 



Unified Documentation 1 Code Approach 
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defined on them 
Algorithmic Abstract ions 

Families of data abstractions 

Intersections of 

V V 

{Instantiations of representational abstractions) 
Sequence-Algorithms - 

LinkedList Alaorithrns 
with common algorit hrns 

Structural Abstractions 

v - - 

Vector Algorithms 
SinglyJIinkedLists 

Mappings from one structural I Stacks 

algorithmic abstractions 
Representational Abstractions 

Vectors 
DoubleEndedLists 

abstraction to another 

Table 1: 

Data Abstract ions 
Data types with operations 

Output RestrictedBeques 

Classification of Abstractions and Example Ada Packages 

Syst em-AllocatedSingly Linked 
User-Allocated-SingIyLinked 

- 

- 

i 



Diagram of Classification of Abstractions 
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Future Directions 

Extend - the library to other data structures and combinatorial algo- 
rithms 

- rectangular data structures, tree and graph processing, string processing, 

em b edded-syst em control algorithms 

Explore relation to design stage of software development 
1 

- train software designers as  well as programmers in generic algorithms approach 

Explore relation to formal software specification and verification 

- carry out formal proofs for significant library components 


