
G E N E R A L E L E C T R I C
GENERAL ELECTRIC COMPANY
CORPORATE RESEARCH AND DEVELOPMENT

P.O. Box 43, Schenectady, N.Y. 12301 U.S.A.

REPRINT 9681

TECTON: A LANGUAGE FOR MANIPULATING
GENERIC OBJECTS

D. Kapur, D.R. Musser, and A.A. Stepanov

Deepak Kapur, David R. Musser, and Alexander A. Stepanov

General Electric Research and Development Center

Schenectady, New York 1234f/USA

We will describe specification methods we are currently develop-

ing and illustrate their use on the workshop example of the communica-

tions network. The overall goal of our work is to develop formal

notation and methods that allow of problems and

solutions at an appropriate level of abstraction. The kinds of prob-
lems we would like to be able to deal with range from the large

software systems developed for commercial and government customers, to

small *programs in products," i.e., microprocessor control programs

whose reliability is of critical economic importance because they are

duplicated in such large quantities. This.implies that we must be able

to deal with issues such as distributed computation, timing of real

time control, and the requirements placed on programs by their

hardware and application environments.

The ability to reason abstractly, to see generality through the

particular, and then to particularize the general, are very useful for

the development of high quality software. A central problem with most

current notations and methods of either specification or programming

is that they do not allow enough use of abstraction. We are thus

required to deal with too many details simultaneously. Most languages

support a fixed set of abstraction mechanisms and ways to instantiate

them. They do not provide general purpose mechanisms for abstracting

a class of objects sharing common properties.

For example, most work on data abstraction has dealt only with

the notion of abstracting away from implementation details. This is

the important idea of expressing "whatm operations are supposed to do,

without getting into details of "how." ~ u t it is also often useful to

talk about a software module without knowing precisely "what" it does

- that is, to abstract at the behavioral level also. For instance, it

may be desirable to describe abstractions such as "process control

system," "operating system," "transfer service," melectronic mail sys-

tem," etc., without stating precisely what they do under all condi-

tions.

We need to be able to use abstraction and specialization of

!zg&&s for purposes of oraanization and -, irrespective of
the implementation question. The intention is to capture the general

properties of an abstract notion without having to specify too much

detail. When one wishes to describe a specialization of this abstract

notion, only details particular to the specialization are described,

while whatever is known about the abstract notion based on its general

properties is also carried to the specialization.

It is also our goal that the notation and methods we develop

ultimately be usable as a programming lanquage/system as well as a

specification languaqe/system. This seems to be a different philoso-
phy from most of the other participants in this workshop. In our view,

specification and programming are not such distinct activities that.

they should be done in different frameworks. In many cases, the sim-

plest and clearest way to express "what" is to be done is to say "how"
it can be done, provided the "hown is expressed in terms of essential
concepts rather than the irrelevant details required by most specifi-

cation languages and all existing programming languages. Conversely,

many of the tools that we are all finding useful for specification,

particularly abstraction and specialization, should also be available

to the programmer.

Having a unified framework for designing specifications and pro-

gramming enables us to view the development of software as a stepwise

and systematic refinement of higher level concepts into lower level

machine (or programming system) supported primitives. In this way,

writing specifications becomes an integral part of the programming

activity and provides a way of recording higher level design deci-

sions. This is in contrast to the view that writing specifications

and programming are totally distinct tasks, performed in different

frameworks and using' different notations and styles - a scenario whose
main consequence is that specification writing is regarded as burden-

some activity.

In the proposed framework, a series of refinements constitute a

set of design decisions leading to a program. It should be possible
to backtrack to any stage of decision making and explore an alternate

path of refinements. Different design decisions can thus be compared
and evaluated.

A notion that seems to be particularly useful for achieving this

kind of organization is that of 'generic objects." A gen,eric object
is a notion for grouping objects sharing common syntactic structure
and semantic =ertFttg. Informally, a generic object describes a
whole class of non-isomorphic possibilities, unless a stage has been
reached at which the ddscribed objects are fully defined. Adding pro-
perties to a generic object makes it more specific by narrowing the
range of possibilities. Once we allow such genericity of objects, the
way is open also to the development and use of "generic algorithms,'
which offer a way of organizing and extending our knowledge of algo-

rithms and control.

We have begun developing a language called 'Tecton" (Greek for
"builder") for constructing generic objects and algorithms. Tecton

will embody the above discussed design philosophy. It will provide a
rich set of generic objects, and these objects will be built up and

related by general description building constructs in Tecton. We will

first discuss the constructs for building generic objects, then some
of the different kinds of generic objects supported in Tecton. Later,

we discuss how the communication network example can be done in Tecton
using these mechanisms.

The proposed set of mechanisms in Tecton includes:

(i) create, to define a class of objects by describing their syn-
tactic structure and a set of properties relating their various com-

ponents.

(ii) tefinc, to define a class of objects by refining an existing
class by adding a set of properties, potentially to the level of
detail where the objects in the resulting class are narrowed down pre-
cisely to what is desired in an implementation.

(iii) m, to define a class of objects by generalizing an
existing class of objects. The generalization can be specified by

generalizing a particular object(s) or class(es) of objects used in

the description of the existing class or by forgettrng some properties

of the existing class.

(iv) instantiate, to identify commonalities among two classes of
objects in order to transport the properties and algorithms of the

class being instantiated to the other class.

(v) pu2yj~d.e~ to define new operations on a class of objects in
terms of the existinq ones.

(vi) inform, to add new properties to existing information about a
class of objects.

(vii) -, to give an algorithm for an already defined

operations on a subclass of objects by makinq use of their specific

properties.

(viii) -, to relate a class of objects and its operations

to another class of objects and associated operations as an aid to

constructing implementations.

The create, refine and abstract constructs define new classes of
objects. The abstract construct is roughly the inverse of the refine

construct. The instantiate, e, -, and infotm serve to
include more knowledge about a class of objects, while ~ S U Z Q . ~ is

used to represent a class of objects in terms of another class. The

instantiate construct records the information that a class of objects

can be refined to another class; or, stated another way, a class of

objects can be abstracted to another class. The latter could be

obtained from the former by reversinq the arguments to instantiate.

The use of these constructs is illustrated on structures (see

below), a class of objects definable in Tecton, in 151. (Except that

abstract was not discussed and refine was called enrich in that
paper.) In the next section, we will give examples of some of these

constructs; their use is also illustrated in the discussion of the

communication network example.

We discuss four different types of objects in Tecton which we

have found useful in describing different kinds of activities of a

complex software system: structures, entities, events, and environ-
ments. Some of these types of objects have appeared previously in

data base query languages, simulation languages and functional pro-
gramming languages, though not in as general a form as in Tecton.

Structures

A structure is a representation of a time-independent object.
The language provides certain primitive structures, foreinstance

"set", "multisets", and "sequencesm, from which new structures are

built Up step by step using constructs outlined in the previous sec-

tion. Each new structure is specified as a collection of other struc-

tures and operations on these structures, which satisfy certain pro-

perties regarded as axioms; e-g.,

create semigroup(S:set; +: S+S -> S)
with x + (y + z) = (X + y) + z;

create monoid(S:semigroup; 0: -> S)
with 0 + x = x;

refine monoid into abelian monoid
with commutativity: x + y = y + X;

If for some reason monoid was defined directly from set, then semi-

group could be created using the abstract construct by dropping the
nullary operation 0 and the property that 0 is a left identity. Note

that the above definition of semigroup does not define a specific

semigroup, but a generic semigroup, Such a definition defines the

Semigroup structnre m. This is different from defining a specific
structure, such as natural numbers, which is called just a structure. 1

We define an to be a secondary operation associated with

a structure type, that is expressed in terms of the (primary) opera-

tions on structures, e.g., we can define an operator "reduction" on

the structure type "sequences of monoid" by

provide sequences of monoid
with reduction:

x -> if x = null then 0
else head(x) + reduction(tail(x) 1 .

Such operators resemble those in APL [4] and in ~ackus's Functional

1. No distinction is made between structure and structure type
syntactically in the examples discussed in [S] , though the
distinction is suggested in the discussion of the examples.
The term generic structure is used there instead of structure
type

Programming Language [I]. They provide the same advantages of power-
ful, concise expression of computations, but differ in that they are
defined with respect to a structure type - one to which they naturally
belong. This is possible because Tecton permits description of struc-

ture types in terms of their properties.

In 151 an example is carried out of the development of several
generic algorithms for sorting ih terms of the reduction operator.
The KWIC example can be done concisely in terms of a "closure" opera-

tor that gives a simple way of building the set of all rotations of a
title. Operators such as reduction and closure should be a part of
the standard vocabulary of both specifiers and programmers.

Structures types thus provide a method for abstracting a set of
operations and properties which can be applied to different time-
independent, unchangeable (also called immutable or constant) objects.

They enable us to abstract general properties of data and express
algorithms on that data in an abstract form. Structures are similar

in flavor to immutable data types as discussed by Liskov et a1 [6 1 and
Guttag (31 , but they are more general and powerful, Structure types
are similar to "theories" of Burstall and Goguen [2] and "sypes" of
~akajima et a1 [71, but we do not restrict ourselves to algebraic
structures. Using structures and structure types, it is possible to
define an abstract data type as well as a collection of abstract data

types and associate operators with the collection as a whole.

An entity is an object that exists and changes in time. An

entity type is a description of a collection of entities with common
attributes and properties. For example, "parcel" and "message" are

entity types in a transfer service and a mail service respectively, as
will be discussed later,

An entity is characterized by a collection of attributes, which
are functions from entities into structures. Examples of attributes

of the entity type "messagen are signature, creation date, sender,

sending date, contents, etc. Attributes can have special properties,
such as w, -, w i r e d . . . For example, the signature

attribute is immutable and required for every message. An entity type

can have properties, which specify consistency relations among the

attributes of each entity. For example, the sending date of a message
is always after its creation date.

Primitive updates on entities are create, which defines a new
entity with specified attributes; w, which gets rid of entities
with specified attributes; and -, which modifies attributes of
existing entities. An entity type can also include a list of user

,- defined updates, which have primitive updates as their building
blocks.

An entity type can contain a list of -, which are func-
tions on the attributes of the entity type. along with associated
events. When a trigger changes its value, it activates an event.
(Events are discussed below.)

3.2.1 classifications

It is often necessary to dynamically group different entities
based on their attributes or other properties. This is achieved using
the class and classification mechanisms.

A class is a collection of entities of the same type. The class
of all currently existing entities of some type is called the comPlete
class of that entity type. Thus any class of entities of a certain

type is a subset of the complete. class of that type. Classes may be
described by attributes or properties of attributes; e.g., the class

of all messages with author "Jones," and the class of all messages
received after "June 30, 1980" with author "Smith." Classes may them-

selves be regarded as entities; they are called class -. A

collection of class entities of the same type form another class; this

latter class is called a classlfrcation . . of the type. For example, a

classification of the message type can be based on the attribute

author. One class of this classification is the class of messages

that have author 'Jonesm.

Classifications can have some special properties, such as being

m, which means that every entity of its type must belong to at
least one class of the classification, or -, which means
that every entity of its type belongs to at most one class of the
classification. The classification on the message type based on
authot i a complete but redundant, as a message can have more than one

author.

In addition to standard primitive updates of entities, there are

two primitive updates particular to class entities: the update insert
puts specified entities into the class, whereas delete gets rid of
entities.

There is a

transfer, which
sification into

primitive update particular to classifications, called
moves specified entities from one class in the clas-

another. In case of a mail service, for example,
transfer on a classification on the message type can be used to

describe the event of sending a message from A to B. Every classifi-
cation also has an associated binary relation, called a transfer rela-
tion, which specifies allowable transfers among classes in the clas-
sification. A transfer relation associated with a classification on

the message type would describe who can send messages to whom.

A relation is a special kind of entity which establishes an asso-

ciation among entities of several types. Primitive updates on rela-

tions are link (which expands the relation by adding a tuple) and
(which shrinks the relation by deleting a tuple). There are

also special operations that build new relations, such as u,
intersaction, QzJ2aw&, sa2u.u, etc.

An event is a representation of when and how certain objects are

changed. One can define a specific event or a generic event, A generic

event is defined using the event type mechanism. The description of

an event (specific or generic) includes an activation description, an
action list, timing constraints, and an entity type which specifies
attributes and properties of the event.

An evatiJ2Il specifies how the event can be invoked:
by another event, by time, or by a trigger.

An action list is a list of invocations of different events and
updates on different entities that are caused by the event invocation,

These actions are executed in arbitrary order if a precedence of
actions is not explicitly specified.

Timina canstraints specify constraints on the duration of an
event invocation, such as minimum and maximum duration, as well as

global constraints on the duration of all event invocations, such as
frequency distribution and time precision.

The inclusion of an entity type in the description of an event
provides for the notion of instances of an event corresponding to dif-
ferent invocations of the event. This also allows for classes and
classifications of events.

Environments are a mechanism for grouping together different

kinds of objects such as structures, entities, events and (sub-)

environments. It is thus essentially an organizational tool, record-

ing the structural relationship among various objects. A specific

environment as well as a generic environment can be defined in the

same way other specific and generic objects can be defined in Tecton.

Environments also contain interfaces to other environments. An

interface describe the conditions under which the objects of an
environment may be used by other environment. These interfaces are
built with the help of the privilege relation.

If an object belongs to an environment, i.e. the object is in the
class, the environment has an unlimited privilege to use the object.

It also has a privilege to give a privilege to use this object to
other environments, including the privilege to give a privilege. The

relation is a ternary relation among the classification of
environments, the entity of objects, and the class of parameters of

operations. It specifies whether an environment can use an object as
a particular parameter of an operation.

The statement of the workshop problem does not explicitly deal

with the question of what the network is to be used for. The presump-
tion is, of course, that some sort of message system will be imple-
mented with the aid of the network. 'we will begin at the level of the
message system specification and refine it to the network level.

Thus, rather than just making up a list of properties that the network

should satisfy, the needs of the message system will place a natural
set of requirements on the network. (We had already chosen to specify
a message system, as a way of developing some of the features of the

Tecton language, before receiving the statement of the workshop prob-

lems. 1

A key goal of our approach is to find ways of using abstraction

to break up the treatment of complex systems into natural components

that, when recombined, fully capture the essential properties of the

system. (This division into components may be unrelated to decomposi-

tions that are made in implementations of the system.) In specifying a

message system we have identified several main components. First, a

message system provides a "transfer service" for messages, and below
we shall concentrate on this part. Other components would be facili-
ties for display and scanning, for composing and editing messages, and

for filing and retrieving messages.

In specifying a transfer service, we first observe that we can

view it more abstractly than just dealing with messages and passing

them around in the way that users of a message system typically do.

Instead of messages, our transfer service will deal with "parcels"

and will serve "clients." In a message system, parcels will be spe-

cialized to messages and clients to users, but parcels could also be

currency units and clients could be banks, for example, if the

transfer service specification were used as part of the specification

of an electronic funds transfer (EFT) service.

The question of who can send parcels to whom can also be dealt

with more generally than just adopting the discipline of a message

system. Both a message system and an EFT service have the same dis-

cipline, which might be called a "capitalistic" discipline - each
client can transfer his own, and only his own, parcels to any other

client. But a memory management subsystem of an operating system

could also be viewed as a transfer service in which the parcels are

memory blocks, the clients are jobs, and the discipline of transfer is

that there is a supervisor that has the privilege to transfer parcels
from any client to another,

We first create a new type of environment, called "Transfer Ser-
e

vice.' and provide it with an event for sending parcels among clients.

create "Transfer Service"
from environment type,

parcel: entity type,
clients: complete nonredundant classification of parcels.

provide Transfer Service with

an event type Sending "Send P to C a r

where P: parcel, C: client,
with action:

transfer P into C.

{will transfer only if the transfer relation
of this classification allows it)

We ensure that each client can send parcels to every other client with

refine Transfer Service into "Complete Transfer Service" with

transfer relation of clients is complete.

Now, to make Sending available in a Mail Service, we can

instantiate Complete Transfer Service in Mail Service as

Mail Transfer Service with parcel=message,
clients=message bins of users.

NOW We give a refinement of Transfer Service into a network.

create 'Connected Static Network" from

Transfer Service,
a relation "C can route D to E", where C,D,E: clients

with

transfer relation of clients is

connected immutable relation;

for every C,D there is an E such that C can route D to E;
if C can route D to E then

C is related by transfer relation of clients to E

(making direct Send possible)
and E is related by

(closure of transfer relation of clients) to D.

(that is, D is reachable from Ej

provide Connected Static Network

with

a functional relation "addressm of parcel to client,

initially the client such that parcel is in client;

an event type "Start P on its way to C",
where P: parcel, Ct client,
with action: change address of P to C;

an event type "Forward P from Car where Pt
parcel, C: client,

activated by trigger:

P is in C and (address of P) is not C,
with action:

(Send P to E) for some E such that
C can route (addrese of P) to E:

an event type Network Sending "Network Send P to Car
where P: parcel, Ct client;

with actions:

Start P on its way to C,

then collect

Forward P from any client.
("collectm says that specified events constitute
actions which are parts of this event)

The Network Sending event only actually performs the action of 'Start

P on its way to C ' t it then just nobserves" the forwarding events that

occur because of activation by the indicated trigger. This is an
abstract way of specifying a distributed implementation of an event.

Having defined the network, it is now possible to

instantiate Complete Transfer Service

in Connected Static Network
by Sending = Network Sending.

with the result that this network refinement can be carried over to

other instances of Complete Transfer Services, such as the Mail Ser-

vice .

1. Backus, J., "Can programming be liberated from the von Neumann

Style? A functional style and its algebra of programs," CACM 21

(81 , August 1978.

2. Burstall, R.M., Goguen, J.A., "Putting Theories Together to Make

Specifications,' Fifth International Joint Conference on Artifi-

cial Intelligence, Cambridge, MA, August 1977.

3. Guttag, J.V., "Abstract Data Types and the Development of Data

Structures,' CACM 20 (6), pp. 396-404, June 1977.

4. Iverson, K.E., "Operators,' TOPLAS 2 (I), October 1979.

5. Kapur, D., Musser, D.R., Stepanov, A.A., "Operators and Algebraic

Structures," Proceedings of the.Conference on Functional Program-

ming Languages and Computer Architecture, New Hampshire, Oct.
1981.

6. Liskov, B.H., Snyder, A., Atkinson, R., Schaffert, C a r "Abstrac-

tion Mechanisms in CLU," CACM 20 (8), pp. 564-576, Aug. 1977.

7. Nakajima, R., Nakahara, H., Honda, M., 'Hierarchical Program

Specification and Verification - A Many Sorted Logical Approach,"
preprint RIMS 256, November 1978.

