
Journey Three: 
Successors of Peano 

The axioms of natural numbers and 
their relation to iterators and the 

nonlinear traversal of binary trees.  
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Successors of Peano 

Lecture 1 
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Axioms and Computers 

• Formalization of Mathematics led to work 
of Gödel and Turing. 

 
• Specifying software is based on axioms. 

 
• Concepts are a way of grouping axioms 

together. 
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Euclid’s Axiomatic Method 

Euclid is the founder of the axiomatic 
method: 
• Definitions 
• Postulates 
• Common notions 
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23 Definitions 

1. A point is that which has not parts. 
… 
23. Parallel straight lines are straight lines 
which, being in the same plane and being 
produced indefinitely in both directions, do 
not meet one another in either direction. 
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Common Notions 

1. Things which are equal to the same thing 
are also equal to one another. 

2. If equals be added to equals, the whole 
are equal. 

3. If equals be subtracted from equals, the 
remainders are equal. 

4. Things which coincide with one another 
are equal to one another. 

5. The whole is greater than the part.  
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Modern Restatement of 
 Common Notions 
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Postulates 
I. To draw a straight line from any point to any 

point. 
II. To produce a finite straight line continuously in a 

straight line. 
III. To describe a circle with any centre and distance. 
IV. That all right angles are equal to one another. 
V. That, if a straight line falling on two straight lines 

make the interior angles on the same side less 
than two right angles, the two straight lines, if 
produced indefinitely, meet on that side on which 
are the angles less than the two right angles. 
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α + β < 180° 
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Equivalent Formulations 

• Given a line and a point not on it, at most 
one parallel to the given line can be drawn 
through the point. 
– Playfair’s axiom 

• There exists a triangle whose angles add 
up to 180°. 

• There exist two similar triangles that are 
not congruent. 
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Proving Vth postulate 

• Ptolemy (90 – 168) 
• Omar Khayyam (1050–1123) 
• Girolamo Saccheri (1667-1733)  
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Nikolai Ivanovich Lobachevsky 
(1792 -1856) 
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Lobachevsky’s Work 

• Taught by Johann Bartels 
– Professor of Gauss 

• Kazan University 
– Professor, rector (president) 

• Non-Euclidean Geometry 
– First reported in 1826 
– Rejected by Philistines (1832 – 1834) 
– Elected to Göttingen Academy of Sciences (1842) 
– Last major book (Pangeometry) in 1855  
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Lobachevsky’s Impact 

“It is no exaggeration to call Lobatchewsky 
the Copernicus of Geometry, for geometry is 
only a part of the vaster domain which he 
renovated; it might even be just to designate 
him as a Copernicus of all thought.” 

E.T. Bell, Men of Mathematics, page 306 
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Janos Bolyai  
(1802 – 1860) 
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Bolyai Tragedy 
“If I commenced by saying that I am unable to 
praise this work, you would certainly be 
surprised for a moment. But I cannot say 
otherwise. To praise it would be to praise 
myself. Indeed the whole contents of the work, 
the path taken by your son, the results to which 
he is led, coincide almost entirely with my 
meditations, which have occupied my mind 
partly for the last thirty or thirty-five years.” 

Letter from Carl Gauss to Farkas Bolyai  
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Geometry and Reality 
• Who is right, Euclid or Lobachevsky? 

 
• Gauss’s experiment 

 
• Independence of the V postulate 

– Beltrami, Poincare and Klein 
 

• “It does not matter if we call the things chairs, 
tables and beer mugs or points, lines and planes.” 

David Hilbert 
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David Hilbert (1862 – 1943) 
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Hilbert’s Work 

• Invariant theory 
• Theory of algebraic integers 
• Foundations of geometry 
• Hilbert Spaces 
• Mathematical Physics 

– General Relativity Theory 
• Foundations of Mathematics 
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Hilbert’s Axioms 
1. 7 axioms of connection  

– If two points lie on a plane, all points on the line 
going through these points are on this plane. 

2. 4 axioms of  order  
– There is a point between any two points on a line. 

3. 1 axiom of parallels  
4. 6 axioms of congruence 

– Two triangles are congruent if side-angle-side…  
5. 1 Archimedes' axiom  
(6.)  1 Completeness axiom 
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Hilbert’s 23 Problems 

1. Continuum hypothesis  
2. Consistency of arithmetic 
… 
10. Existence of a solution to Diophantine 
equation 
… 
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Hilbert’s Program 

To formalize mathematics: 
– every proposition is written in a formal 

language 
– complete: every true proposition is provable 
– consistent: no contradiction can be derived 
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Giuseppe Peano (1858 -1932) 
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Peano Work 

• Space filling curve (Peano curve) – 1890 
 

• Formulario Mathematico – 1891 till 1908 
 

•  Latine sine flexione – 1903 till  about 1930 
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Peano on  
“tables, chairs and beer mugs” 

“Certainly it is permitted to anyone to put 
forward whatever hypotheses he wishes, 
and to develop the logical consequences 
contained in those hypotheses. But in order 
that this work merit the name of Geometry, it 
is necessary that these hypotheses or 
postulates express the result of the more 
simple and elementary observations of 
physical figures.” 
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Peano Axioms 
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Axioms in Interlingua 

0.  N0 es classe, vel “numero” es nomen commune. 
1. Zero es numero. 
2. Si a es numero, tunc suo successivo es numero. 
3.  N0 es classe minimo, que satisfac ad conditione    
     0, 1, 2; […] 
4. Duo numero, que habe successivo aequale, es 

aequale inter se. 
5.  0 non seque ullo numero. 
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Modern Variations 

• Many modern texts start natural numbers 
with 1 and not 0. 

• They often put the induction axiom last. 
• Sometimes they replace second order 

induction axiom with a first order induction 
axiom schema. 
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Predecessors of Peano 

• Hermann Grassmann (1809 – 1877) 
– Lehrbuch der Arithmetik (1861) 

 
• Richard Dedekind  

– Was sind und was sollen die Zahlen? (1888) 
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Hermann Grassmann 
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Independence of Peano Axioms 

To prove that every axiom is needed, we 
need to remove each one from the set of 
axioms and demonstrate that the remaining 
set has models that do not meet our intent. 
(In other words, they are not isomorphic to 
our natural numbers.) 
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Removing  
Existence of 0 Axiom 

32 



Trivial model 
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Removing  
Totality of Successor Axiom 
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Finite linear models 

• {0} 
• {0, 1} 
• {0, 1, 2} 
• … 
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Removing Induction Axiom 
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Transfinite ordinals 

• {0, 1, 2, 3, …, ω, ω+1, ω+2, …} 
• {0, 1, 2, 3, …, ω1, ω1+1, ω1+2, …, ω2, ω2+1, ω2+2, 

…} 
• … 
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Removing  
Invertibility of Successor Axiom 
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ρ-shaped structures 

• {0, 1, 1, 1, …} 
• {0, 1, 2, 1, 2, …} 
• {0, 1, 2, 3, 4, 5, 3, 4, 5, …} 
• … 
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Removing  
Nothing has 0 as its Successor 

Axiom 
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Circular structures 

• {0, 0, …} 
• {0, 1, 0, 1, …} 
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Definition of addition 
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0 is left additive identity 
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Definition of Multiplication 
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Definition of 1 
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Adding 1 
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Multiplying by 1 
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Associativity of addition 
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a + 1 = 1 + a 
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Commutativity of addition 
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Problem 52 

Using induction prove  
– associativity and commutativity of 

multiplication 
– distributivity of multiplication over addition 
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Problem 53 

Using induction define total ordering 
between natural numbers.  
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Problem 54 

Using induction define the following partial 
functions on natural numbers.  

– predecessor 
– subtraction  
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Limitation of Peano Axioms 

“…the answer is that number (positive 
integer) cannot be defined (seeing that the 
ideas of order, succession, aggregate, etc., 
are as complex as that of number).” 

Giuseppe Peano 
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Utility of Axioms 

• Axioms explain, not define. 
• Explanation could be really slow 

– defining + from successor 
• Or not constructive at all 

– there is an inverse element 
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Successors of Peano 

Lecture 2 
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Sets 

• Peano axioms referred to the set of natural 
numbers. 

• What are sets? 
• Does a set of natural numbers exist?  
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Nicole Oresme (1320 – 1382) 
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Oresme Accomplishments 
• Cartesian coordinates 
• Translation of Aristotle into French 
• Proof of Merton theorem 

– The distance traveled in any given period by a 
body moving under uniform acceleration is the 
same as if the body moved at a uniform speed 
equal to its speed at the midpoint of the period 

– Thomas Bradwardine and Oxford Calculators 
• Economics 

– Monetary policy 
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Convergent infinite series  
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step 1 
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step 2 
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step 3 
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step 4 
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Divergence of Harmonic series 

66 



One-to-one Correspondence  

“Oresme shows by the principle of one-to-
one correspondence that the collection of 
odd natural numbers is not smaller than the 
collection of natural numbers, because it is 
possible to count the odd natural numbers 
by the natural numbers.” 

Stanford Encyclopedia of Philosophy 
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Galileo Galilei 
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Main Books  
(20 volumes total) 

[1632] Dialogue Concerning the Two Chief      
           World Systems. 
[1638] Dialogues Concerning Two New 
           Sciences. 
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Two New Sciences (1638) 
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Two Sciences 

• Strength of materials 
– Square-cube law 

 
• Laws of motion 

– Uniform acceleration of falling bodies 
– Trajectory of projectiles 
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Galileo on infinity 

“This is one of the difficulties which arise 
when we attempt, with our finite minds, to 
discuss the infinite, assigning to it those 
properties which we give to the finite and 
limited; but this I think is wrong, for we 
cannot speak of infinite quantities as being 
the one greater or less than or equal to 
another.” 
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Mapping from numbers to squares 
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Paradox 
“The proportionate number of squares 
diminishes as we pass to larger numbers, Thus 
up to 100 we have 10 squares, that is, the 
squares constitute 1/10 part of all the numbers; 
up to 10000, we find only 1/100 part to be 
squares; and up to a million only 1/1000 part; 
on the other hand in an infinite number, if one 
could conceive of such a thing, he would be 
forced to admit that there are as many squares 
as there are numbers taken all together.” 
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Littlewood’s Paradox 
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Bernard Bolzano 

76 



Contributions 

• ε-δ definition of continuity 
• Bolzano-Weierstrass Theorem 

– every bounded sequence has a convergent 
subsequence. 

• Intermediate value theorem 
• Uniform convergence 
• Paradoxien des Unendlichen 
• Wissenschaftslehre 
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Paradoxes of the infinite 
§19  Not all infinite sets are equal with respect to their    
        multiplicity 

– One could say that all infinite sets are infinite and thus one 
cannot compare them, but most people will agree that an interval 
in the real line is certainly a part and thus agree to a comparison 
of infinite sets. 

§20 There are distinct infinite sets between which there is  
       1-1 correspondence. It is possible to have a 1-1       
       correspondence between an infinite set and a proper  
       subset of it. 

– y=12/5x and y=5/12x  gives a 1-1 correspondence between [0,5] 
and [0,12]. 

§21 If two sets A and B are infinite, one can not conclude   
       anything about the equality of the sets even if there is a  
       1-1 correspondence. 

– If A and B are finite and A is a subset of B such that there is a 1-
1 correspondence, then indeed A=B 

– The above property is thus characteristic of infinite sets. 
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“There are truths, at least one” 

“That no proposition has truth disproves 
itself because it is itself a proposition and we 
should have to call it false in order to call it 
true. For, if all propositions were false, then 
this proposition itself, namely that all 
propositions are false, would be false. Thus, 
not all propositions are false, but there also 
true propositions.” 
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There is at least one true 
proposition 

Consider the following propositions: 
1. There are no true propositions. 
2. If 1 is true then 1 is false. 
3. 1 is false. 
4. 3 is true. 
5. There is at least one true proposition. 
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Problem 81 

Using Bolzano method, prove that there are 
infinitely many true propositions. 
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Georg Cantor  
(1845 – 1918) 
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Cantor-Dedekind Correspondence  
(November - December 1873) 

[Cantor] Could we enumerate positive real 
numbers? 
[Dedekind] It is not an interesting question… But 
here is the proof that we can enumerate the 
algebraic numbers. 
[Cantor] Then if the answer to my question is no, it 
would prove the existence of transcendental 
numbers… 
[Cantor] The answer is NO! 
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Countable Sets 

• Hilbert’s hotel 
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Counting Rational Numbers 
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Counting Algebraic Numbers 

• An real number is called algebraic if it is a 
root of a polynomial with integer 
coefficients. 

• A polynomial has weight k if k is the 
maximum of absolute values of its 
coefficients and exponents. 

• There is a finite number of polynomials of 
a given weight and every one of them has 
finitely many roots. 
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Cantor’s 1874 Theorem 
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1874 proof of 
 uncountability of continuum  
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Problem 89 

Prove that the intersection of nested, closed 
intervals is not empty. 
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Two Kinds of Infinity 
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Transcendental Numbers  

• Since there are “more” real numbers than 
algebraic numbers, most real numbers are 
transcendental. 
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There are very few  
algebraic numbers. 
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Problem 94 

Prove that a power set of a finite set with n 
elements contains 2n elements. 
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Continuum Hypothesis (CH)  
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History of CH 

• Georg Cantor (1878) states it. 
• David Hilbert (1900) makes it famous. 
• Kurt Gödel (1940) shows that it cannot be 

disproved in ZF or ZFC. 
• Paul Cohen (1963) shows that it cannot be 

proved in ZF or ZFC. 
– but Cohen believed it to be false! 
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Onto or Surjective Functions 
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Cantor’s Theorem (1891) 

There is no onto function from a set to its 
power set. 
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Diagonalization Proof 
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Infinity of Infinities 
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Russell’s Paradox (1903) 
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Successors of Peano 

Lecture 3 
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Zermelo’s Axioms (1907) 
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Axiom of Choice (AC) 
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Banach-Tarski Paradox 

Using the axiom of choice, one can cut a 
sphere into a finite number of pieces that 
can be so rearranged that one obtains two 
spheres of the same size as the original 
sphere.  
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Axiom of Infinity 
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Problem 108 
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Zermelo-Fraenkel (ZF) 

• In addition to Zermelo axioms 
– Axiom of regularity 

• Every non-empty set contains an element disjoint 
from it. 

– Axiom of replacement 
• An image of every set is a set. 
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Fraenkel, Bar-Hillel, Levy 
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Emile Borel  
(1871 – 1956)  

• Les Nombres Inaccessibles (1952) 
– There are countably many accessible 

numbers. 
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Mathematical Paradise  

“No one shall expel us from the Paradise 
that Cantor has created.” 

David Hilbert, Über das Unendliche  
Mathematische Annalen 95 (1925) 
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Hilbert’s Program 

• Formalization of mathematics 
• Complete 

– if a proposition is true it is provable 
• either a proposition or its negation is provable 

• Consistent 
– it is impossible to prove both a proposition 

and its negation 
• Completeness and consistency should be 

proven with finitary methods  
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Kurt Gödel (1906 – 1978) 
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Gödel’s results 

• Completeness of first-order predicate 
calculus 

• Incompleteness theorems (2) 
– Gödel numbering 

• Recursive functions 
• Length of proofs 
• Consistency of axiom of choice and 

continuum hypothesis with ZF  
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Incompleteness Theorems 

1. Any consistent theory containing Peano 
arithmetic contains a proposition that is 
true, but not provable. 

2. Any consistent theory containing Peano 
arithmetic cannot prove its own 
consistency. 
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Magic Proposition 

 
This proposition is not provable. 
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Alonzo Church (1903 – 1995) 
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Field of Symbolic Logic 

• A Bibliography of Symbolic Logic (1936) 
• Founding of the Association of Symbolic 

Logic 
• Journal of Symbolic Logic 
• Introduction to Mathematical Logic. Part 1. 

(1944, 1956)  
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Church’s Students 
31 students including: 
• Stephen Kleene 
• John Rosser 
• Alan Turing 
• Leon Henkin 
• Martin Davis 
• Hartley Rogers 
• Michael Rabin 
• Dana Scott 
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Church’s Thesis 

Whatever can be computed by a modern 
computer (or a Turing machine) includes 
everything that can ever be computed. 
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Alan Turing (1912 – 1954) 
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Turing’s Contributions 

• Turing machine 
• Halting problem 
• Turing-completeness 
• Enigma code 
• Turing test 
• Biology 
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Diagonalization 

• Cantor’s proof of the eponymous theorem 
led to multiple similar proofs in 
mathematical logic and computer science. 

• Self-referential propositions have a long 
history. 
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Liar’s Paradox 
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Insolubilia 

What I am saying is false. 
 
• Thomas Bradwardine of Merton 
• Jean Buridan of Paris 
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Abstracting Diagonalization 

It is instructive to try to use the method of 
abstraction that we learned in the Journey 2 
to find a generic form of Cantor’s proof.   
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Unary-binary Family 
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Examples of 
Unary-binary Families 
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Interpreter 
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Example of an interpreter 

eval1 in Lisp: 
 
(defun eval1(x y)  
       (eval (cons x y))) 
 
• takes two S-expressions 
• treats first as code, the second as data 
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Another interpreter 
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Anti-interpreter 
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An example of an anti-interpreter 
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eval 

Could we make an analogous anti-interpreter 
for Lisp based on eval? 
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Diagonalizable Families 
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Example of diagonalizable family 

Lisp functions are diagonalizable.  
 
For any function foo we can define a 
function bar: 
 

(defun bar (x) (foo x x)) 
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Anti-interpreter Theorem 

 
 

A diagonalizable family does not 
have an anti-interpreter. 
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Proof of the 
Anti-interpreter Theorem 
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How about L ? 
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Composable-diagonalizable (C-D) 
family  
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Non-existence of interpreter 
theorem 

A C-D family does not contain an interpreter. 
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Proof of non-existence of interpreter 
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Interpreter for any  
Turing-complete system 

Turing constructed a universal Turing 
machine: a Turing machine which is an 
interpreter for Turing machines. 
 
If we accept Church’s thesis, such an 
interpreter exists in any equivalent 
formulation. 
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Interpreter Thesis 

Any non-trivial set of computable functions 
that contains an interpreter is Turing-
complete. 
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Examples of C-D families 

• Total computable functions over integers 
• Polynomial time functions over integers 
• Continuous functions over real numbers 
• Differentiable functions over real numbers 
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Halting problem 

There is no computable function halt(c, x) 
that returns true if code c terminates on 
input x and false otherwise. 
Indeed, if such a function existed we would 
be able to construct an anti-interpreter: 
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Anti-interpreter Code 

integer anti_interpreter(integer c, 
                         integer x) { 
  if (halts(c, x)) { 
   return interpreter(c, x) + 1; 
  } else { 
    return 0; 
  } 
} 
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Successors of Peano 

Lecture 4 
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The School of Athens 
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Aristotle (384 BC – 322 BC)  
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The Summary 

 
πάντες ἄνθρωποι τοῦ εἰδέναι ὀρέγονται 
φύσει. 
 
All humans naturally desire to know. 

152 



Works 

• Organon 
• Physics 
• Metaphysics 
• Ethics  
• Poetics 
• Politics 
• … 
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Organon 

1. Categories 
2. On Interpretation 
3. Prior Analytics  
4. Posterior Analytics 
5. Topics 
6. Sophistical Refutations 
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Individual, Species, Genus 

• individual 
 

• species 
• genus - differentia  

 
• definition  
• proprium 
• accident 
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Theories 
• A theory is a set of true propositions. 
• A theory could be generated by a set of axioms 

plus the set of inference rules. 
• A theory is finitely-axiomatizable if it can be 

generated from a finite set of axioms. 
• A set of axioms is independent if removing one will 

decrease the set of true propositions. 
• A theory is complete is for any proposition, either it 

or its negation is in the theory. 
• A theory is consistent if for no proposition it 

contains it and its negation.  

156 



Theory of Groups 
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Model of a theory 

A set of elements that satisfies all the 
propositions in the theory is called its model.  
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Categorical Theories 

 
 
A (consistent) theory is categorical or 
univalent if all of its models are isomorphic. 
 
(This is an original definition of Oswald Veblen. Modern 
logicians talk about κ-categorical theories: all models of the 
cardinality κ are isomorphic.) 
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Groups of order < 13 
order abelian non-abelian 

1 1 0 
2 1 0 
3 1 0 
4 2 0 
5 1 0 
6 1 1 
7 1 0 
8 3 2 
9 2 0 

10 1 1 
11 1 0 
12 2 3 
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Non-isomorphic groups of order 4 

e a b c 
e e a b c 
a a b c e 
b b c e a 
c c e a b 
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e a b c 
e e a b c 
a a e c b 
b b c e a 
c c b a e 

Cyclic group Z4 Klein group  



Distinguishing proposition 
(differentia)  for groups of order 4 
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Different models of Z4 

• Additive group of remainders modulo 4 
– 0, 1, 2, 3 

 
• Multiplicative group of non-zero 

remainders modulo 5 
– 1, 2, 3, 4 

 
• What are possible mappings between 

them? 
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Different models of Klein group 

• Multiplicative group of units modulo 8 
– 1, 3, 5, 7 

 
• Group of isometries transforming a 

rectangle into itself 
 

• What are possible mappings between 
them? 
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Propositions vs. models 

• The more propositions there are in a 
theory, the fewer different models there 
are. 
– More propositions imply more axioms 

• The more models there are in a theory, the 
fewer propositions there are. 
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Value and its type 

• A datum is a sequence of bits. 
– 101 

• A value is a datum together with its 
interpretation. 
– it is 5. 
– it is -1 (how?) 

• A value-type is a set of values sharing a 
common interpretation. 
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Value-types in Programming 
Languages 

• C++, Java, etc, do not provide 
mechanisms for defining value-type. 

• Every type resides in memory and is an 
object type. 
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Object 

• An object is collection of bits in memory 
that contain a value of a given type. 

• An object is immutable if the value never 
changes. 

• An object is mutable otherwise. 
• An object is unrestricted if it can contain 

any value of its value type. 
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Object type 

• An object type is a uniform method of 
storing and retrieving values of a given 
value type from a particular object when 
given its address. 

• In programming languages, types are 
object types. 
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Concepts and their types 

• Concept is a way of describing a family of 
related object types. 
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Integer Concepts and Their Types 

• Integral  
– int8_t, uint8_t, int16_t,… 

• UnsignedIntegral 
– uint8_t, uint16_t, …  

• SignedIntegral 
– int8_t, int16_t, … 
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Concepts as predicates on types 

Concept is a predicate on type that assures 
that a given type satisfies a set of 
requirements 

– operations 
– semantics 
– time/space complexity 
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Type-functions 

A function that given a type, returns an 
affiliated type. 

– value_type(Sequence) 
– coefficient_type(Polynomial) 
– ith_element_type(Tuple, size_t) 
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Type-attribute 

A function that given a type, returns one of 
its numerical attributes 

– sizeof 
– alignment_of 
– number of members in a struct 
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Regular 

• copy-constructor 
– default constructor 

• T a(b) equivalent to T a; a = b; 

• assignment 
• equality 
• destructor  
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Semantics of Regular 
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Semiregular 

• Semiregular is like Regular except that 
equality is not explicitly defined.  

• It is assumed to be implicitly defined so 
that axioms that control copying and 
assignment are still valid. 
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Swap 

template <Semiregular T> 
void swap(T& x, T& y) { 
  T tmp(x); 
  x = y; 
  y = tmp; 
} 
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Iterator Concepts 

Fundamental operations 
• regular type operations 
• successor 
• dereferencing 
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Dereferencing 

• Dereferencing is assumed to be “fast.” 
– There is not faster way of getting to data than 

through the iterator. 
– Iterators might be bigger in size than pointers 

to allow for navigation. 
• Past-the-end values 
• Singular values  
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Separating successor and 
dereferencing 

• It is possible (as does EoP) to separate 
successor from dereferencing. 

• Another way of getting similar results is to 
assure that dereferencing is defined for all 
objects 
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Default dereferencing 
(illegal in C++) 

template <typename T> 
T& operator*(T& x) { 
  return x; 
} 
 
template <typename T> 
const T& operator*(const T& x) { 
  return x; 
} 
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Connection of dereferencing and 
successor 

• Dereferencing is defined on an iterator if 
and only if successor is defined. 

• There are no non-empty ranges containing 
no values. 

• If you are not at the end of the range, you 
can dereference. 
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Forward Iterators 

• equality 
• dereferencing 
• successor 

 
All operations are constant time 

– algorithms written in terms of these operations 
are expected to be as fast as possible  
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    Complexity is part of the interface! 
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Successors of Peano 

Lecture 5 
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Three Fundamental Problems 

• swap 
– copy, assignment, (implied) equality  

• minimum, maximum 
– strict ordering 

• linear search 
– successor  
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Three fundamental concepts 

• regular 
– semi-regular 

• total ordering 
– weak ordering 

• iterator concepts 
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Iterator Categories 
• Input iterators 

– one directional traversal, single-pass algorithms 
– model: input stream 

• Forward iterators 
– one directional traversal, multi-pass algorithms 
– model: singly-linked list  

• Bidirectional iterators 
– bidirectional traversal, multi-pass algorithms 
– model: doubly-linked list 

• Random access iterators 
– random-access algorithms 
– model: array 
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Output Iterators 

• No equality 
• dereferencing only as an l-value 
• alternating ++ and * 
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Other Categories of Iterators 

• Linked iterators 
– successor function is mutable 

• Segmented iterators 
– std::deque would immediately benefit 
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distance for input iterators 
template <InputIterator I> 
DifferenceType(I) distance(I f, I l, 
                std::input_iterator_tag) { 
  // precondition: valid_range(f, l) 
  DifferenceType(I) n(0); 
  while (f != l) { 
    ++f; 
    ++n; 
  } 
 return n; 
} 
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distance for  
random access iterators 

template <RandomAccessIterator I> 
DifferenceType(I) distance(I f, I l, 
         std::random_access_iterator_tag) { 
    // precondition: valid_range(f, l) 
    return l - f; 
} 

193 



difference type 

difference type of iterator is an integral type 
that is large enough to encode the longest 
possible range 
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Iterator Traits 

• value_type 
• reference 
• pointer 
• difference_type 
• iterator_category 
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type functions in C++ 
#define DifferenceType(X) typename \ 
std::iterator_traits<X>::difference_type  
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Category dispatch 

template <InputIterator I> 
inline 
DifferenceType(I) distance(I f, I l) { 
  return  distance(f, l,  
           IteratorCategory(I)()); 
} 
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Un-implementability of valid_range 

• Linked data structures 
• Pointers 
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Laws of valid ranges 
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advance  
(input iterators) 

 
template <InputIterator I> 
inline 
void advance(I& x, DifferenceType(I) n, 
             std::input_iterator_tag) { 
  while (n) { 
    --n; 
    ++x; 
  } 
} 
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advance  
(random access iterators) 

 
 
template <RandomAccessIterator I> 
inline 
void advance(I& x, DifferenceType(I) n, 
          std::random_access_iterator_tag) { 
  x += n; 
} 
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advance  

 
 
 
template <InputIterator I> 
inline 
void advance(I& x, DifferenceType(I) n) { 
  advance(x, n, IteratorCategory(I)()); 
} 
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Open, Semi-open and Closed 
Ranges 

• open: does not include either end 
    (i, j) 

• semi-open: includes value at i but not at j 
    [i, j) 

• closed: includes value at i and at j 
          [i, j] 
 
There are also semi-open ranges (i, j] 
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Semi-open Ranges 

• Algorithmically, semi-open ranges are 
superior 
– search 
– insert 
– rotation 
– partition 
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Positions in a sequence 

• A sequence of n elements has n + 1 
(insertion, rotation, etc) positions. 
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Bounded and Counted Ranges  

• A range (open, semi-open, or closed) can 
be specified in two ways 
– bounded: two iterators 
– counted: an iterator and length 
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Ranges 

 
                                             semi-open     closed 
Bounded: two iterators              [i, j)              [i, j]    
 
Counted: iterator and integer   [i, n)             [i, n] 
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Linear search 

template <InputIterator I, 
          Predicate P> 
I find_if(I f, I l, P p) { 
  while (f != l && !p(*f)) ++f; 
  return f; 
} 
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Input iterators 

• Single-pass algorithms 
– you cannot step into the same river twice 

• i == j does not imply  ++i == ++j 
• modifying one copy invalidates the rest 
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Linear search (counted) 
template <InputIterator I, 
          Predicate P> 
std::pair<I, difference_type(I)> 
find_if_n(I f, difference_type(I) n, P p) { 
  while (n && !p(*f)) { ++f; --n; } 
  return std::make_pair(f, n); 
} 
 
// Why do we return a pair? 
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Binary Search 

• John Mauchly (1946) 
– discussion 

• D.H. Lehmer (1960) 
– “correct” implementation 
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bsearch()  

“The bsearch() function shall return a pointer 
to a matching  member  of the array, or a 
null pointer if no match is found.  If two or 
more members compare equal, which 
member is returned is unspecified.” 
 
    http://www.unix.com/man-page/POSIX/3posix/bsearch/ 
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Intermediate value theorem 
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Proof 

Do the binary search! 
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History of IVT 

• Simon Stevin (1594) 
– polynomials 

• Joseph Louis Lagrange (1795) 
– polynomials 

• Bernard Bolzano (1817) 
• Augustin-Louis Cauchy (1821) 
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Augustin-Louis Cauchy  
(1789 -1857) 
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partition_point_n 
 
 
 
 
template <ForwardIterator I, Predicate P> 
I partition_point_n(I f, DifferenceType(I) n, P p); 
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Partition point semantics 
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The sad story of partition 

• Should elements that satisfy the predicate 
precede the elements that do not? 
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template <ForwardIterator I, Predicate P> 
I partition_point_n(I f, DifferenceType(I) n, P p) { 
  while (n) { 
    I middle(f);  
    DifferenceType(I) half(n >> 1);  
    advance(middle, half); 
    if (!p(*middle)) { 
      n = half; 
    } else { 
      f = ++middle;  
      n = n - (half + 1); 
    } 
  } 
  return f; 
} 
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partition_point 
template <ForwardIterator I, Predicate P> 
I partition_point(I f, I l, P p) { 
  return partition_point_n(f, 
                           std::distance(f, l), 
                           p); 
} 
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Sorted ranges 

Read section 6.5 of EoP 
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Binary Search Lemma 
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Problem 224 

Prove the Binary Search Lemma. 
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lower_bound 
template <ForwardIterator I> 
I lower_bound(I f, I l, ValueType(I) a) { 
  std::less<ValueType(I)> cmp; 
  return std::partition_point(f, l,  
                       std::bind2nd(cmp, a)); 
} 
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lower_bound (C++11) 
template <ForwardIterator I> 
I lower_bound(I f, I l, ValueType(I) a) { 
  return std::partition_point(f, l,  
     [=](ValueType(I) x) { return x < a; }); 
} 
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upper_bound 
template <ForwardIterator I> 
I upper_bound(I f, I l, ValueType(I) a) { 
  std::less_equal<ValueType(I)> comp; 
  return std::partition_point(f, l,  
                       std::bind2nd(cmp, a)); 
} 
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upper_bound (C++11) 
template <ForwardIterator I> 
I lower_bound(I f, I l, ValueType(I) a) { 
  return std::partition_point(f, l,  
     [=](ValueType(I) x) { return x <= a; }); 
} 
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Practical theories 

Iterator theories are as important to 
Computer Science as theories of groups and 
rings are to Algebra. 
 
Knowing theories implies knowing their 
algorithms. 
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Lessons of the Journey 

• Investigations of foundational issues of 
arithmetic led to the design of modern 
computers. 

• Simple theories of successor allow us to 
express a large body of algorithms. 

• Concentrate on deep understanding of a 
few central things! 
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