
CRD
Corporate Research and Development
Schenectady, New York

ADA* GENERIC LIBRARY
LINEAR DATA STRUCTURE PACKAGES, VOLUME TWO

D.R. Mussert and A.A. Stepano*

Information Systems Laboratory

April 1988

*Ada is a registered trademark of the U.S. Government (Ada Joint Program Office)
tRensselaer Polytechnic Institute, Troy, NY 121 80
tpolytechnic University, Brooklyn, NY 1 1201

Technical Information Series

Class 1

CLASSES OF GENERAL ELECTRIC
TECHNICAL REPORTS

CLASS 1 -- GENERAL INFORMATION

Available to anyone on request. Patent, legal, and commercial re-
view required before issue.

CLASS 2 -- GENERAL COMPANY INFORMATION

Available to any General Electric Company employee on request.
Available to any General Electric Subsidiary or Licensee, subject to
existing agreements. Disclosure outside General Electric Company
requires approval of originating component.

CLASS 3 -- LIMITED AVAILABILITY INFORMATION

Original distribution to those individuals with specific need for in-
formation. Subsequent Company availability requires originating
component approval. Disclosure outside General Electric Company
requires approval of originating component.

CLASS 4 -- HIGHLY RESTRICTED DISTRIBUTION

Original distribution to those individuals personally responsible for
the Company's interests in the subject. Copies serially numbered,
assigned, and recorded by name. Material content and knowledge
of existence restricted to copy holder.

Requests for Class 2, 3, or 4 reports from non-resident aliens c r dis-
closure of Class 2, 3, or 4 reports to foreign locations, except Canada,
require review for export by the CRD Counsel.

Corporate Research and Development

Technical Report Abstract Page

Title ADA* GENERIC LIBRARY LINEAR DATA STRUCTURE PACKAGES,
VOLUME TWO

Author(s) D. R. Mussert
A.A. Stepano*

Component Information Systems Laboratory

Report
Number 88CRD 113

Number
of Pages 92

Phone (5 18)387-6 120
8*833-6120

Date April 1988

Class 1

Key Words generic algorithms, generic packages, generic subprograms, list manipulation,
software library, software productivity, software reliability, software reuse

The purpose of the Ada Generic Library is to provide Ada programmers with an extensive, well-
structured and well-documented library of generic packages whose use can substantially increase pro-
ductivity and reliability. The construction of the library follows a new approach, whose principles
include the following:

Extensive use of generic algorithms, such as generic sort and merge algorithms that can be special-
ized to work for many different data representations and comparison functions.

Building up functionally in layers (practicing software reuse within the library itself).

Obtaining high efficiency in spite of the layering (using Ada's inline compiler directive).

Volumes 1 and 2 contain eight Ada packages, with over 170 subprograms, for various linear data
structures based on linked lists.

Manuscript received March 30, 1988

*Ada is a registered trademark of the U.S. Government (Ada Joint Program Office)
tRensselaer Polytechnic Institute, Troy, NY 12180
$Polytechnic University, Brooklyn, NY 11201

~ d a @ Generic Library
Linear Data Structure Packages

Volume Two

David R. Musser Alexander A. S tepanov
Rensselaer Polytechnic Institute Polytechnic University
Computer Science Department Computer Science Department

Amos Eaton Hall 333 Jay Street
Troy, New York 12180 Brooklyn, New York 11201

Copyright @ 1987
General Electric Company

Release 1.1
March 3, 1988

Ada is a registered trademark of the U. S. Government (Ada Joint Program Office)

Contents

1 Introduction 1

2 Doublexnded-Lists Package 3
. 2.1 Overview 3

. 2.1.1 A model of double-ended-lists 3
. 2.1.2 Invariants 4

. 2.1.3 Classification of operations 4
. 2.1.4 Construction and modification of sequences 5

. 2.1.5 Examining sequences 6
. 2.1.6 Computing with sequences 7

. 2.2 Packagespecification 8
. 2.3 Package body 8

. 2.4 Definitions for the examples 9
. 2.5 Subprograms 11

. 2.5.1 Add-Current 11
. 2.5.2 AddJirs t 12
. 2.5.3 Adddast 13

. 2.5.4 Advance 14
. 2.5.5 Concatenate 15
. 2.5.6 CopySequence 17

. 2.5.7 Count 18
. 2.5.8 CountJf 19

. 2.5.9 CountJf-Not 20
. 2.5.10 Current 21

. 2.5.11 Delete 22
. 2.5.12 DeleteDuplicates 23

. 2.5.13 DeleteJf 24
. 2.5.14 DeleteJfJot 25

. 2.5.15 DropHead 26
. 2.5.16 Drop-Tail 28

. 2.5.17 Equal 29

. 2.5.18 Every 30
. 2.5.19 Find 32

. 2.5.20 FindJf 33
. 2.5.21 F i n d J f J o t 34

. 2.5.22 First 35
. 2.5.23 For-Each 36

CONTENTS

. 2.5.24 ForJ3ach-2 37
. 2.5.25 Free 38

. 2.5.26 Initialize 39
2.5.27 Invert . 40
2.5.28 Is-Empty . 41
2.5.29 Is-End . 42

. 2.5.30 Last 43
. 2.5.31 Length 44

. 2.5.32 Map 45
2.5.33 M a p 2 . 46

. 2.5.34 Merge 47
2.5.35 Mismatch . 48

. 2.5.36 NotAny 49
. 2.5.37 NotXvery 51

. 2.5.38 Reduce 53
. 2.5.39 Search 54

. 2.5.40 Set-Current 55
. 2.5.41 SetJ'irst 56
. 2.5.42 S e t h a t 57

. 2.5.43 Some 58
. 2.5.44 Sort 59
. 2.5.45 Split 60

. 2.5.46 Substitute 62
. 2.5.47 Subst i tute3 63

. 2.5.48 SubstituteJf-Not 64

3 Stacks Package 65
. 3.1 Package specification 65

. 3.2 Package body 65
. 3.3 Definitions for the examples 66

. 3.4 Subprograms 67

. 3.4.1 Create 67
. 3.4.2 For-Each 68
. 3.4.3 Is-Empty 69

. 3.4.4 Pop 70

. 3.4.5 Push 7 1

. 3.4.6 Top 72

4 OutputJtestrictediDeques Package 73
. 4.1 Package specification 73

. 4.2 Package body 74
. 4.3 Definitions for the examples 74

. 4.4 Subprograms 75

. 4.4.1 Create 75
. 4.4.2 For-Each 76

. 4.4.3 Front 77
. 4.4.4 Is-Empty 78
. 4.4.5 Pop-F'ront 79

CONTENTS

. 4.4.6 Push-Front 80
. 4.4.7 PushJCear 81

. 4.4.8 Rear . 82

5 Using the Packages 83
. 5.1 Partially Instantiated Packages 83

. 5.1.1 PIPS for DoubleJCndedJlists 83
. 5.1.2 PIPS for Stacks 84

. 5.1.3 PIPS for 0utputJLestrictedJ)eques 85
. 5.2 Test Suites and Output 86

A Examples-Help Package 87

B Combining Stacks with a Vector Representation 89
. B. l Simple-lndexed-Vectors Package Specification 89

. B.2 Simplelndexed-Vectors Package Bbdy 90

. B . 3 A PIP Combining Vectors and Stacks 91

C Orderings for Merge and Sort 92

Chapter 1

Introduction

This is the second volume of a library of Linear Data Structures facilities in the Ada
programming language. The purpose of this library and of the broader Ada Generic Li-
brary project is to provide Ada programmers with an extensive, well-structured and well-
documented library of generic packages whose use can substantially increase productivity
and reliability. In this volume several useful linear data structures are provided as Ada
pachges, designed and programmed according to the principles of generic algorithms as
explained in Volume 1. Familiarity with those principles and with the particular data
structures covered in Volume 1 is assumed, as the packages presented here build upon that
work.

The following packages are included in this volume:

0 Double-EndedLists employs header cells with singly-linked lists to make some op-
erations such as concatenation more efficient and to provide more security in various
computations with lists.

Stacks provides the familiar linear data structure in which insertions and deletions
are restricted to one end.

0utputJlestrictedJ)eques provides a data structure that restricts insertions to both
ends and deletions to one end.

These three packages are representational abstractions that produce different structural
abstractions from different representations of sequences. For example, any of the three
different low-level representations of singly-linked lists provided in Volume 1 (Chapters 3,
4, 5) can easily be plugged together with Double-EndedLists to produce three different
versions of this data structure and its associated' algorithms. Each version is provided in
the library as a Partially Instantiated Package (PIP), which is a generic package with only
the element type, and perhaps some configuration parameters, as generic parameters. See
Chapter 5 for further details on the form and usage of PIPs.

Similarly, three more PIPs are provided for plugging together each of the low-level
representations of singly-linked lists with Stacks. The Stacks package can also be combined
with low-level representations other than linked lists, since the generic parameters of these
packages do not need all of the characteristics of linked-lists (in particular, no Set-Next
operation is needed). As an illustration of this, Appendix B shows how to supply the
needed low-level operations using a simple vector represent at ion.

The parameterization of Output-Restricted-Deques is such that the operations as-
sumed are easily provided by Double-EndeLLists. Thus we obtain PIPs by plugging

2 CHAPTER 1 . INTRODUCTION

together each of the three PIPS for Double-Ended-Lists with with Output-Restricted-
Deques, producing three different versions of that data structure and its operations. One
could, however, produce other versions in terms of a vector representation, since the op-
erations assumed as parameters for Output-Restricted-Deques, like those of Stacks, can
also be efficiently performed in terms of a vector representation.

Chapter 2

Double-Ended-List s Package

2.1 Overview

This package creates a data type called Del and provides 47 subprograms for manipulating
values of this type. Basically Dels are finite sequences and the operations provided are
similar to to those of SinglygLinked..Lists (Chapter 6 of Volume l), but some operations
such as concatenation are more efficient (constant time rather than linear in the length
of the arguments). In addition, more security against certain kinds of semantic errors is
provided, since the package user does not have direct access to pointer values. For example,
with Sing1 y-Linked-Lists it is possible using the S e t a e x t operation to create a circular
list, causing other operations to loop indefinitely, but this is not possible with Dels.

The package is generic in the type of elements stored and in the subprograms that provide
operations on a singly-linked-list representation of finite sequences. This is a representa-
tional abstraction package in which the parameterization is the same as that for Singly-
L inked-List s, so that any low-level representation package that can be plugged together
with Singly-LinkeciLists can also be plugged together with Double-ded-List s.

2J .1 A model of double-ended-lists

The internal representation of the Del type is as a record containing three pointers into
a singly-linked-list representation of a sequence: first-element, last-element, and current-
element. While this representation is not directly accessible to the package user, it is
nonetheless useful to think in terms of the three pointers as a model of double-ended-lists,
both for understanding of what the operations do and of how to use them most effectively.

The first-element pointer gives the same kind of access to a sequence as one has with
Singly-Linked-Lists.

The last-element pointer makes it possible to access the last element in constant time,
rather than having to traverse the sequence, and consequently concatenatation of two
sequences can be done in constant time.

The current-element pointer is used as a marker within the sequence; many of the
subprograms operate only on the elements starting with the current element through
the end of the sequence, and some of these convey their result by moving the current-
element pointer to a new position (always to the right).

CHAPTER 2. DOUBLEXNDED-LISTS PACKAGE

2.1.2 Invariants

The user of Double-Ended-Lists does not have direct access to any of the three pointers;
only through certain subprograms can changes in these pointers be effected. The main
consequence of* this fact, and of the selection of operations actually provided, is that certain
properties (called invariants) of the representation are maintained, which in turn implies
that certain kinds of errors are ruled out. These invariants are as follows: For each value
of type Del, there is a finite sequence such that either the sequence is empty, in which case
the generic formal subprogram I s h d returns true on all three pointers; or, letting the
sequence be

X~,xl ,-**,Xn-l ,

1. There is a sequence of pointers
p ~ , P l , * - * , P n

such that pi points to xi for i = 0,. . . , n - 1; p; = Ne~t (p i -~) for i = 1, . . . , n; and
Is_End(pn) is true.

2. The first-element pointer equals po.

3. The last-element pointer equals p,-1.

4. The current-element pointer equals p; for some i, i = 0,. . . , n.

A direct consequence of these invariants is that there can be no loops in double-ended lists,
unlike the case with SinglyLinkedLists.

Note that possibly Is-End is true of the current-element pointer. In this case we say
that the current-element pointer is ofl the end of the sequence.

2.1.3 Classification of operations

As is the case with Singly-Linked-List s, the operations on Double-Ended-List s can be
classified as follows:

1. Construction and modification of sequences

2. Examination of sequences

3. Computing with sequences

The following three subsections give a brief overview of these categories, leaving the details
and examples of usage to the individual subprogram descriptions. In comparison with the
selection of operations on Singly-LinkedLists, the operations on DoubleBdecLLists
differ in the following general ways:

Construction, modification, and examination of sequences includes operations that
take advantage of the last-element and current-element pointers.

0 Many of the operations operate on the current element or on all of the elements from
the current element to the end.

0 There are no operations like Set-Next that permit pointers to be changed to arbitrary
values.

a There is no sharing of list structure.

0 Construction and modification operations are provided as procedures rather than
functions, and there are no Copy versions of the operations, since it is expected that
in most cases Dels will be treated as objects on which computation will be performed
by modification.

The Del type is a limited private type, and thus assignment from one variable of type Del to
another is prohibited by the language rules. There is, however, a Copy-Sequence operation
that can be used in place of assignment.

2.1.4 Construction and modification of sequences

All of the operations in this category are procedures.

Basic construct ion

Declaration of a variable to be of type,Del initializes the variable to represent an empty
sequence. There are three operations for adding a single element to a sequence: Add-
F i r s t (Thexlement , s) , AddLast (TheAlement , s) , and Add-Current (TheJlement , s) .

CopySequence(S1, 32) produces a copy of sequence S2 in S i that does not overlap
with S2 in its memory representation.

Basic Modification

S e t J i r s t (S , E) changes S so that its first element is E but the following elements are
unchanged. Similarly, Set-Last (S , E) and Set-Current (S , E) change the last and current
elements , respectively. Advance (S) moves the current -element pointer one element forward.
I n i t i a l i z e (S) resets the current-element pointer to the first element.

DropJIead (S) removes the elements of S from the first element up to and including the
the current element. The complementary operation Drop-Tail (S) removes the elements
beyond the current element. Free(S) removes all the elements; its use is to return the cells
occupied by S to the available space pool. The header cell is retained, but is made empty.

Reversing

There is one operation for reversing the order of elements in a sequence: Invert (S).

Splitting and Concatenation

S p l i t (S 1, S2) splits S 1 into two parts: a l l elements up to and including its current element
(this becomes the new value of Si) and all elements following the current element of S 1 (this
becomes the new value of ~ 2) . The old value of S2 is lost (the cells it occupies are returned
to available space). The current element of the new S1 its last element and of the new S2
is the first element.

Conversely, Concat enate (S 1, S2) modifies S i to be the concatenation of its input value
and S?. The output value of S2 is made empty. The current element of the new S i is the
same as in the input value.

Thus, if S2 is empty, the net effect of

6 CHAPTER 2. DOUBLE-ENDEDLISTS PACKAGE

is a no-op. (If S2 is non-empty the effect is the same as that of Free(S21.)

Merging and Sorting

Merge(S1, S2) modifies Si to be a sequence containing the same elements as the input
values of Si and S2, interleaved. If Si and S2 are in order as determined by its generic
parameter Test, then the result will be also.

By "interleaved" is meant that if X precedes Y in Si then X will precede Y in the new
Si and similarly for X and Y in S2 (even if Si or S2 is not in order). See Section C for
discussion of the restrictions on Test and definition of "in order as determined by Test.""

Sort(S) takes a comparison function Test and modifies S to be a sequence containing
the same elements as S, but in order as determined by Test.

Both Merge and Sort are stable: elements considered equal by Test (see the discussion
in Section C) will remain in their original order.

Deletion and subst it ut ion

There are four different operations for deleting elements from a sequence, al l of which have a
generic parameter Test (X) or Test (X,Y), which are Boolean valued functions on element
values X and Y. For example, Delete-If (S) modifies S by removing those elements E of
the input value of S that satisfy Test(E) = True. See also Delete, Delete-If-Not, and
DeleteDuplicates.

Similarly, there are three generic subprograms for substituting a new element for some of
the elements in a sequence: Substitute (New-Item, OlLItem, S) , Substitute-If (New-
Item, s) , and Substitute-Ifaot (New-Item, s) .

2.1.5 Examining sequences

All of the operations in this category are functions, except Mismatch, Find, Find-If ,
Find-If J o t and Search.

Basic queries

I sAd(S) returns the Boolean value True if the current-element pointer of S is off the
end, False otherwise. Is&pty(S) returns True if S has no elements, False otherwise.
Length61 returns the number of elements in S. First (S) , Last (S) , and Current (S) return
the first, last, and current elements of a non-empty sequence S; if S is empty they all apply
the generic formal parameter First to a Sequence with no elements, raising an exception.

Counting

The remaining operations for examining sequences are generic, all having either Test (X) or
Test (X , Y) as a generic parameter. For example, Count, Count-If , and Count-If -Not are
Integer valued functions for counting the elements in a sequence satisfying or not satisfying
Test.

Equality and matching

Equal (S1, S2) returns true if S1 and 52 contain the same elements, beginning with their
current elements, in the same order, using Test as the test for the element equality. Using

2.1. 0 VERVIE W 7

"=I1 for Test one obtains the ordinary check for equality of two sequences, but this function
can be used to extend other equivalence relations on elements to an equivalence relation on
sequences.

A more general operation is the procedure Mismatch(S1, $21, which scans the input
values of Si and 52 in parallel until the first position is found at which they disagree,
again starting with the current elements and using Test as the test for element equality.
Mismatch modifies the current-element pointers of S1 and S2 to be the subsequences of its
inputs beginning at the disagreement position and going to the end.

Searching

There are eight operations for searching a sequence. If S contains an element E such that
Test (Item,E) is true, at or to the right of its current-element pointer, then Find(Item,
S) moves the current-element pointer of S to the the leftmost such element; otherwise
the current-element pointer is moved off the end of S. Find-If and FinLIfJot are related
procedures. Search(S1, S2) searches S2, starting with the current element, for the leftmost
occurrence of a subsequence that element- wise matches S 1, and moves the current-element
pointer of S2 to this subsequence. If no matching subsequence is found, the current element
pointer of S2 is set off the end.

The other operations for searching are all Boolean valued functions. Some(S) returns
True if Test is true of some element of S, false otherwise. Similarly, Every(S) checks if
Test is true of every element of S, NotXvery(S) checks if Test is false for some element,
and N o t h y (S) checks if Test is false for every element. All of these operations start with
the current element and proceed to the right, just through the first element that determines
the answer (e.g., if S from its current element to the end is a sequence of integers 2, 3, 5,
7, 11, the operation is Some, and Test (X) checks for X being odd, then Test is performed
only on 2 and 3).

2.1.6 Computing with sequences

Procedural iteration

The five functions and procedures in this category are generic subprograms for iterating over
a sequence, applying some given subprogram to each element. ForZach, for example, is
a procedure that takes a generic parameter called TheSrocedure; ForSach(S) computes
TheSrocedure(E) for each element E of S, starting with the current element and going
to the end. Forsack2 takes two sequences and a procedure with two arguments and
applies the procedure to corresponding pairs of elements in the sequences, starting with
their current elements.

Mapping

Map@) modifies S to consist of the results of applying its generic parameter F to each
element of S, from the current element to the end. F must be a function from the Element
type to the Element type. Map-2 is a similar procedure for application of a function F of
two arguments to corresponding pairs of elements of two sequences SI and 52.

CHAPTER 2. DO UBLE-ENDEDLISTS PACKAGE

Reduction

Reduce applies a function of two arguments, F (X , Y) , to reduce a sequence to a single value;
for example, if F is "+I1, Reduce(S) sums up the elements of S. The elements included in
the reduction are those from the current element of S to the end. It is also necessary to
supply Reduce with an element that is the identity for F; e.g., 0 in the case of "+" when
the elements are integers.

2.2 Package specification

The package specification is as follows:

generic

type Element is private;
type Sequence is private;
Nil : Sequence ;
with function First@ : Sequence) return Element;
with function Next (S : Sequence) return Sequence ;
with function Construct(E : Element; S : Sequence) return Sequence;
with procedure Set-First@ : Sequence; E : Element);
with procedure Set.Next(S1, S2 : Sequence);
with procedure Free,Construct(S : Sequence);

package Double,Ended,Lists is

type Del is limited private;

{The subprogram specifications)

private

type Del is record
First : Sequence := Nil;
Current : Sequence := Nil;
Last : Sequence := Nil;

end record;

end Double-Ended-Lists;

2.3 Package body

The package body is as follows:

with Singly-Linked-Lists ;
package body Double-Ended-Lists is

package Regular-Lists is

2.4. DEFINITIONS FOR THE EXAMPLES

new Singly-Linked-Lists(Element, Sequence, Nil, First,
Next, Construct, Set-First , Set-Next , Free-Construct) ;

procedure Make,Empty(S : out Del) is
begin
S . First : = Nil ;
S.Current := Nil;
S .Last := Nil;

end Make-Empty;
pragma Inline(Make-Empty);

procedure Put-List@ : out Del; L : Sequence) is
begin

S.First := L;
S.Current := L;
S. Last : = Regular-Lists .Last (L) ;

end Put-List;
pragma Inline(Put,List);

(The subprogram bodies)

end Double,Ended,Lists;

2.4 Definitions for the examples

The following definitions are referenced in the examples included in the subprogram de-
scriptions. (This is the skeleton of a test suite in which the examples are included.)

with Double,Ended,Lists,l ; -- a PIP ;
package Integer,Double,Ended,Lists is

new Double-Ended-Lists-l(1nteger);

with Integer-Double-Ended-Lists, Text-10, Examples-Help;
procedure Test ,Del is
use Integer-Double-Ended-Lists.Inner, Text-10, Examples-Help;
Flag : Boolean := True;

function Shuffle-Test(X, Y : Integer) return Boolean is
begin

Flag := not Flag;
return Flag;

end Shuffle-Test;

procedure 1ota(N : Integer; Result : in out Del) is
begin

for I in 0 .. N - 1 loop
Add-Last (I, Result) ;

CHAPTER 2. DO UBLE-ENDED-LISTS PACKAGE

end loop;
end Iota;

procedure Show,List(S : Del) is
procedure Show-List-Aux is new For-Each(Print-Integer);

begin
Put (It-- : It) ; Show,List,Aux(S) ; New-Line;

end Show-List ;

begin

{Examples from the subprograms)

show ("End Of Teststt) ;
end;

2.5. SUBPROGRAMS

2.5 Subprograms

2.5.1 Add-Current

Specificat ion

procedure Add-Current(The-Element : Element; S : in out Del);
pragma inline (Add-Current) ;

Description Inserts The-Element in S after the current element.

Time constant

Space constant

Mutative? Yes

Shares? No

Details The current element is unchanged. Attempts to apply Next to the current ele-
ment pointer even if Is-End is true of this pointer.

See also Add-First, Add-Last

Examples

declare
Temp : Del;

begin
Iota(3, Temp) ;
~dd-Current (5, Temp) ;
Show-List (Temp) ;

0 5 1 2
Add-Current (6, Temp) ;
Show-List (Temp) ;

0 6 5 1 2
end ;

Implementation

Next-One, New-One : Sequence;
begin

Next ,One : = Next (S . Current) ;
New-One := Construct(The,Element, Next-One);
Set-Next (S . Current, New-One) ;
if Regular,Lists.Is,End(Next,One) then

S . Last : = New-One ;
end if;

end Add-Current;

CHAPTER 2. DO UBLEXNDEDLISTS PACKAGE

Specification

procedure Add,First(The,Element : Element; S : in out Del);
pragma inline(Add,First) ;

Description Inserts The-Element as the first element of S.

Time constant

Space constant

Mutative? Yes

Shares? No

Details The current element is unchanged, unless S was empty.

See also Add-Current , Add-Last

Examples

declare
Temp : Del;

begin
Iota@, Temp) ;
Add-First (5, Temp) ;
Initialize(Temp) ;
Show-List (Temp) ; -- 5 0 1 2

end ;

Implementation

begin
S.First := Const~ct(The,Element, S.First);
if Regular-Lists . Is,End(S .Last) then
S.Last := S.First;
Initialize (S) ;

end if;
end Add-First ;

2.5. SUBPROGRAMS

2.5.3 AddLast

Specificat ion

procedure Add,Last(The,Element : Element; S : in out Del);
pragma inline(Add,Last);

Description Inserts The-Element as the last element of S.

Time constant

Space constant

Mutative? Yes

Shares? No

Details The current element is unchanged, unless S was empty.

See also Add-Current , Add-First

Examples

declare
Temp : Del;

begin
Iota@, Temp) ;
~dd,Last (5 , Temp) ;
Show-List (Temp) ; -- 0 1 2 5

end ;

Implementation

Temp : Sequence := S.Last;
begin

S.Last := Construct(The,Element, Nil);
if Regular,Lists.Is,End(Temp) then
S.First := S.Last;
Initialize@);

else
Set ,Next (Temp, S . Last) ;

end if;
end Add-Last ;

CHAPTER 2. DO UBLE,ENDEDLISTS PACKAGE

2.5.4 Advance

Specification

procedure Advance(S : in out Del);
pragma inline (Advance) ;

Description Moves the current element pointer forward one element.

Time constant

Space 0

Mutative? No

Shares? No

Details Tries to compute Next of the current element pointer even if Is-End is true of
this pointer .

See also

Implementat ion

begin
S .Current : = Next (S . Current) ;

end Advance;

2.5. SUBPROGRAMS

2.5.5 Concatenate

Specificat ion

procedure Concatenate(S1, S2 : in out Del);
pragma inline (Concat enat e) ;

Description S 1 is modified to be the concatenation of its input value and S2.

Time constant

Space 0

Mutative? Yes

Shares? No

Details The output value of S2 is made empty. The current element of the new S1 is the
same as in the input value.

See also

Examples

declare
Temp-1, Temp-2 : Del;

begin
Iota(5, Temp-1) ;
Iota(6, Temp-2) ;
Concatenate(Temp-1, Temp-2) ;
Show-List (Temp-1) ;

-- 0 1 2 3 4 0 1 2 3 4 5

end ;
declare
Temp-1, Temp-2 : Del;

begin
Iota(6, Temp-2) ;
Concat enat e (Temp-1 , Temp-2) ;
Show-List (Temp-1) ;

-- 0 1 2 3 4 5

end ;
declare
Temp-1, Temp-2 : Del;

begin
Iota(5, Temp-1) ;
Concatenate(Temp-1, Temp-2) ;
Show-List (Temp-1) ;

-- 0 1 2 3 4

end ;

Implementation

CHAPTER 2. DOUBLEXNDEDJISTS PACKAGE

begin
if Is,Empty(Si) then
S1 := s2;
Make,Empty(S2) ;

elsif not Is-Empty(S2) then
Set ,Next (S1 .Last, S2. First) ;
S1.Last := S2.Last;
Make-Empty(S2) ;

end if;
end Concat enat e ;

2.5. SUBPROGRAMS

2.5.6 Copy-Sequence

Specification

procedure Copy-Sequence(S1 : out Del; S2 : Del);

Description S1 is made to be a copy of S2.

Time order n2

Space order n2

where n2 = length(S2)

Mutative? No

Shares? No

Details The current element of S1 becomes the first element (and thus may differ from
the current element of S2).

See also

Examples

declare
Temp-1, Temp-2 : Del;

begin
Iota(3, Temp-1) ;
Copy-Sequence(Temp-2, Temp-1) ;
Show-List (Temp-2) ; -- 0 1 2

end ;

Implementation

Temp : Sequence := Regular,Lists.Copy,Sequence(S2.First);
begin

S1.First := Temp;
S 1. Current : = Temp ;
S1 .Last := Regular-Lists .Last (Temp) ;

end Copy-Sequence;

CHAPTER 2. DOUBLEjGNDEDLISTS PACKAGE

2.5.7 Count

Specificat ion

generic
with function Test(X, Y : Element) return Boolean;

function Count (Item : Element; S : Del)
return Integer;

Description Returns a non-negative integer equal to the number of elements E of S such
that Test(Item,E) is true, starting with the current element.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

See also Countlf, CountJf-Not, Find

Examples

declare
Temp : Del;
function Count,When,Divides is

new ~nteger,~ouble,~nded~Lists.Inner.Count(Test => Divides);
begin

Iota(10, Temp);
Show-Integer (Count _When-Divides (3, Temp)) ;

-- 4
end;

Implementation

function Count ,Aux is new Regular-Lists .Count (Test) ;
begin

return Count,Aux(Item, S.Current);
end Count;

2.5. SUBPROGRAMS

2.5.8 CountJf

Specificat ion

generic
with function Test (X : Element) return Boolean;

function Count-If (S : Del)
return Integer;

Description Returns a non-negative integer equal to the number of elements E of S such
that Test(E) is true, starting with the current element.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

See also Count, Count-If'Xot, Find, FindJf

Examples

declare
Temp : Del;
function Count-If-Odd is new Count,If(Test => Odd);

begin
Iota@, Temp) ;
Show-Integer(Count-If-Odd(Temp));

-- 4
end;

Implementat ion

function Count-Aux is new ~egular-Lists .count -If (Test) ;
begin

return Count ,Aux (S . Current) ;
end Count ,If ;

CHAPTER 2. DO UBLE-ENDEDLISTS PACKAGE

2.5.9 Count J f N o t

Specification

generic
with function Test(X : Element) return Boolean;

function Count ,If ,Not (S : Del)
return Integer;

Description Returns a non-negative integer equal to the number of elements E of S such
that Test(E) is false, starting with the current element.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

See also Count, Count-If, Find, F i n d l f J o t

Examples

declare
Tamp : Del;
function Count ,If ,Not,Odd is new Count ,If ,Not (Test => Odd) ;

begin
Iota(9, Temp) ;
~how,~nteger(Count,If,Not,Odd(Temp));

,- 5
end;

Implementation

function Count-Aux is new Regular-Lists . Count,If Jot (Test) ;
begin

return Count ,Aux (S . Current) ;
end Count ,If ,Mot ;

2.5. SUBPROGRAMS

2.5.10 Current

Specification

function Current(S : Del)
return Element;

prapa inline(Current);

Description Returns the current element of S.

Time constant

Space 0

Mutative? No

Shares? No

Details If the current element pointer of S is off the end, this function will apply First
to a Sequence with no elements, raising an exception.

See also

Implementation

begin
return First (S .Current) ;

end Current;

CHAPTER 2. D O U B L E ~ N D E D L I S T S PACKAGE

2.5.11 Delete

Specificat ion

generic
with function Test(X, Y : Element) return Boolean;

procedure Delete(1tem : Element; S : in out Del);

Description Modifies S by deleting all elements E of S for which Test(Item,E) is true.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mut at ive? Yes

Shares? No

See also DeleteJf, DeleteJfiNot , DeleteDuplicates

Examples

declare
Temp : Del;
procedure Delete-When-Divides is

new Integer-~ouble-Ended,~ists.Inner.Delete(~est => Divides);
begin

Iota(l5, Temp) ;
Delete-When,Divides(3, Temp);
Show-List (Temp) ;

-- 1 2 4 5 7 8 1 0 1 1 1 3 1 4

end ;

Implementation

function Delete-Aw is new Regular,Lists.Delete(Test);
begin

Put,List(S, Delete,Aux(Item, S.First)) ;
end Delete;

2.5. SUBPROGRAMS

Specificat ion

generic
with function Test(X, Y : Element) return Boolean;

procedure Delete-Duplicates (S : in out Del) ;

Description Modifies S by deleting all duplicated occurrences of elements, using Test as
the test for equality.

Time order n2m

Space 0

where n = length(S) and m = average(time for Test)

Mutative? Yes

Shares? No

Details The left-most occurrence of each duplicated element is retained.

See also Delete, Delete3

Examples

declare
Temp : Del;
procedure Delete-Duplicates-When-Divides is

new Delete-Duplicates (Test=>Divides) ;
begin

Iota(20, Temp) ;
Advance (Temp) ;
Drop,Head(Temp) ;
Delete,Duplicates,When,Divides(Temp);
Show-List (Temp) ;

-- 2 3 5 7 11 13 17 19

end ;

Implementation

function Delete-Aux is new Regular-Lists.Delete-Duplicates(Test);
begin

Put-List (S, Delete,Aux(S .First)) ;
end Delete-Duplicates ;

CHAPTER 2. DO UBLE-ENDEDJISTS PACKAGE

2.5.13 Delete J f

Specificat ion

generic
with function Test(X : Element) return Boolean;

procedure Delete,ff(S : in out Del);

Description Modifies S by deleting dl elements E for which Test(E) is true.

Time order nm

Space order n

where n = length(S) and rn = average(time for Test)

Mutative? Yes

Shares? No

See also Delete, DeleteXNot

Examples

declare
Temp : Del;
procedure Delete-If-Odd is new Delete,If(Test => Odd);

begin
Iota(1O. Temp) ;
Delete-If ,Odd(Temp) ;
Shov,List (Temp) ; -- 0 2 4 6 8

end ;

Implementat ion

function Delete-Aux is new Regular-Lists .Delete,If (Test) ;
begin

Put,List(S, Delete,Aux(S.First));
end ~elet;-~f ;

2.5. SUBPROGRAMS

2.5.14 Delete Jf-Not

Specificat ion

generic
with function Test(X : Element) return Boolean;

procedure Delete-If ,Not (S : in out Dell ;

Description Modifies S by deleting all elements E for which Test(E) is false.

Time order n m

Space order n

where n = length(S) and m = average(time for Test)

Mutative? Yes

Shares? No

See also Delete, Delete3

Examples

declare
Temp : Del;
procedure Delete-If-Not-Odd is new Delete,If,Not(Test => Odd);

begin
Iota(l0, Temp) ;
Delete,If,Not,Odd(Temp);
Show-List (Temp) ;

,- 1 3 5 7 9

end;

Implementation

function Delete-Aux is new Regular,Lists.Delete,If,Not(Test);
begin

Put-List (S, Delete,Aux(S .First)) ;
end Delete-If-Not;

CHAPTER 2. DO UBLEJNDEDJIISTS PACKAGE:

2.5.15 DropHead

Specificat ion

procedure Drop,Head(S : in out Del);
pragma inline (Drop-Head) ;

Description S is modified by removing all elements up to and including the current
element.

Time order k

Space 0

where k = the number of elements up to and including the current element

Mutative? Yes

Shares? No

Details The elements removed are returned to the storage docator. If IsXnd is true of
the current element or the current element is the last element, all elements of S are
removed.

See also

Examples

declare
Tamp : Del;

begin
Iota(4, Temp);
Advance(Temp);
Drop,Head(Temp) ;
Show-List (Temp) ; -- 2 3

end ;

Implementation

Next-One : Sequence;
begin

if Is,End(S) then
Regular,Lists.Free,Sequence(S.First);
Make-Empty 6) ;

else
Next ,One : = Next (S . Current) ;
if Regular-Lists . Is-End(Next-One) then
Regular-Lists.Free-Sequence(S.First);
Make-Empty(S) ;

else

2.5. SUBPROGRAMS

Set ,Next (S . Current, Nil) ;
Regular-Lists.Free-Sequence(S.First);
S . First : = Next ,One ;
Initialize(S1;

end if;
end if;

end Drop-Head ;

CHAPTER 2. DOUBLEZNDEDJISTS PACKAGE

2.5.16 Drop-Tail

Specification

procedure Drop,Tail(S : in out Del);
pragma inline(Drop,Tail) ;

Description S is modified by removing all elements following the current element.

Time order k

Space 0

where k = the number of elements following the current element

Mutative? Yes

Shares? No

Details The elements removed are returned to the storage docator. If Is-End is true of
the current element or the current element is the last element, no elements of S are
removed.

See also DropHead

Examples

declare
Temp : Del;

begin
Iota(4, Temp);
~dvance (Temp) ;
Drop-Tail (Temp) ;
Initialize(Temp) ;
Show-List (Temp) ;

0 1
end;

Implementation

Next ,One : Sequence ;
begin

if not Is,End(S) then
Next ,One : = Next (S . Current) ;
if not Regular-Lists . Is,End(Next-One) then
Set-Next (S .Current, Nil) ;
Regular,Lists.Free,Sequence(Next,0ne);
S . Last : = S .Current ;

end if;
end if;

end Drop ,Tail ;

2.5. SUBPROGRAMS

2.5.17 Equal

Specification

generic
with function Test(X, Y : Element) return Boolean;

function Equal (S1, S2 : Del)
return Boolean;

Description Returns true if S 1 and 52 contain the same elements in the same order,
starting with their current elements and using Test as the test for element equality.

Time order m min(length(Sl), length(S2))

Space 0

where m = average(time for Test)

Mutative? No

Shares? No

See also Mismatch

Implementation

function Equal-Aux is new Regular,Lists.Equal(Test);
begin
return Equal,Aux(Sl.Current, S2.Current);

end Equal;

CHAPTER 2. DO UBLEXNDED-LISTS PACKAGE

2.5.18 Every

Specificat ion

generic
with function Test (X : Element) return Boolean;

function Every(S : Del)
re turn Boolean;

Description Returns true if Test is true of every element of S from the current ele-
ment to the end, false otherwise. Elements starting with the current element and in
successively higher positions are considered in order.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

Details Returns true if the current pointer of S is off the end.

See also Notxvery, Some

Examples

declare
Temp : Del;
function Every-Odd is new Every(Test => Odd) ;

begin
Iota(10, Temp) ;
show-Boolean(Every-Odd(Temp)) ; -- False

end ;
declare

Temp : Del;
function Every-Odd is new Every(Test => Odd) ;
procedure Delete-If -Not-Odd is new ~ e l e t e - 1 f - ~ o t (Test => odd) ;

begin
Io ta(i0 , Temp) ;
~ e l e t e - 1 f ,~ot,~dd(Temp) ;
show-Boolean(Every-Odd(Temp)) ; -- True

end ;

Implementation

2.5. SUBPROGRAMS

function Every-Aux is new Regular-~ists.Every(Test);
begin
return Every-Aux (S . Current) ;

end Every;

CHAPTER 2. DO UBLEXNDEDJSTS PACKAGE

2.5.19 Find

Specificat ion

generic
with function Test(X, Y : Element) return Boolean;

procedure Find(1tem : Element; S : in out Del) ;

Description If S contains an element E such that Test(Item,E) is true, at the current
element or beyond, then the leftmost such element is made to be the current element;
otherwise the current element pointer falls off the end of S.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

See also Find-lf, FindXNot, Some, Search

Examples

declare
Temp : Del;
procedure Find-When-Greater is new Find(Test => In<") ;

begin
Iota(20, Temp);
Find-When-Greater(9, Temp) ;
Show-List (Temp) ; -- 10 11 12 13 14 15 16 17 18 19

end ;

Implementation

function Find-Aux is new ~egular-Lists.Find(Test);
begin

S.Current := Find,Aux(Item, S.Current);
end Find;

2.5. SUBPROGRAMS

Specification

generic
with function Test(X : Element) return Boolean;

procedure Find,If(S : in out Del);

Description If S contains an element E such that Test(E) is true, at the current element
or beyond, then the current element is set to the leftmost such element; otherwise the
current element pointer falls off the end of S.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

See also Find, FindJfJot , Some, Search

Examples

declare
Temp : Del;
procedure Find-If ,Great er-Than-7 is

new Find-If (Test => Greater-Than-7) ;
begin

Iota(l5, Temp) ;
Find-If ,Greater,Than,7 (Temp) ;
Show-List (Temp) ;

-- 8 9 10 11 12 13 14

end ;

Implementation

function Find-Aux is new Regular,Lists.Find,If(Test);
begin

S.Current := Find,Aux(S.Current);
end Find-If;

CHAPTER 2. DOUBLE-EiVDEDiXSTS PACKAGE

Specificat ion

generic
with function Test (X : Element) return Boolean;

procedure Find,If,Not(S : in out Del);

Description If S contains an element E such that Test(E) is false, at the current element
or beyond, then the current element is set to the leftmost such element; otherwise the
current element pointer falls off the end of S.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

See also Find, FindJf, Some, Search

Examples

declare
Temp : Del;
procedure Find-If ,Not,Greater-Than-7 is

new Find-If ,Not (Test 3) Greater-Than-7) ;
begin

Iota(15, Temp);
Invert (Temp) ;
Initialize(Temp);
Find,If,Not,Greater-Thanan7(Temp);
Show-List (Temp) ;

-- 7 6 5 4 3 2 1 0

end ;

Implementation

function Find-Aux is new Regular,Lists.Find,If-Not(Test);
begin

S.Current := Find,Awt(S.Current);
end Find-If-Not;

2.5. SUBPROGRAMS

2.5.22 First

Specification

function First(S : Del)
return Element;

pragma inline (First) ;

Description Returns the first (left-most) element of S.

Time constant

Space 0

Mutative? No

Shares? No

Details Attempts to apply the generic formal First even if S has no elements.

See also

Implementation

begin
return First (S. First) ;

end First;

CHAPTER 2. DOUBLEJ3NDED-LISTS PACKAGE

2.5.23 For-Each

Specificat ion

generic
with procedure The-Procedure (X : Element) ;

procedure For-Each@ : Del);

Description Applies TheSrocedure to each element of S starting with the current ele-
ment and going to the end.

Time order np

Space 0

where n = length(S) and p = average(time for Theprocedure)

Mutative? No

Shares? No

See also For-Each-2, Map

Implementation

procedure For,Each,Aw is
new ~egular~~ists.For,~ach(~he~Procedure);

begin
For-Each-Aux (S . Current) ;

end For ,Each ;

2.5. SUBPROGRAMS

2.5.24 For-Each-2

Specification

generic
with procedure The,Procedure(X, Y : Element);

procedure For,Each,2(Si, S2 : Del);

Description Applies The-Procedure to pairs of elements of S1 and S2 in the same posi-
tion, starting with the current elements and going to the end.

Time order np

Space 0

where p = average(time for TheSrocedure) , n = min(nl,n2), nl = length(S1) ,
n2 = length(S2)

Mutative? No

Shares? No

Details Stops when the end of either S1 or S2 is reached.

See also For-Each, Map, Map-2

Implementation

procedure For.Each,Aux is
new Regu1ar,Lists.For,Each,2(The8Procedure);

begin
For,Each,Aux(Si . Current, S2. Current) ;

end For-Each.2;

CHAPTER 2. DO UBLE3NDEDJISTS PACKAGE

2.5.25 Free

Specificat ion

procedure Free(S : in out Del);
pragma inline(Free1;

Description Causes the storage cells occupied by S to be made available for reuse.

Time order n

Space 0 (makes space available)

where n = length(S)

Mutative? Yes

Shares? No

Details The header record of S is retained, but is made empty.

See also

Implementat ion

begin
Regular-Lists.Free-Sequence(S.First);
Make-bpty(S);

end Free;

2.5. SUBPROGRAMS

2,5.26 Initialize

Specification

procedure Initialize(S : in out Del);
pragma inline(Initia1ize);

Description The current element of S is reset to the first element.

Time constant

Space 0

Mutative? No

Shares? No

See also MakeSrnpty

Implementation

begin
S.Current := S.First;

end Initialize ;

CHAPTER 2. DO UBLEXNDED-LISTS PACKAGE

2.5.27 Invert

Specification

procedure Invert@ : in out Dell ;

Description Modifies S to contain the same elements as its input value, but in reverse
order.

Time order n

Space 0

where n = length(S)

Mutative? Yes

Shares? No

Details The element referred to by the current element is the same as before the inversion,
but its position is changed: if initially it was i, the new current element position is
n-1-i.

See also

Examples

declare
Temp : Del;

begin
Iota(6, Temp) ;
Invert (Temp) ;
b i t ialize(Temp1;
~how-List (Temp) ;

-- 5 4 3 2 1 0

end ;
declare

Temp : Del;
begin

Invert (Temp) ;
~how,List (Temp) ;

end;

Implementation

Temp : Sequence := Regular-Lists.Invert(S.First);
begin

S.Last := S.First;
S.First := Temp;

end Invert;

2.5. SUBPROGRAMS

2.5.28 Is-Empty

Specificat ion

function Is-Empty (S : Del)
return Boolean;

pragma inline(Is,Empty);

Description Returns true if S has no elements, false otherwise.

Time constant

Space 0

Mutative? No

Shares? No

See also Is-End

Implementation

begin
return Regular-Lists. Is,End(S. First) ;

end Is-Empty;

CHAPTER 2. DO UBLE-ENDED-LISTS PACKAGE

2.5.29 Is-End

Specificat ion

function Is,End(S : Del)
return Boolean;

pragma inline(Is,End);

Description Returns true if the current element of S has fallen off the end, false other-
wise.

Time constant

Space 0

Mutative? No

Shares? No

See also Is-Empty

Implementation

begin
return Regular,Lists. Is,End(S. Current) ;

end Is,End;

2.5. SUBPROGRAMS

2.5.30 Last

Specification

function Last (S : Del)
return Element;

pragma inline (Last) ;

Description Returns the last element of S.

Time constant

Space 0

Mutative? No

Shares? No

Details Attempts to apply the generic formal First even if S is empty.

See also First, Current

Implementation

begin
return First (S. Last) ;

end Last;

CHAPTER 2. DOUBLEXlVDEDLISTS PACKAGE

2.5.31 Length

Specificat ion

function Length(S : Del)
return Integer;

Description Returns the number of elements in S from the current element to the end,
as a non-negative integer.

Time constant

Space 0

Mutative? No

Shares? No

Details The current element is included in the count.

See also

Implementation

begin
return Regular-Lists .Length@. Current) ;

end Length;

2.5. SUBPROGRAMS

2.5.32 Map

Specificat ion

generic
with function F(E : Element) return Element;

procedure Map(S : Del);

Description Modifies S to consist of the results of applying F to each element of S, from
the current element to the end.

Time order nf

Space order n

where n = length(S) and f = average(time for F)

Mutative? Yes

Shares? No

See also For-Each

Examples

declare
Temp : Del;
procedure Map-Square is new Map (F => Square) ;

begin
Iota&, Temp) ;
Map-Square(Temp) ;
Show-List (Temp) ; -- 0 1 4 9 1 6

end ;

Implementat ion

Dummy : Sequence ;
function Map-Aux is new ~egular-~ists.Map(F);

begin
Dummy := Map-Aux(S.Current);

end Map;

CHAPTER 2. DOUBLE-ENDEDLISTS PACKAGE

Specification

generic
with function F(X, Y : Element) return Element;

procedure Map,2(S1, S2 : Del);

Description Modifies S1 to be a sequence of the results of applying F to corresponding
elements of S1 and S2, starting with the current elements and going to the end.

Time order nf

Space order n

where nl = length(S1) , nz = length(S2), n = min(nl, nz), and f = average(time for F)

Mutative? Yes

Shares? No

Details Let Xo,Xl ,..., Xnl-l be the elements of S1 and Yo,Yl ,..., Yn2-~ be those of
S2. The new value of S1 by Map2 consists of F(Xo,Yo), F(Xl,fi), . . ., F(Xn-1 ,Yn-1),
where n = min(n1, n2).

See also Forzach

Examples

declare
Temp-1, Temp-2 : Del;
procedure Hap-2,Times is new Map,2(F => "*");

begin
Iota(5, Temp-1) ;
Iota@, Temp-2) ;
Invert (Temp-2) ;
Init ial ize (Temp-2) ;
Map-2,Times (Temp-1, Temp-2) ;
Show-List (Temp-1) ;

0 3 4 3 0
end ;

Implementat ion

Dummy : Sequence;
function Map-2,Aux i s new Regular-Lists . Map-2 (F) ;

begin
Dummy := Map-2,Aux(SleCurrent, S2.Current);

end Map-2;

2.5. SUBPROGRAMS

2.5.34 Merge

Specificat ion

generic
with function Test(X, Y : Element) return Boolean;

procedure Merge(S1, S2 : in out Del);

Description Modifies S1 to be a sequence containing the same elements as S1 and S2,
interleaved. If S1 and S2 are in order as determined by Test, then the result will be
also. Both S1 and S2 are mutated.

Time order (nl + n2)m

Space order nl + n2

where nl = length(S1) , n2 = length(S2) , and m = average(time for Test)

Mutative? Yes

Shares? No

Details By "interleaved" is meant that if X precedes Y in S1 then X will precede Y in
the new S1 and similarly for X and Y in S2 (even if S 1 or S2 is not in order). The
property of stability also holds. See Section C for discussion of the restrictions on
Test and definition of "in order as determined by Test."

See also Sort, Concatenate

Examples

declare
Temp-1, Temp-2 : Del;
procedure Shuffle-Merge is new Merge(Test => Shuffle-Test);

begin
Iota(5, Temp-1) ;
Iota(5, Temp-2);
Invert (Temp-2) ;
Initialize(Temp-2) ;
Shuf f le-Merge (Temp-1, Temp-2) ;
Show-List (Temp-1) ;

-- 0 4 1 3 2 2 3 1 4 0

end ;

Implementation

function Merge-Aux is new Regular-Lists .~erge (Test) ;
begin

put-List(S1, ~erge,~ux(Sl.First, S2.First));
Make-Empty(S2);

end Merge;

CHAPTER 2. DOUBLEJ3NDEDJ;ISTS PACKAGE

2.5.35 Mismatch

Specificat ion

generic
with function Test(X, Y : Element) return Boolean;

procedure Mismatch(S1, S2 : in out Dell ;

Description S1 and S2 are scanned in pardel, starting from their current elements, until
the first position is found at which they disagree, using Test as the test for element
equality. S1 and S2 have their current elements set to the elements at which the first
disagreement occurs.

Time order min(nl, nz)m

Space 0

where nl = length(S1) and nz = length(S2) and m = average(time for Test)

Mutative? No

Shares? No

Details S 1 and S2 both have their current pointers set off the end if S1 and S2 agree
entirely.

See also Equal

Implementation

Temp-1, Temp-2 : Sequence;
procedure Mismatch-Aux is new Regular-Lists . Mismatch(Test) ;

begin
Mismatch,Aux(Sl. Current, S2. Current, Temp-1, Temp-2) ;
S1.Current := Temp-1;
S2.Current := Temp-2;

end Mismatch;

2.5. SUBPROGRAMS

2.5.36 Not-Any

Specificat ion

generic
with function Test(X : Element) return Boolean;

function Not,Any(S : Del)
return Boolean;

Description Returns true if Test is false of every element of S, from its current element
on, false otherwise. Elements numbered i, i + 1, i + 2, ... are tried in order, where
the i-th element is current.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

Details Returns true if the current element is off the end.

See also Every, Some, NotSvery

Examples

declare
Temp : Del;
function Not-Any-Odd is new Not,Any(Test => Odd);

begin
Iota(l0, Temp) ;
Show,Boolean(Not,Any-Odd(Temp));

-0 False
end ;
declare

Temp : Del;
function Not-Any-Odd is new Not,Any(Test => Odd);
procedure Delete-If-Odd is new Delete,If(Test => Odd);

begin
Iota(10, Temp) ;
Delete-If ,Odd(Temp) ;
~how,Boolean(Not ,~ny-Odd (Temp)) ;

-- True

end ;

Implementation

CHAPTER 2. DO UBLEXNDED-LISTS PACKAGE

function Not-Any-Aux is new Regular,~ists.Not,Any(Test);
begin
return Not ,Any,Aux (S . Current) ;

end Not ,Any;

2.5. SUBPROGRAMS

Specificat ion

generic
with function Test(X : Element) return Boolean;

function Not,Every(S : Dell
re turn Boolean;

Description Returns true if Test is false of some element of S,'from its current element
on, false otherwise. Elements numbered i, i + 1, i + 2, ... are tried in order, where
the i-th element is current.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

Details Returns false if the current element of S is off the end.

See also Every, Some

Examples

declare
Temp : Del;
function Not-Every-Odd is new Not-Every (Test => Odd) ;

begin
Iota(10, Temp) ;
~how,~oolean(Not -Every..Odd(Temp)) ;

True
end ;
declare

Temp : Del;
function Not-Every-Odd is new Not -Every(Test => Odd) ;
procedure Delete-If-Not-Odd is new Delete-If-Not(Test => Odd);

begin
Iota(10, Temp) ;
~ e l e t e - 1 f ,Not,~dd(~emp) ;
show-~oolean(~ot -~very-odd(Temp)) ;

False
end ;

Implementat ion

CHAPTER 2. DOUBLE-ENDEDJISTS PACKAGE

function Not-Every-Aux is new Regular,Lists.Not,Every(Test);
begin
return ~ o t ,Every,Aux(S . Current) ;

end Not-Every;

2.5. SUBPROGRAMS

2.5.38 Reduce

Specificat ion

generic
Identity : Element;

with function F(X, Y : Element) return Element;
function Reduce (S : Del)

return Element;

Description Combines all the elements of S using F, from the current element on; for
example, using "+" for F and 0 for Identity one can add up a sequence of Integers.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

See also ForSach, Map

Examples

declare
Temp : Del;
function Reduce-Times is new Reduce(1dentity => 1, F => 'I*") ;

begin
Iota(5, Temp) ;
Advance (Temp) ;
show-Integer (Reduce-Times (Temp)) ;

24
end;
declare

Temp : Del;
function Reduce-Plus is new Reduce(1dentity =V 0, F => "+");

begin
Iota(iO0, Temp) ;
Show-Integer (Reduce-Plus (Temp)) ;

4950
end ;

Implementat ion

function Reduce-Aux is new Regular-Lists.Reduce(Identity, F);
begin

return Reduce,Aux(S.Current);
end Reduce;

CHAPTER 2. DO UBLE-ENDED-LISTS PACKAGE

2.5.39 Search

Specificat ion

generic
with function Test(X, Y : Element) return Boolean;

procedure Search(S1 : Del; S2 : in out Dell ;

Description Searches S2, starting with the current element, for the leftmost occurrence
of a subsequence that element- wise matches S 1, using Test as the the test for element-
wise equality, and moves the current element pointer of S2 to this subsequence. If no
matching subsequence is found, the current element pointer of S2 is set off the end.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

See also Position, Find, Some, Search

Examples

declare
Temp-1, Temp-2 : Del;
procedure Search-Equal is new Search(Test => "="I;

begin
Add-Last (7, Temp-1) ;
Add-Last (8, Temp-1) ;
Add-Last (9, Temp-1) ;
Iota(l2, Temp-2) ;
Search,Equal(Temp.l, Temp.2);
Show-List (Temp-2) ; -- 7 8 9 10 11

end ;

Implementation

function Search-Aux is new Regular-Lists.Search(Test);
begin

S2,Current := Search,Aux(Sl.Current, S2.Current);
end Search;

2.5. SUBPROGRAMS

2.5*40 Set-Current

Specificat ion

procedure Set,Current(S : Del; X : Element);
pragma inline (Set ,Current) ;

Description S is modified by replacing its current element by X.

Time constant

Space 0

Mutative? Yes

Shares? No

Details Attempts to apply the generic formal Set-First even if the current element pointer
is off the end of S.

See also Current, SetXirst

Implementation

begin
Set ,First (S . Current, X) ;

end Set-Current;

CHAPTER 2. DOUBLE3NDEDJII;STS PACKAGE

2.5.41 Set-First

Specification

procedure Set-First (S : Del ; X : Element) ;
pragma inline(SetJirst1;

Description S is modified by replacing its first element by X.

Time constant

Space 0

Mutative? Yes

Shares? No

Details Attempts to apply the generic formal Set-First even if Is-End is true of the first
element pointer of S (which can only be true of S has no elements).

See also Current, SetJirst

Implementation

begin
Set ,First (S . First, X) ;

end Set ,First ;

2.5, SUBPROGRAMS

2.5.42 SetJIast

Specification

procedure Set,Last(S : Del; X : Element);
pragma inline(Set-Last);

Description S is modified by replacing its last element by X.

Time constant

Space 0

Mutative? Yes

Shares? No

Details Attempts to apply the generic formal SetJirst even if Is-End is true of the last
element pointer of S (which can only be true of S has no elements).

See also Current, SetJ'irst

Implementation

begin
Set-First (S .Last, X) ;

end Set ,Last ;

CHAPTER 2. DO UBLEJWDEDLISTS PACKAGE

2.5.43 Some

Specification

generic
with function Test (X : Element) return Boolean;

function Some (S : Del)
return Boolean;

Description Returns true if Test is true of some element of S, from the current element
on, false otherwise. Elements numbered i, i + 1, i + 2, ... are tried in order, where
the i-th element is current.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

Details Returns false if the current element of S is off the end.

See also Notxvery, Every, NotAny

Examples

declare
Temp : Del;
function Some-Odd is new Some(Test => Odd) ;

begin
Iota(l0, Temp);
Show,Boolean(Some,Odd(Temp)) ;

True
end ;
declare

Temp : Del;
function Some-Odd is new Some(Test => Odd);
procedure Delete-If-Odd is new Delete,If(Test => Odd);

begin
Iota(10, Temp) ;
Delete-If ,Odd(Temp) ;
~how,Boolean(Some,Odd(Temp)) ;

False
end ;

Implementation

function Some-Aux is new Regular,Lists.Some(Test);
begin

return Some-Aw (S . Current) ;
end Some;

2.5. SUBPROGRAMS

2.5.44 Sort

Specificat ion

generic
with function Test(X, Y : Element) return Boolean;

procedure Sort(S : in out Del) ;

Description Modifies S to be a sequence containing the same elements as S, but in order
as determined by Test.

Time order (n log n)m

Space 0

where n = length(S) and m = average(time for Test)

Mutative? Yes

Shares? No

Details This is a stable sort. See Section C for discussion of the restrictions on Test and
definition of "in order as determined by Test."

See also Merge

Examples

declare
Temp-1, Temp-2 : Del;
procedure Sort-Ascending is new Sort (Test => 'I<") ;
procedure Shuffle-Merge is new Merge(Test => Shuffle-Test);

begin
Iota(5, Temp-1) ;
Iota(5, Temp-2) ;
Invert (Temp-2) ;
Initialize(Temp-2) ;
Shuf f le-Merge (Temp-1 , Temp-2) ;
Sort -Ascending(Temp_i) ;
Show-List (Temp-1) ;

- - 0 0 1 1 2 2 3 3 4 4
end ;

Implementation

function Sort -Aux is new Regular-Lists .Sort (Test) ;
begin

Put,List(S, Sort,Aux(S.First));
end Sort;

CHAPTER 2. DOUBLE_ENDEDJISTS PACKAGE

2.5.45 Split

Specification

procedure Split(S1, S2 : in out Del);
pragma inline(Split1;

Description S 1 is split into two parts: all elements up to and including its current
element (this becomes the new value of S1) and all elements following the current
element of S 1 (this becomes the new value of S2).

Time constant

Space 0

Mutative? Yes

Shares? No

Details Procedure Free is applied to the input value of S2. The current element of the
new S 1 its last element and of the new S2 is the first element.

See also Concatenate

Examples

declare
Temp-1, Temp-2 : Del;

begin
Iota(4, Temp-1) ;
Advance(Temp-1) ;
Split(Temp-1, Temp-2);
Initialize(Temp-1) ;
Show-List (Temp-2) ; -- 2 3
Show-List (Temp-1) ;

-- 0 1
end ;

Implementation

Next-One : Sequence;
begin

Free(S2) ;
if not IsJnd(S1) then
Next-One := Next(S1.Current);
if not Regular~Lists.Is~End(Next,One) then
Set-Next (St. Current, Nil) ;
S2.First := Next-One;
S2.Current := Next-One;
S2 .Last := S1 .Last;

2.5. SUBPROGRAMS

S1.Last := S1.Current;
end if;

end if;
end Split;

CHAPTER 2. DOUBLE3NDED-LISTS PACKAGE

2.5.46 Substitute

Specification

generic
with function Test(X, Y : Element) return Boolean;

procedure Substitute(New,Item, Old-Item : Element; S : Del);

Description Modifies S so that, from the current element on, the elements E such that
Test(O1d Jtem,E) is true are replaced by New Jtem.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? Yes

Shares? No

See also Substitute-If, Substitute-If-Not

Examples

declare
Temp : Del;
procedure Substitute-When-Divides is

new Substitute(Test => Divides) ;
begin

Iota(l5, Temp) ;
Substitute-When,Divides(-1, 3, Temp);
Show-List (Temp) ;

-1 1 2 -1 4 5 -1 7 8 -1 10 11 -1 13 14
end ;

Implementation

Dummy : Sequence;
function Substitute-Aux is new Regular-Lists . Substitute(Test) ;

begin
Dummy := Substitute~Aux(New~Item, Old-Item, S.Current);

end Substitute ;

2.5. SUBPROGRAMS

2.5.47 SubstituteJf

Specificat ion

generic
with function Test(X : Element) return Boolean;

procedure Substitute-If (New-Item : Element ; S .: Del) ;

Description Modifies S so that, from the current pointer on, the elements E such that
Test(E) is true are replaced by NewJtem.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? Yes

Shares? No

See also SubstituteJf-Not, Substitute

Examples

declare
Temp : Del;
procedure Substitute-If-Odd is new Substitute,If(Test => Odd);

begin
Iota(l5, Temp) ;
Substitute-If ,Odd(-1 , Temp) ;
Show-List (Temp) ;

-- 0 -1 2 -1 4 -1 6 -1 8 -1 10 -1 12 -1 14

end;

Implementation

Dummy : Sequence;
function Substitute-If ,Aux is new Regular-Lists . Substitute-If (Test) ;

begin
Dummy : = Substitute-If ,Aux(New,Item, S .Current) ;

end Substitute-If;

CHAPTER 2. DOUBLE-ENLIEDLISTS PACKAGE

2.5.48 Substitute Jf,Not

Specification

generic
with function Test(X : Element) return Boolean;

procedure Substitute,If,Not(New,Item : Element; S : Del);

Description Modifies S so that, from the current pointer on, the elements E such that
Test(E) is false are replaced by New Jtem.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? Yes

Shares? No

See also SubstituteJf-Not, Substitute

Examples

declare
Temp : Del;
procedure Substitute-If ,Not,Odd is

new Substitute-If ,Not (Test => Odd) ;
begin

Iota(l5, Temp) ;
Substitute-If ,Not,Odd(-1, Temp) ;
Show-List (Temp) ;

-- -1 1 -1 3 -1 5 -1 7 -1 9 -1 11 -1 13 -1
end ;

Implementation

Dummy : Sequence;
function Subst itute-If ,Not ,Aux is

new Regular-Lists .Substitute,If -Not (Test) ;
begin

Dummy := Substitute~If~Not~Aux(New,Item, S.Current);
end Substitute-If-Not;

Chapter

Stacks Package

This package provides one of the simplest of linear data structures, in which insertions and
deletions of data are restricted to one end. Its name suggests the most appropriate model
for understanding its behavior: a stack of papers on a desk, which can only be changed by
placing a sheet of paper on top or by removing one from the top, and the one on top is
the only one whose information can be examined. Another frequently used term for a stack
discipline is "Last-In First-Out" (LIFO).

3.1 Package specificat ion

The package specification is as follows:

generic
type
type
with
with
with
with
with
with
with

Element is private;
Sequence is private;
procedure Create (S : out Sequence) ;
function Full@ : Sequence) return Boolean;
function Empty (S : Sequence) return Boolean;
function F i r s t (S : Sequence) return Element ;
function Next (S : Sequence) return Sequence ;
function Construct(E : Element; S : Sequence) re turn Sequence;
procedure Free,Construct(S : Sequence);

package Stacks is
type Stack is limited private;
Stack-Underflow, Stack,Overflow : exception;

{The subprogram specifications)

pr ivate
type Stack is new Sequence;

end Stacks ;

3.2 Package body .

The package body is as follows:

CHAPTER 3. STACKS PACKAGE

package body Stacks is

(The subprogram bodies)

end Stacks ;

3.3 Definitions for the examples

The following definitions are referenced in the examples included in the subprogram de-
scriptions. (This is the skeleton of a test suite in which the examples are included.)

with Stacks-1; -- a PIP;
package Integer-Stacks is new Stacks-1 (Integer) ;

with Integer-Stacks, Text-10, Examples-Help;
procedure Test-Stacks is
use Integer,Stacks.Inner, Text-10, Examples-Help;

procedure Show,Stack(S : in out Stack) is
procedure Show-Stack-Aux is new For-Each(Print-Integer);

begin
Put("--:"); Show,Stack,Aux(S); New-Line;

end Show-Stack;

begin

{Examples from the subprograms)

Sh~w(~'End Of Testst') ;
end;

3.4. SUBPROGRAMS

3.4 Subprograms

3.4.1 Create

Specificat ion

procedure Create(S : out Stack) ;
pragma inline (Create) ;

Description Makes S be an empty stack.

Time constant

Space 0

Mutative? Yes

Shares? No

See also Push, Pop

Examples

-- See Push
Implementation

begin
~reate(Sequence (S)) ;

end Create;

CHAPTER 3. STACKS PACKAGE

3.4.2 ForXach

Specification

generic
with procedure The,Procedure(E : Element);
procedure For,Each(S: in out Stack);
pragma inline(For-Each);

Description Successively removes each element E of S, from the top down, and applies
Theprocedure to E.

Time order np

Space 0

where n is the number of elements in the stack, and p = average(time for The-Procedure)

Mutative? Yes

Shares? No

Details Does nothing if S is empty. If an unhandled exception is raised while executing
TheSrocedure on an element, those elements that were below it are left in S.

See also Pop, Top

Examples

-- See Push
Implementation

An-Element : Element ;
begin
while not Is,Empty(S) loop
Pop (An-Element , S) ;
The,Procedure(An,Element);

end loop;
end For-Each;

3.4. SUBPROGRAMS

3.4.3 IsEmpty

Specificat ion

function Is-Empty (S : Stack)
return Boolean;

pragma inline(Is,Empty);

Description Returns true if S has no elements in it, false otherwise.

Time constant

Space 0

Mutative? No

Shares? No

See also Push, Pop

Examples

-- See Push
Implementation

begin
return Empty (Sequence (S)) ;

end Is-Empty;

CHAPTER 3. STACKS PACKAGE

3.4.4 Pop

Specification

procedure Pop(The,Element : out Element; S : in out Stack);
pragma inline (Pop) ;

Description Causes the top element of S to be removed and returned as the value of
Theslement .

Time constant

Space 0

Mutative? Yes

Shares? No

Details Raises an exception, Stack-Underflow, if S is empty.

See also Push, Top

Examples

-- See Push
Implementat ion

Old : Sequence := Sequence(S);
begin

if Empty(Sequence(S)) then raise Stack-Underflow;
end if;
The-Element : = Top (S) ;
S := Stack(Next (Sequence(S1)) ;
Free,Const~ct(Old);

end Pop;

3.4. SUBPROGRAMS

3.4.5 Push

Specification

procedure Push(The-Element : in Element; S : in out Stack);
pragma inline (Push) ;

Description Places Theslement on top of S.

Time constant

Space constant

Mutative? Yes

Shares? No

Details Raises an exception, Stack-Overflow, if S is already full.

See also Pop, Top

Examples

declare
S : Stack; E : Integer;

begin
Create@) ;
Push(2, S) ; Push(3, S) ; Push(& S); Push(7, S) ;
Show-Integer (Top (S)) ;

0- 7
Pop@, S);
Show-Integer@) ;

0. 7
Show-Integer (Top(S)) ;

-- 5
Show,Boolean(Is,Ehpty(S)) ;

-- False
Show,Stack(S) ;

,. 5 3 2

~how,~oolean(Is,Empty(S));
-- True
end ;

Implementation

begin
if Full(Sequence(S)) then raise Stack-Overflow;
end if;
S := Stack(Construct(The,Element, Sequence(S)));

end Push;

CHAPTER 3. STACKS PACKAGE

3.4.6 Top

Specificat ion

function Top (S : Stack)
return Element;

pragma inline(Top1;

Description Returns the top element of S, without removing it.

Time constant

Space 0

Mutative? No

Shares? No

Details Raises an exception, Stack-Underflow, if S is empty.

Seealso Pop,Push

Examples

-- See Push
Implementation

begin
if Is,Empty(S) then raise Stack-Underflow;
end if;
return First(Sequence(S)) ;

end Top;

Chapter 4

Output -Restricted-Deques
Package

A deque is a linear data structure consisting of finite sequences in which insertions and
deletions are permitted only at the ends. Thus stacks and queues can be viewed as special
cases of deques that have further restrictions on accesses: a stack prohibits both insertions
and deletions at one end, while a queue can. only have insertions at one end and only
deletions at the other. One of the least restricted cases of a deque is that in which both
insertions and deletions are permitted at one end (called the front), but at the other end
(the rear) only insertions are allowed; hence it is called output-restricted. This package
provides such a data structure, as a representational abstraction.

The generic parameters of the package are types and subprograms that allow the package
to be easily plugged together with Double-Ended-Lists, but the parameters also could be
satisfied with a vector representation of sequences.

4.1 Package specification

The package specification is as follows:

generic
type Element is private;
type Sequence is limited private;
with procedure Create@ : in out Sequence);
with function Full(S : Sequence) return Boolean;
with function Empty(S : Sequence) return Boolean;
with function First(S : Sequence) return Element;
with function Last6 : Sequence) return Element;
with procedure Add-First(E : Element; S : in out Sequence);
with procedure Add,Last(E : Element; S : in out Sequence);
with procedure Drop-First (S : in out Sequence) ;

package Output,Restricted,Deques is
type Deque is limited private;
Deque-Underflow, Deque-Overflow : exception;

(The subprogram specifications)

CHAPTER 4. OUTPUT-RESTRICTEDDEQUES PACKAGE

private
type Deque is new Sequence;

end Output,Restricted,Deques;

4.2 Package body

The package body is as follows:

package body Output ,Restrict ed-Deques is

{The subprogram bodies)

end Output,Restricted,Deques;

4.3 Definitions for the examples

The following definitions are referenced in the examples included in the subprogram de-
scriptions. (This is the skeleton of a test suite in which the examples are included.)

with Output,Restricted,Deques,l; -- a PIP
package Integer~Output~Restricted,Deques is new

output _~estricted,de~ues-1 (Integer) ;

with Integer~Output~Restricted,Deques, Text-Po, Examples-Help;
procedure Test-Deques is

use Integer,Output,Restricted,Deques.Inner, Text-10, Examples-Help;

procedure Show,Deque(D : in out Deque) is
-- note that this makes D empty;
procedure Show_Deque_Aux is new For-Each(Print-Integer);

begin
Put (It-- : It) ; Show,Deque,Aux(D) ; New-Line;

end Show-Deque;

begin

{Examples from the subprograms)

Sh~w(~~End Of Teststt) ;
end ;

4.4. SUBPROGRAMS

4.4 Subprograms

4.4.1 Create

Specification

procedure Create(D : in out Deque);
pragma inline (Creat e) ;

Description Makes D be an empty deque.

Time constant

Space 0

Mutative? Yes

Shares? No

See also

Examples

-- See Push-Front

Implementation

begin
create (Sequence (D)) ;

end Create;

CHAPTER 4. OUTPUTJtESTRICTED-DEQUES PACKAGE

Specificat ion

generic
with procedure The,Procedure(E : Element);
procedure For,Each(D : in out Deque) ;
pragma inline(For,Each);

Description Successively
applies TheTrocedure

removes each element E of D, from the front to the rear, and
to E.

Time order np

Space 0

where n is the number of elements in D, and p = average(time for TheSrocedure)

Mutative? Yes

Shares? No

Details Does nothing if D is empty. If an unhanded exception is raised while executing
TheProcedure on an element, those elements that were after it (from front to rear)
are left in the deque.

See also

Examples

-- See Push-Front

Implementation

An-Element : Element ;
begin

while not Is,Empty(D) loop
Pop,Front(An,Element, D);
The,Procedure(An,Element);

end loop;
end For-Each ;

4.4. SUBPROGRAMS

4.4.3 Front

Specification

function Front(D : Deque)
return Element;

pragma inline (Front) ;

Description Returns the front element of D, without removing it.

Time constant

Space 0

Mutative? No

Shares? No

Details Raises an exception, Deque-Underflow, if D is empty.

See also Pop-Ront , PushJront

Examples

-- See Push-Front, Push-Rear
Implementation

begin
if Is,Empty(D) then raise Deque-Underflow;
end if;
return First (Sequence(D)) ;

end Front;

CHAPTER 4. OUTPUTXESTRICTEDDEQUES PACKAGE

4.4.4 Is-Empty

Specification

function ~s,Empty(D : Deque)
return Boolean;

pragma inline (Is-Empty) ;

Description Returns true if D has no elements in it, false otherwise.

Time constant

Space 0

Mutative? No

Shares? No

See also PushJront, Pushaear, Pop-Front

Examples

-- See Push-Front
Implementation

begin
return Empty(Sequence(D));

end Is-Empty;

4.4. SUBPROGRAMS

4.4.5 Pop-Front

Specificat ion

procedure Pop,Front(The,Element : out Element; D : in out Deque);
pragma inline (Pop-Front) ;

Description Causes the front element of D to be removed and returned as the value of
TheXlement .

Time constant

Space 0

Mut at ive? Yes

Shares? No

Details Raises an exception, Deque-Underflow, if D is empty.

See also PushJront, Front

Examples

-- See Push-Front , Push-Rear
Implementation

begin
if Empty (Sequence (D)) then raise Deque-Underf low ;
else
The-Element : = Front (D) ;
Drop-First (Sequence(D)) ;

end if;
end Pop-Front ;

CHAPTER 4. OUTPUTRESTRICTEDBEQUES PACKAGE

4.4.6 Push-Front

Specification

procedure Push-Front(The-Element : in Element; D : in out Deque);
pragma inline (Push-Front) ;

Description Places The-Element on the front of D.

Time constant

Space constant

Mutative? Yes

Shares? No

Details Raises an exception, Deque-Overflow, if D is already full.

See also Pop-Front, Front

Examples

declare
D : Deque; E : Integer;

begin
Create(D) ;
Push-Front (2, D) ; Push-Front (3, D) ; Push-Front (5, D) ; Push-Front (7, D) ;
show-Int eger (Front (D)) ; -- 7
Pop-Front (E , D) ;
Show,Integer(E) ; -- 7
show-~nteger(Front(D)); -- 5
show-~oolean(1s-Empty(D)) ;

-- False
Show-Deque (D) ;

--. 5 3 2

Show,Boolean(Is,Empty(D)) ;
-0 T N ~
end ;

Implementation

begin
if Full(Sequence(D)) then raise Deque-Overflow;
end if;
Add-First (The-Element , Sequence(D)) ;

end Push-Front;

4.4. SUBPROGRAMS

Specificat ion

procedure Push-Rear(The-Element : in Element; D : in out Deque) ;
pragma inline(Push,Rear);

Description Places The-Element on the rear of D.

Time constant

Space const ant

Mutative? Yes

Shares? No

Details Raises an exception, Deque-Overflow, if D is already full.

See also Rear

Examples

declare
D : Deque; E : Integer;

begin
Push-Rear(2, D); Push-Rear(3, D); Push-Rear& Dl; Push-Rear(7, D);
Show,Integer(Rear(D)) ;

0- 7
Pop,Front(E, D);
Show,Integer(E);

-0 2
~how,~nteger (Front (D)) ;

I -- 3
Show,~oolean(Is,Empty(D)) ;

-- False
Show,Deque(D) ;

9- 3 5 7

s ~ o w , B o o ~ ~ ~ ~ (I s , E ~ ~ ~ ~ (D)) ; -- True
end ;

Implementation

begin
if Full(Sequence(D)) then raise Deque,Overflow;
end if;
Add-Last (The-Element , Sequence(D)) ;

end Push-Rear;

CHAPTER 4. 0 UTPUTJlESTRTCTEDDEQ UES PACKAGE

4.4.8 Rear

Specification

function Rear (D : Deque)
return Element;

pragma inline(Rear);

Description Returns the rear element of D, without removing it.

Time constant

Space 0

Mutative? No

Shares? No

Details Raises an exception, Deque-Underflow, if D is empty.

See also Pushaear

Examples

-- See Push-Rear
Implementation

begin
if Is,Esnpty(D) then raise Deque-Underflow;
end if;
return Last(Sequence(D));

end Rear;

Chapter 5

Using the Packages

5.1 Partially Instantiated Packages

The purpose of each of these packages, called "PIPs," is to plug together a low-level data
abstraction package with a structural or represent ational abstraction package, while leaving
the Element type (and perhaps other parameters) generic. In Volume 1 we showed PIPs ob-
t ained from combining each of three low-level representations of singly-linked-lists with the
Singly-Linked-Lists structural abstraction. For each of the representational abstractions
in Chapters 2, 3, and 4 of this volume, there are three three PIPs included in the library
for plugging the representationd abstraction together with a particular representation.

5.1.1 PIPs for Double,EndedLists

From file delpip1.ada--

with System,Allocated,Singly,linked, Double-Ended-Lists;
generic

type Element is private;
package Double,Ended,Lists,l is

package Low-Level is new System-Allocated-Singly-Linked(E1ement);
use Low-Level;

package Inner is
new Double,Ended,Lists(Element, Sequence, Nil, First, Next,

Construct, Set-First, Set-Next, Free);

end Double,Ended,Lists,l;--

From file delpip2. ada- -
with User,Allocated,Singly,Linked, Double-Ended-Lists;

generic
Heap-Size : in Natural;
type Element is private;

package Double,Ended,Lists,2 is

CHAPTER 5. USING THE PACKAGES

package Low-Level
is new User-Allocated-Singly-Linked(Heap-Size , Element) ;

use Low-Level;

package Inner is
new Double-Ended-Lists(Element, Sequence, Nil, First, Next,

Construct, Set-First , Set-Next, Free) ;

end Double,Ended,Lists,2;--

From file delpip3.ada--

with Auto,Reallocating,Singly,linked, Double-Ended-Lists;
generic

Initial,Number,Of,Blocks : in Positive;
Block-Size : in Positive;
Coefficient : in Float;
type Element is private;

package Double,Ended,Lists,3 is

package Low-Level is new
Auto,Reallocating,Singly,Linked(Init iaLNumber-Of -Blocks,

Block-Size, Coefficient, Element);
use Low-Level;

package Inner is
new Double,Ended,Lists(Element, Sequence, Nil, First, Next,

Construct, Set-First, Set-Next, Free);

end Double,Ended,Lists,3;--

5.1.2 PIPS for Stacks

In this case the low-level represent ation provided by Syst em-Allocat e d S ingly-linked
does not provide exactly the operations needed by Stacks, but appropriate definitions of the
missing operations (Create, Full, and Empty) are easily specified in the package specification
and programmed in the package body.

From file stackpl .ada--

with System,Allocated,Singly-Linked, Stacks;
generic

type Element is private;
package Stacks-1 is

package Low-Level is new System,Allocated,Singly-Linked(E1ement);
use Low-Level;

procedure Create (S : out Sequence) ;
pragma inline (Create) ;

5.1. PARTIALLYINSTANTIATED PACKAGES

function Full(S : Sequence) return Boolean;
pragma inline(Ful1) ;
function Empty(S : Sequence) return Boolean;
pragma inline(Empty);

package Inner is
new Stacks(Element, Sequence, Create, Full. Empty,

First, Next, Construct, Free) ;

end Stacks-1 ;

package body Stacks-1 is

use Low-Level ;
procedure Create@ : out Sequence) is
begin

S := Nil;
end Create;

function Full(S : Sequence) return Boolean is
begin

return False; -- Stacks are unbounded when
-- represented as singly-linked-lists;

end Full;

function Empty (S : Sequence) return Boolean is
begin

return S = Nil;
end Ehpty ;

end Stacks-1;--

The other two PIPs, Stacks2 and Stacks3 for for plugging Stacks together with
UserAllocatedSinglyJ,inked and Auto-Reallocat ing-Singly-linked, respectively, are
similar to Stacks-1.

5.1.3 PIPs for Output RRstrictedDeques

Another twist to the construction of PIPs is introduced here. The operations needed by
Output-Restrict ed-Deques are conveniently supplied by DoubleJnded-List s , so we use
an instance of a PIP for Double-Ended-Lists as the low-level representation. Since, as in
the PIP for Stacks, not all of the operations needed are supplied directly, two are specified
and programmed in this PIP'S specification and body.

From file ou tdeqpl .ada--

with Double,Ended,Lists,l, Output,Restricted,Deques;
generic

type Element is private;

86 CHAPTER 5. USING THE PACKAGES

package Output,Restricted,Deques~1 is

package Low-Level is new Double,Ended,Lists,l(Element);
use Low-Level . Inner;

function Full(D : Del) return Boolean;
pragma inline(Ful1);
procedure Drop-First (D : in out Del) ;
pragma inline (Drop-First) ;

package Inner is new
Output~Restricted~Deques(Element, Del, Free, Full, Is-Empty, First,
Last, Add-First , Add-Last , Drop-First) ;

end Output,Restricted,Deques-1;

package body Output,Restricted,Deques,i is
use Low-Level . Inner;

function Full(D : Del) return Boolean is
begin
return False; -- double-ended-lists are unbounded when

-- represented as singly-linked-lists;
end Full;

procedure Drop,First(D : in out Del) is
begin
Initialize(D) ;
Drop,Head(D) ;

end Drop-First ;

end Output,Restricted,Deques~1;--

Similar PIPS, called OutputJLestricted-Deques3 and Output-RestrictedSeques-3,
are provided for plugging Output_Restrictedl)eques together with User4llocatedSingly-
Linked and Auto-ReallocatingSinglyJ,inked, respectively.

5.2 Test Suites and Output

Test suites are produced from the test suite package skeletons given in the chapters on the
packages and the examples given with each subprogram.

The output that is produced is indicated in the comments in those examples.

Appendix

ExamplesHelp Package

The following package defines a few procedures and functions that aid in the construction
of examples and test cases for the various packages.

From file examhelp.ada--

package Examples-Help is

-- 1/0 procedures

procedure Print-Integer(1 : i n Integer);
procedure Shov(The-String : String) ;
procedure Show,Boolean(B : Boolean);
procedure Show-Integer(1 : Integer);

-- Some other l i t t l e functions needed t o construct examples

function Divides(A. B : Integer) return Boolean;
function Even(A : Integer) return Boolean;
function Odd(A : Integer) re turn Boolean;
function Greater-Than-7(A : Integer) return Boolean;
function Square(A : Integer) return Integer;

end Examples-Help ;

with Text-10; use Text-10;
package body Examples,Help is

-- 1/0 procedures

procedure PrintJnteger(1 : i n Integer) is
begin

~ut(In teger ' Image(1)) ;
Put(" ") ;

end Pr in t ,Int eger ;

procedure Show(The-String : String) is

APPENDIX A. E X A M P L E S J E L P PACKAGE

begin
~ u t (~ h e , S t r i n g) ; New-Line;

end Show;

procedure Show-Boolean(B : Boolean) is
begin

i f B then
Show("--: True") ;

e l s e
Show("--: False") ;

end i f ;
end Show-Boolean;

procedure Show-Integer (I : Integer) is
begin

Put("--:"); PrintJnteger(1); New-Line;
end Show-Integer ;

-- Some other l i t t l e functions needed t o construct examples

function Divides(A, B : Integer) return Boolean is
begin

re turn B mod A = 0;
end Divides;

function Even(A : Integer) return Boolean is
begin

re turn Divides(2, A);
end Even;

function Odd(A : Integer) re turn Boolean is
begin

re turn not Divides (2, A) ;
end Odd;

function Greater_Than_7(A : Integer) return Boolean is
begin

re turn A > 7;
end Greater-Than-7;

function Square(A : Integer) return Integer is
begin

re turn A * A;
end Square;

.end Examples ,Help ; --

Appendix B

Combining Stacks with a Vector
Represent at ion

The Stacks and 0utputJLestrictedl)eques packages can be combined with low-level rep-
resentations other than linked lists, since the generic parameters of these packages do not
need all of the chamcteristics of linked-lists (in particular, no Setaext operation is needed).
In order to give a concrete illustration of this point, we show a simple representation of vec-
tors that supplies the operations needed for instantiation of Stacks. (A later volume will
give more extensive vectors packages that will be documented in the same manner as the
linked list packages.)

B. 1 Simplelndexed-Vectors Package Specification

From file sivects. ada- -
generic

Max-Size : in Natural;
type Element is private;

package Simple,Indexed,Vectors is

type Sequence is private;
procedure Create@ : in out Sequence);
function Full (S : Sequence) return Boolean;
function Empty (S : Sequence) return Boolean;
function First (S : Sequence) return Element ;
function Next (S : Sequence) return Sequence ;
function Construct(E : Element; S : Sequence) return Sequence;
procedure Free-Construct (S : Sequence) ;

private

type Node;
type Sequence is access Node;

end Simple,Indexed,Vectors;--

B .2 Simplelndexed-Vectors Package Body

From Ne sivectb.ada--

package body Simple,Indexed,Vectors is

type Storage is array(1nteger range 1 .. Max-Size) of Element;

type Node is record
Vector-Field : Storage;
Index-Field : Integer range 0 .. Max-Size := 0;

end record;

procedure Create@ : in out Sequence) is
begin

S := new Node;
end Create;

function Full(S : Sequence) return Boolean is
begin

return (S.Index,Field = Max-Size);
end Full;

function Empty(S : Sequence) return Boolean is
begin

return (S.Index,Field = 0);
end Empty;

function First@ : Sequence) return Element is
begin

return S.Vector,Field(S.Index,Field);
end First;

function Next(S : Sequence) return Sequence is
begin

S.Index,Field := S.Index,Field - 1;
return S;

end Next;

function Construct(E : Element; S : Sequence) return Sequence is
begin

S.Index,Field := S.Index,Field + 1;
S .Vector,Field(S . Index-Field) := E;
return S;

end Construct;

B.3. A PIP COMBINING VECTORS AND STACKS

procedure Free,Construct(S : Sequence) is
begin
null ;

end Free-Construct;

end Simple,Indexed,Vectors;--

B.3 A PIP Combining Vectors and Stacks

From file stackp4.ada--

with Simple,Indexed,Vectors , Stacks ;
generic
Max-Size : in Natural;
type Element is private;

package Stacks-4 is

package Low-Level is new Simple,Indexed,Vectors(Max,Size, Element);
use Low-Level;

package Inner is new Stacks (Element, Sequence, Create, Full,
Empty, First, Next, Construct, Free-Construct);

end Stacks-4; --

Appendix C

Orderings for Merge and Sort

This appendix is reproduced from a section in Volume 1.
A precise description of the kind of function that can be used for comparing values when

using the Merge and Sort subprograms in the Double-Ended-Lists package can be given in
terms of the notion of a total order relation. The generic subprogram parameter Test must
be either a total order relation (e.g., "<" or ">") or the negation of a total order relation
(e.g., ">=" or "<=").

The requirements of a total order relation 4 are:

1. For all X, Y, 2, if X 4 Y and Y 4 2, then X 4 Z (Transitive law).

2. For all X,Y, exactly one of X 4 Y, Y 4 X , or X = Y holds (Trichotomy law).

In determining whether a proposed relation satisfies the trichotomy law, it is not necessary
to have a strict interpretation of "="; one can introduce a notion of equivalence and define
the total order relation on the equivalence classes thus defined. Or, looked at another way,
we consider X and Y to be equivalent if both X 4 Y and Y 4 X are false. For example, X
and Y might be records that have integer values in one field and the records are compared
using "<I1 on that field. Thus two records that have the same integer in that field would be
equivalent, but might not be equal because of having different values in other fields.

If Test is a total order relation or the negation of a total order relation, we can define
the notion of a sequence S being "in order as determined by Test" as follows: for any two
elements X and Y that are not equivalent (in the sense defined above), then ~ e s t (X , Y)
is true if and only if X precedes Y in S . (Thus "<" or "<=" will produce ascending order,
while It>" or ">=I1 will produce descending order.)

	Contents
	1. Introduction
	2. Double_Ended_Lists Package
	3. Stacks Package
	4. Output_Restricted_Deques Package
	5. Using the Packages
	A. Examples_Help Package
	C. Orderings for Merge and Sort

