Elements of Programming

Alexander Stepanov (A9.com) and Paul McJones

Stanford EE380 November 3, 2010

Abstract

This talk is an introduction to the book Elements of Programming published by Addison Wesley in 2009. The book presents practical programming as a mathematical discipline, where every programming construct has its place.

History

- C++ STL (1994) followed research on generic programming by Musser & Stepanov (1979–1992).
- At SGI (1996–1999) and Adobe (2004–2006), Stepanov taught courses on this approach.
- McJones collaborated with Stepanov (2007–2009) in weaving the material into its current form inspired by classical mathematical texts.

Acknowledgments

- Sean Parent
- Bjarne Stroustrup
- Jon Brandt
- John Wilkinson
- and many others

Audience

- The book addresses programmers who aspire to a deeper understanding of their discipline.
- In that, it is similar to Dijkstra's A Discipline of Programming.

Programming Language

- Requirements:
 - Powerful abstraction facilities
 - Faithful representation of the underlying machine
- Our solution:
 - A small subset of C++
 - Type requirements written as structured comments
 - An appendix specifying the subset (written by Parent and Stroustrup)

Premise

- The book applies the deductive method to programming by affiliating programs with the mathematical theories that enable them to work.
- This allows decomposition of complex systems into components with mathematically specified behavior.
- It leads to efficient, reliable, secure, and economical software.

Algorithmic Decomposition

- Complex algorithms are decomposable into simpler components with carefully defined interfaces.
- The components so discovered are then used to implement other algorithms.
- The iterative process going from complex to simple and back is central to the discovery of systematic catalogs of efficient components (such as STL).

The Fabric of the Book

- Three interwoven strands:
 - Specifications of relevant mathematical theories
 - Algorithms written in terms of these theories
 - Theorems describing their properties
- The book is intended to be read from beginning to end: everything is connected.

A Chain of Algorithms

- Memory-adaptive stable sort
- Memory-adaptive merge
- Rotate
- GCD
- Remainder

An example

• Simple, elegant, leads to interesting theory

```
T remainder(T a, T b)
{
    // Precondition: a \ge b > 0
    if (a - b >= b) {
         a = remainder(a, b + b);
         if (a < b) return a;
    }
    return a - b;
}
// First appears in Rhind Papyrus
```

Intuition

 Reduce the problem of finding the remainder after division by b to the problem of remainder after division by 2b.

Correctness

• Let us derive an expression for the remainder *u* from dividing *a* by *b* in terms of the remainder *v* from dividing *a* by 2*b*:

a = n(2b) + v

Since the remainder v must be less than the divisor 2b, it follows that

$$u = v$$
 if $v < b$
 $u = v - b$ if $v \ge b$

Termination Condition

• If b is repeatedly doubled, it will eventually get sufficiently close to a.

What is the type T?

- Natural numbers
- Line segments
- Nonnegative real numbers

Syntactic Requirements

- + and -
- < and >=

Semantic Requirements

- + is associative, commutative
- – obeys cancellation law
- < is consistent with +
- >= is complement of <

Termination Requirements

- An integral quotient type exists
- $(\exists n \in \text{QuotientType}(T)) a n \cdot b < b$

Archimedean Monoid

 A type satisfying these syntactic and semantic requirements is called an Archimedean monoid.

Concept

- A collection of syntactic and semantic requirements
- A set of types satisfying these requirements
- A set of algorithms enabled by these requirements

Concept: Affiliated Types

- Quotient type in Archimedean monoid
- Field of coefficients in a vector space

Concept: Operations

- Signatures using type and affiliated types
 - + : $T \times T \rightarrow T$
 - <: $T \times T \rightarrow$ Boolean
 - scalar product : $T \times T \rightarrow \text{CoefficientType}(T)$

Concept: Axioms

- + is associative and commutative
- < is a strict total ordering
- $(\exists n \in \text{QuotientType}(T)) a n \cdot b < b$

Values, Types, Concepts

- Value is a sequence of 0's and 1's together with its interpretation.
- Type is a set of values with the same interpretation function and operations on these values.
- Concept is a collection of similar types.
- Examples are 000000112, uint8_t, ring.

A Forest of Concepts

Respecting the Domain

T remainder(T a, T b) Not:
 \
 a >= b + b
 \
 } { // Precondition: $a \ge b > 0$ if $(a - b >= b)^{-1}$ a = remainder(a, b + b); if (a < b) return a; } return a - b; }

Partial Models

- Operations are partial.
- Axioms hold only when operations are defined.
- int32_t is a partial model of integers.

Plan of the Book

- Chapter I describes values, objects, types, procedures, and concepts.
- Chapters 2–5 describe algorithms on algebraic structures, such as semigroups and totally ordered sets.
- Chapters 6–11 describe algorithms on abstractions of memory.
- Chapter 12 describes objects containing other objects.
- The afterword presents our reflections on the approach presented by the book.

Memory

- Mathematics defines many concepts dealing with values: monoids, fields, compact spaces,
- Computers place values in memory.
- We define concepts for programming with memory.

Iterator

- Location in linear memory
- Affiliated types:ValueType, DistanceType
- Operations: successor, source
- Axiom:
 - If successor(i) is defined, source(i) is defined

Iterator Concepts

- Iterator: unidirectional, single-pass
- ForwardIterator: unidirectional, multipass
- Bidirectionallterator: bidirectional
- IndexedIterator: forward jumps
- RandomAccessIterator: random jumps

B

RI

Coordinate Structures

- Iterator has unique successor.
- BifurcateCoordinate has left successor and right successor.
- LinkedBifurcateCoordinate has mutable successors.
- BidirectionalBifurcateCoordinate has predecessor.

Conclusions

- Programming is an iterative process:
 - Studying useful problems
 - Finding efficient algorithms for them
 - Distilling the concepts underlying the algorithms
 - Organizing the concepts and algorithms into a coherent mathematical theory.
- Each new discovery adds to the permanent body of knowledge, but each has its limitations.
- Theory is good for practice, and vice versa.