
Elements of
Programming

Alexander Stepanov (A9.com) and Paul McJones

Stanford EE380
November 3, 2010

Abstract

This talk is an introduction to the book
Elements of Programming published by
Addison Wesley in 2009. The book presents
practical programming as a mathematical
discipline, where every programming
construct has its place.

History

• C++ STL (1994) followed research on generic
programming by Musser & Stepanov (1979–1992).

• At SGI (1996–1999) and Adobe (2004–2006),
Stepanov taught courses on this approach.

• McJones collaborated with Stepanov (2007–2009)
in weaving the material into its current form
inspired by classical mathematical texts.

Acknowledgments

• Sean Parent

• Bjarne Stroustrup

• Jon Brandt

• John Wilkinson

• and many others

Audience

• The book addresses programmers who
aspire to a deeper understanding of their
discipline.

• In that, it is similar to Dijkstra’s A Discipline
of Programming.

Programming Language
• Requirements:

• Powerful abstraction facilities

• Faithful representation of the underlying machine

• Our solution:

• A small subset of C++

• Type requirements written as structured comments

• An appendix specifying the subset (written by Parent
and Stroustrup)

Premise
• The book applies the deductive method to

programming by affiliating programs with the
mathematical theories that enable them to
work.

• This allows decomposition of complex systems
into components with mathematically specified
behavior.

• It leads to efficient, reliable, secure, and
economical software.

Algorithmic
Decomposition

• Complex algorithms are decomposable into
simpler components with carefully defined
interfaces.

• The components so discovered are then used
to implement other algorithms.

• The iterative process going from complex to
simple and back is central to the discovery of
systematic catalogs of efficient components
(such as STL).

The Fabric of the Book

• Three interwoven strands:

• Specifications of relevant mathematical
theories

• Algorithms written in terms of these theories

• Theorems describing their properties

• The book is intended to be read from beginning
to end: everything is connected.

A Chain of Algorithms

• Memory-adaptive stable sort

• Memory-adaptive merge

• Rotate

• GCD

• Remainder

An example
• Simple, elegant, leads to interesting theory

T remainder(T a, T b)
{
 // Precondition: a ≥ b > 0
 if (a - b >= b) {
 a = remainder(a, b + b);
 if (a < b) return a;
 }
 return a - b;
}

// First appears in Rhind Papyrus

Intuition

• Reduce the problem of finding the
remainder after division by b to the
problem of remainder after division by 2b.

Correctness

• Let us derive an expression for the remainder u from
dividing a by b in terms of the remainder v from
dividing a by 2b:

 a = n(2b) + v

Since the remainder v must be less than the divisor
2b, it follows that

 u = v if v < b
 u = v - b if v ≥ b

Termination Condition

• If b is repeatedly doubled, it will eventually
get sufficiently close to a.

What is the type T?

• Natural numbers

• Line segments

• Nonnegative real numbers

Syntactic Requirements

• + and -

• < and >=

Semantic Requirements

• + is associative, commutative

• – obeys cancellation law

• < is consistent with +

• >= is complement of <

Termination
Requirements

• An integral quotient type exists

• (∃n ∈ QuotientType(T)) a–n⋅b < b

Archimedean Monoid

• A type satisfying these syntactic and
semantic requirements is called an
Archimedean monoid.

Concept

• A collection of syntactic and semantic
requirements

• A set of types satisfying these requirements

• A set of algorithms enabled by these
requirements

Concept: Affiliated Types

• Quotient type in Archimedean monoid

• Field of coefficients in a vector space

Concept: Operations

• Signatures using type and affiliated types

• + : T × T → T

• < : T × T → Boolean

• scalar product : T × T → CoefficientType(T)

Concept: Axioms

• + is associative and commutative

• < is a strict total ordering

• (∃n ∈ QuotientType(T)) a–n⋅b < b

Values, Types, Concepts

• Value is a sequence of 0’s and 1’s together
with its interpretation.

• Type is a set of values with the same
interpretation function and operations on
these values.

• Concept is a collection of similar types.

• Examples are 000000112, uint8_t, ring.

A Forest of Concepts

Archimedean
monoid

Ordered additive
monoid

Monoid Totally ordered

Semigroup Weak ordering

Respecting the Domain

T remainder(T a, T b)
{
 // Precondition: a ≥ b > 0
 if (a - b >= b) {
 a = remainder(a, b + b);
 if (a < b) return a;
 }
 return a - b;
}

Not:
a >= b + b

Partial Models

• Operations are partial.

• Axioms hold only when operations are
defined.

• int32_t is a partial model of integers.

Plan of the Book
• Chapter 1 describes values, objects, types, procedures,

and concepts.

• Chapters 2–5 describe algorithms on algebraic
structures, such as semigroups and totally ordered sets.

• Chapters 6–11 describe algorithms on abstractions of
memory.

• Chapter 12 describes objects containing other objects.

• The afterword presents our reflections on the
approach presented by the book.

Memory

• Mathematics defines many concepts dealing
with values: monoids, fields, compact
spaces,

• Computers place values in memory.

• We define concepts for programming with
memory.

Iterator

• Location in linear memory

• Affiliated types: ValueType, DistanceType

• Operations: successor, source

• Axiom:

• If successor(i) is defined, source(i) is
defined

Iterator Concepts

• Iterator: unidirectional, single-pass

• ForwardIterator: unidirectional, multipass

• BidirectionalIterator: bidirectional

• IndexedIterator: forward jumps

• RandomAccessIterator: random jumps
It Fi

II

BI

RI

Coordinate Structures

• Iterator has unique successor.

• BifurcateCoordinate has left successor and
right successor.

• LinkedBifurcateCoordinate has mutable
successors.

• BidirectionalBifurcateCoordinate has
predecessor.

Conclusions

• Programming is an iterative process:
• Studying useful problems
• Finding efficient algorithms for them
• Distilling the concepts underlying the algorithms
• Organizing the concepts and algorithms into a

coherent mathematical theory.

• Each new discovery adds to the permanent body
of knowledge, but each has its limitations.

• Theory is good for practice, and vice versa.

