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Abstract

This talk is an introduction to the book 
Elements of Programming published by 
Addison Wesley in 2009. The book presents 
practical programming as a mathematical 
discipline, where every programming 
construct has its place.



History

• C++ STL (1994) followed research on generic 
programming by Musser & Stepanov (1979–1992).

• At SGI (1996–1999) and Adobe (2004–2006), 
Stepanov taught courses on this approach.

• McJones collaborated with Stepanov (2007–2009) 
in weaving the material into its current form 
inspired by classical mathematical texts.



Acknowledgments

• Sean Parent

• Bjarne Stroustrup

• Jon Brandt

• John Wilkinson

• and many others



Audience

• The book addresses programmers who 
aspire to a deeper understanding of their 
discipline.

• In that, it is similar to Dijkstra’s A Discipline 
of Programming.



Programming Language
• Requirements:

• Powerful abstraction facilities

• Faithful representation of the underlying machine

• Our solution:

• A small subset of C++

• Type requirements written as structured comments

• An appendix specifying the subset (written by Parent 
and Stroustrup)



Premise
• The book applies the deductive method to 

programming by affiliating programs with the 
mathematical theories that enable them to 
work.

• This allows decomposition of complex systems 
into components with mathematically specified 
behavior.

• It leads to efficient, reliable, secure, and 
economical software.



Algorithmic 
Decomposition

• Complex algorithms are decomposable into 
simpler components with carefully defined 
interfaces.

• The components so discovered are then used 
to implement other algorithms.

• The iterative process going from complex to 
simple and back is central to the discovery of 
systematic catalogs of efficient components 
(such as STL).



The Fabric of the Book

• Three interwoven strands:

• Specifications of relevant mathematical 
theories

• Algorithms written in terms of these theories

• Theorems describing their properties

• The book is intended to be read from beginning 
to end: everything is connected.



A Chain of Algorithms

• Memory-adaptive stable sort

• Memory-adaptive merge

• Rotate

• GCD

• Remainder



An example
• Simple, elegant, leads to interesting theory

T remainder(T a, T b)
{
    // Precondition: a ≥ b > 0
    if (a - b >= b) {
        a = remainder(a, b + b);
        if (a < b) return a;
    }
    return a - b;
}

// First appears in Rhind Papyrus



Intuition

• Reduce the problem of finding the 
remainder after division by b to the 
problem of remainder after division by 2b.



Correctness

• Let us derive an expression for the remainder u from 
dividing a by b in terms of the remainder v from 
dividing a by 2b:

    a = n(2b) + v

Since the remainder v must be less than the divisor 
2b, it follows that

    u = v       if v < b
    u = v - b  if v ≥ b



Termination Condition

• If b is repeatedly doubled, it will eventually 
get sufficiently close to a.



What is the type T?

• Natural numbers

• Line segments

• Nonnegative real numbers



Syntactic Requirements

• + and -

• < and >=



Semantic Requirements

• + is associative, commutative

• – obeys cancellation law

• < is consistent with +

• >= is complement of <



Termination 
Requirements

• An integral quotient type exists

• (∃n ∈ QuotientType(T)) a–n⋅b < b



Archimedean Monoid

• A type satisfying these syntactic and 
semantic requirements is called an 
Archimedean monoid.



Concept

• A collection of syntactic and semantic 
requirements

• A set of types satisfying these requirements

• A set of algorithms enabled by these 
requirements



Concept: Affiliated Types

• Quotient type in Archimedean monoid

• Field of coefficients in a vector space



Concept: Operations

• Signatures using type and affiliated types

• + :  T × T → T

• < :  T × T → Boolean

• scalar product : T × T → CoefficientType(T)



Concept: Axioms

• + is associative and commutative

• < is a strict total ordering

• (∃n ∈ QuotientType(T)) a–n⋅b < b



Values, Types, Concepts

• Value is a sequence of 0’s and 1’s together 
with its interpretation.

• Type is a set of values with the same 
interpretation function and operations on 
these values.

• Concept is a collection of similar types.

• Examples are 000000112, uint8_t, ring.



A Forest of Concepts

Archimedean 
monoid

Ordered additive 
monoid

Monoid Totally ordered

Semigroup Weak ordering



Respecting the Domain

T remainder(T a, T b)
{
    // Precondition: a ≥ b > 0
    if (a - b >= b) {
        a = remainder(a, b + b);
        if (a < b) return a;
    }
    return a - b;
}

Not:
a >= b + b



Partial Models

• Operations are partial.

• Axioms hold only when operations are 
defined.

• int32_t is a partial model of integers.



Plan of the Book
• Chapter 1 describes values, objects, types, procedures, 

and concepts.

• Chapters 2–5 describe algorithms on algebraic 
structures, such as semigroups and totally ordered sets.

• Chapters 6–11 describe algorithms on abstractions of 
memory.

• Chapter 12 describes objects containing other objects.

• The afterword presents our reflections on the 
approach presented by the book.



Memory

• Mathematics defines many concepts dealing 
with values: monoids, fields, compact 
spaces, ... .

• Computers place values in memory.

• We define concepts for programming with 
memory.



Iterator

• Location in linear memory

• Affiliated types: ValueType, DistanceType

• Operations: successor, source

• Axiom:

• If successor(i) is defined, source(i) is 
defined



Iterator Concepts

• Iterator: unidirectional, single-pass

• ForwardIterator: unidirectional, multipass

• BidirectionalIterator: bidirectional

• IndexedIterator: forward jumps

• RandomAccessIterator: random jumps
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Coordinate Structures

• Iterator has unique successor.

• BifurcateCoordinate has left successor and 
right successor.

• LinkedBifurcateCoordinate has mutable 
successors.

• BidirectionalBifurcateCoordinate has 
predecessor.



Conclusions

• Programming is an iterative process:
• Studying useful problems
• Finding efficient algorithms for them
• Distilling the concepts underlying the algorithms
• Organizing the concepts and algorithms into a 

coherent mathematical theory.

• Each new discovery adds to the permanent body 
of knowledge, but each has its limitations.

• Theory is good for practice, and vice versa.


