
1

Designing Efficient Libraries Designing Efficient Libraries

Alexander Stepanov
July 21, 2003

Alexander Stepanov
July 21, 2003

2

What is STL?What is STL?What is STL?

STL is large, systematic, clean, formally sound,
comprehensible, elegant, and efficient framework

Bjarne Stroustrup, AT&T

STL looks like the machine language macro library of
an anally retentive assembly language programmer

Pamela Seymour, Leiden University

3

Design goalsDesign goalsDesign goals

Well structured, comprehensive library of useful
components

Every component is as abstract as theoretically
possible and as efficient as its hand-coded, non-
abstract version in C

4

How fast is fast?
http://theory.stanford.edu/~amitp/rants/c++-vs-c/

How fast is fast?
http://theory.stanford.edu/~amitp/rants/c++-vs-c/

Data type qsort hand coded Numerical
Recipes

STL

int 5.90 - 5.92 1.54 - 1.65 1.46 - 1.50 1.11 - 1.14

short 9.03 - 9.03 1.73 - 1.80 1.58 - 1.59 1.17 - 1.19

byte 7.87 - 7.89 0.98 - 1.02 0.98 - 1.00 0.70 - 0.73

float 7.08 - 7.10 2.38 - 2.50 2.48 - 2.55 1.97 - 2.02

double 16.4 -16.4 2.70 - 2.93 2.72 -2.83 2.28 - 2.37

5

Lightweight interfacesLightweight interfacesLightweight interfaces

int array[1000];
…
sort(array, array + 1000);

// use only parts you need
// works with C arrays

6

Ability to customizeAbility to customizeAbility to customize

// need descending order?

sort(array, array + 1000,
greater<int>());

// need to sort the second half only?

sort(array + 500, array + 1000);

7

Many related algorithmsMany related algorithmsMany related algorithms

partial_sort, partial_sort_copy
find first 10 out of 1000

stable_sort
sort by name, then by department

min_element, max_element, nth_element

8

Complexity specificationsComplexity specificationsComplexity specifications

Operation counts for algorithms

Asymptotic complexity at the interface level

(see http://www.sgi.com/tech/stl/
in particular,

http://www.sgi.com/tech/stl/complexity.html)

http://www.sgi.com/tech/stl/
http://www.sgi.com/tech/stl/complexity.html

9

Controversial pointsControversial pointsControversial points

not Object Oriented

Copy semantics

Unsafe

10

Performance pitfall 1Performance pitfall 1Performance pitfall 1

vector<Record> v;
Record new_record;
while (get_record(new_record)) {

v.reserve(v.size() + 1);
v.push_back(new_record);

}

11

Performance pitfall 2Performance pitfall 2Performance pitfall 2

deque<double> d(10000000);
sort (d.begin(), d.end());

12

Bizarre algorithmsBizarre algorithmsBizarre algorithms

template <class Iter>
void sort(Iter f, Iter l) {

while(next_permutation(f, l));
}

template <class Iter>
void maybe_sort(Iter f, Iter l) {

while(!is_sorted(f, l))
random_shuffle(f, l);

}

13

ConclusionsConclusionsConclusions

To get performance, design for performance

Performance tools require study and thinking

Poor performance could mean sloppy design

	Designing Efficient Libraries ��
	What is STL?
	Design goals
	How fast is fast?� http://theory.stanford.edu/~amitp/rants/c++-vs-c/
	Lightweight interfaces
	Ability to customize
	Many related algorithms
	Complexity specifications
	Controversial points
	Performance pitfall 1
	Performance pitfall 2
	Bizarre algorithms
	Conclusions

