
O P E R A T O R S A N D A L G E B R A I C S T R U C T U R E S

D. Kapur, D .R. Musser, and A . A . Stepanov

Computer Science Branch
Corporate Research and Development

General Electric Company

ABSTRACT

Operators in functional languages such as APL and FFP are a
useful programming concept. However, this concept cannot be ful-
ly exploited in these languages because of certain constraints. It is
proposed that an operator should be associated with a structure hav-
ing the algebraic properties on which the operator's behavior
depends. This is illustrated by introducing a language that provides
mechanisms for defining structures and operators on them. Using
this language, it is possible to describe algorithms abstractly, thus
empliasizing the algebraic properties on which the algorithms
depend. The role that formal representation of mathematical
knowledge can play in the development of programs is illustrated
through an example. An approach for associating complexity mea-
sures with a structure and operators is also suggested. This ap-
proach is useful in analyzing the complexity of algorithms in an
abstract setting.

1. INTRODUCTION

One of the most important notions which makes functional
languages different from conventional programming languages is
the notion of operator or functional form. Along with a notion of
abstract data types, it constitutes the most interesting development
in programming languages since the early sixties. We are going to
make some suggestions about further development of these two no-
tions and their possible merger. Our main thesis will be that opera-
tors should be defined within the context of the algebraic structures
to which they naturally belong. We shall describe a fragment of a
programming language that supports the description of algebraic
structures and their operators, and illustrate the role that formal
representation of mathematical knowledge can play in the develop-
ment of programs.

Operators were systematically introduced into programming by
Kenneth Iverson. (7) His APL language is a widely used program-
ming language which contains a rich set of operators. According to
Iverson, "an operator is an object which applies to a function or
functions to produce a related function" (Ref. 7, p. 161). How-
ever, the use of operators in APL is limited by the fact that it is
impossible to apply operators to user-defined functions.

Let us consider reduction, a commonly used operator in APL. It
is monadic, which means that it takes one function as an argument.
The reduction operator applied to the function "p lus" , for instance,
produces the "summat ion" function. Reduction takes as its argu-
ment any primitive binary scalar function. Since user-defined func-
tions do not have types, the APL system cannot distinguish be-
tween scalar and vector user-defined functions. Another property
of the function which the reduction operator must know is the ex-
istence of left and right identity elements (Ref. 4, p. 19). Yet there
is no way to specify such elements for user-defined functions in
APL.

Another problem with operators in APL is that it is impossible
for the user to define new operators, since APL functions do not
take functions as their arguments.

John Backus in his Formal System for Functional Programming
(FFP) attempted to resolve both of these problems. (2) The prob-
lem of defining the types of user-defined functions is eliminated be-
cause there is no typing in FFP. Any function can be applied to
any element of the universal domain of objects. The problem of
specifying properties of the user-defined functions still remains.
For example, the " inser t" functional form, which is the FFP ana-
log of the APL reduction operator, utilizes the existence of a
unique right identity element, but there is no facility in the
language for defining the right identity of a function.

The problem of defining a new functional form is resolved by
representing functions as objects of the same universal domain, and
then defining new functional forms as functions which operate on
representations of other functions. But by doing so, FFP loses one
of its novel features: association between functional forms and alge-
braic laws for them. It is impossible to specify laws associated with
a user-defined functional form (Ref. 2, p. 633).

If we consider the use of reduction operator in APL, it will be-
come apparent that in many cases, such as "p lus" , " t imes" ,
"and" , "o r" , "min imum" , and "max imum" , the result is in-
dependent of the order in which the reduction is performed. This
property of the reduction operator applied to these functions be-
comes important for parallel computers. We shall call this case of
the reduction operator the parallel reduction operator. As it will be
shown later, even in the case of sequential computation it can pro-
vide a basis for organizing programs and obtaining more efficient al-
gorithms. All functions for which the reduction can be executed in
an arbitrary order share the same two properties: associativity and
commutativity. An algebraic structure with an associative and com-
mutative operation is called a commutative semigroup. So the
parallel reduction operator is applicable in the algebraic structure of
a commutative semigroup.

A structure on a finite family of sets is defined as a finite
number of operations satifying a system of axioms. If any two
structures satisfying a system of axioms are isomorphic, then the
theory generated by the system of axioms is said to be univalent;
otherwise, the theory is said to be multivalent. We will also call
structures satisfying a univalent theory as univalent structures and
structures satisfying a a multivalent theory as multivalent struc-
tures. For example, structures of " integers", "real numbers", and
"group of order 3" are univalent. On the other hand, structures of
"semigroup", " r ing" , and "group of order 4" are multivalent
(Ref. 1 p. 385). (If we were to restrict ourselves to first order
theories, "real number," for example, would be multivalent as
non-standard models exist; however, we make no such restriction.
The theorem that "any tWOcompletely ordered fields are isomorphic"
may be found in any advanc,~u calculus text.) We nave decided to
use the old-fashioned formalism of Bourbaki instead of the category
theoretic formalism used by Burstall and Goguen, (3) because we be-
lieve that it is much less esoteric.

On any structure we can define new operations with the help of
the set of primitive operations. In the case of univalent structures,
these new operations correspond to user-defined functions in APL
or FFP. But in the case of multivalent structures, they correspond

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1981 A C M 0 - 8 9 7 9 1 - 0 6 0 - 5 / 8 1 - 1 0 / 0 0 5 9 $ 0 0 . 7 5

59

to opera tors or func t iona l forms. It is, thus , reasonable to incor-
porate the not ion of s t ruc ture into the f r a m e w o r k of func t iona l
languages .

In the next sect ion, we shall build a language to i l lustrate how it
can be done. We will descr ibe it informal ly , omi t t ing m a n y details
and i l lustrat ing undef ined metavar iab les with examples . This
language is a part o f a very high-level l anguage Tecton (" b u i l d e r ")
for descr ib ing sof tware sys tems which is being deve loped at the
Gene ra l Electric Research and D e v e l o p m e n t Cente r .

Before con t inu ing , we remark that the subject o f s t ruc tu res in
p r o g r a m m i n g languages is u n d e r active inves t iga t ion by a n u m b e r
o f o the r au thors . We note part icular ly the work o f Gu t t ag , (6)
Zilles, (13) and the A D J g roup ~5) on abst ract data types, of Burstall
and G o g u e n TM and Nakaj ima et al. (lIJ on hierarchical specif icat ion
languages , and the efforts to formal ly descr ibe c o m p u t e r a lgebra
sys tems by Jenks,t8) Winkler , (12) and Zippel. (14)

2. S T R U C T U R E S IN T E C T O N

The descr ip t ion o f a s t ruc ture includes its configuration, which is
the list o f s t ruc tu res f rom which the descr ibed s t ruc tu re is buil t and
the list of pr imit ive opera t ions def ined on these s t ruc tures . Exam-
ples o f conf igura t ions are:

g roup (S : s e t ; + : S + S ~ S, inv :S ~ S, 0 : - S)

m o d u l e (G : a b e l i a n g roup , R: r ing; *:R*G ~ G)

The first m e m b e r of the list of s t ruc tu res is cal led the " b a s e s t ruc-
t u r e " o f the conf igura t ion (G is the base s t ruc tu re o f the
conf igura t ion for modu le) . In the list o f opera t ions we write
*:R*G ~ G to mean that * is a b inary infix opera t ion whose

d o m a i n is R x G a n d w h o s e range is G. (I f* were to be used a s a
prefix opera t ion , we would write * : R , G ~ G.)

A s t ruc ture descr ipt ion may also inc lude a set o f ax ioms and
t h e o r e m s k n o w n about the s t ruc ture and a set of secondary opera-
tors, def ined in t e rms of the pr imit ive ones . The ax ioms and
t h e o r e m s may include a descr ipt ion o f proper t ies o f the complex i ty
of pr imit ive and secondary opera t ions , as will be d iscussed in Sec-
t ion 4.

These parts o f the descr ipt ion are i n t roduced by cons t ruc t s o f
Tec ton which permi t c rea t ing new s t ruc tu res f rom exis t ing ones and
modi fy ing exis t ing s t ruc tures . The mos t impor t an t are: create, en-
rich, inform, provide, instantiate, implement, and represent.

The create cons t ruc t adds a new e l emen t to the d o m a i n o f s t ruc-
tures. Its fo rmat is:

create < c o n f i g u r a t i o n > [with < p r o p e r t i e s >]

(Brackets enclose parts o f the cons t ruc t that can be omi t ted .) For
example , if we have a s t ruc ture " s e t " , then we can add a s t ruc tu re
" g r o u p " :

create g roup (S : s e t ; + : S + S - - S, inv :S ~ S, 0: - - S)

with associativity: x + (y + z) = (x + y) + z ,

left identi ty: 0 + x = x,

lef t inverses: inv(x) + x = 0;

By conven t ion , the symbols x,y, and z that appear in the proper t ies
are variables that are o f the type of the base s t ruc tu re (S in this
casa) . W h e n variables o f o the r types are needed , they will be ex-
plicitly typed. The n a m e s of the proper t ies can be omi t ted ; they
mere ly provide an extra way of re fe r r ing to the propert ies .

The enrich cons t ruc t allows us to add a new s t ruc tu re to the
doma in of s t ruc tures by m e a n s o f adding new ax ioms to an exis t ing
s t ruc ture . Its fo rmat is:

enr ich < s t ruc ture n a m e >

[into < s t r u c t u r e n a m e >]

with < p r o p e r t i e s >

For example , hav ing crea ted " g r o u p " we can in t roduce a s t ruc tu re
" a b e l i a n g r o u p " :

enr ich g r o u p into abel ian g roup

with x + y = y + x ;

As ano the r example , a " g r o u p with all e l emen t s o f o rde r 2 " can be
in t roduced by:

enr ich g roup

with all e l emen t s of order 2: x + x = 0;

The instantiate cons t ruc t replaces the fo rmal pa rame te r s o f a
conf igura t ion with actual pa ramete r s , g iving an ins tance o f one
s t ruc ture within another . Its fo rmat is:

ins tant ia te < s t r u c t u r e n a m e > of < s t ruc ture n a m e >

[as < n a m e >]] < p l u g g e d i n t e r f a c e >]

For example , if, in addi t ion to the previously def ined s t ruc tu res , we
have in the domain of s t ruc tures the s t ruc ture o f " i n t e g e r s " with
the conf igura t ion

in tegers (l : se t ; + : / + 1 ~ L n e g a t e : / ~ L 0: ~ /)

then we can

instant iate abelian g roup of in tegers

(S = L + = + , inv = negate , 0 = 0);

We did not give any name to the s t ruc ture we jus t c rea ted , so we
can reference it only as " abe l i an g roup of i n t ege r s " .

The inform cons t ruc t allows us to add new proper t ies tha t are
t h e o r e m s

in form < s t ruc ture n a m e > that < p r o p e r t i e s >

For example , we can add some useful proper t ies to the s t ruc tu re o f
" g r o u p " :

in form group that x + 0 = x, x + i n v (x) = 0;

Note that this does not p roduce a new s t ruc ture , since these proper -
ties are provable f rom the ax ioms of " g r o u p " .

The provide cons t ruc t allows us to define, addi t ional ope ra to r s on
the already defined s t ruc tures . Its format :

provide < n a m e > with < o p e r a t o r de f in i t ions>

For example , we can now define a subt rac t ion ope ra to r on the
" g r o u p " s t ruc ture :

provide g r o u p with - : x - y ~ x + i n v (y) ;

F r o m now on we can use the subt rac t ion opera to r with any ins tance
of " g r o u p " .

The implement cons t ruc t allows us to specify some special ways
in which opera tors can be imp lemen ted on those ins tances o f a
s t ruc ture which possess some par t icular set o f propert ies . Its for-
ma t is:

imp lemen t < opera tor n a m e > [o n < s t ruc ture n a m e >]

[with < p r o p e r t i e s >] as < i m p l e m e n t a t i o n >

For example , on groups with all e l emen t s of o rder 2, it is possible
to s implify the subt rac t ion operator :

imp lemen t - on "group with all e l emen t s o f o rder 2

as x + y ;

In this example we used a proper ty o f the s t ruc tu re , but a n o t h e r
possibili ty is to refer to a proper ty of the par t icular inputs to the
opera tor , as will be i l lustrated in Sect ion 4.

The final cons t ruc t of Tec ton we shall d iscuss is the represent
const ruct :

r epresen t < s t r u c t u r e n a m e > as < s t r u c t u r e n a m e >

using < r e p r e s e n t a t i o n f u n c t i o n >

and < abs t rac t ion f u n c t i o n >

6 0

This allows in t roduc t ion of a mapp ing f rom one s t ruc ture to ano th-
er as an aid to def ining opera t ions or express ing their implementa -
t ions. The abs t rac t ion func t ion is requi red to be a h o m o m o r p h i s m
f rom the second s t ruc ture back to the first, and is included as a way
of gua ran t ee ing that opera t ions on the second s t ruc ture preserve
those o f the first. For example , if we have a s t ruc ture of complex
n u m b e r s we can in t roduce t h e i r polar representa t ion , which is use-
ful for m a n y a lgor i thms.

We have given only a sketch of some of the main cons t ruc t s
descr ib ing s t ruc tures in Tecton. We shall now a t tempt to illustrate
the ma in ideas with an example .

3. P R O G R A M M I N G U S I N G S T R U C T U R E S

The first obse rva t ion which can be made is that it is impossible
to p rog ram in Tec ton as we have descr ibed it, since it does not con-
tain any pr imit ive s t ruc tures f rom which o ther s t ruc tures can be
cons t ruc ted . As an initial set of s t ruc tures for our exercise in pro-
g r a m m i n g , we shall use the s t ruc tures " s e t " , " m u l t i s e t ' , and " s e - ,
q u e n c e " with m a n y different opera t ions and opera tors defined on
t h e m , which will be seen in context . As a t heme for the exercise,
we shall select one of the mos t classical of all p r o g r a m m i n g prob-
lems: sor t ing.

First , we need the not ion o f a totally o rdered set:

create o rde red se t (S:se t ; relat ion ~< : S~< S)

with x < x,
x < y a n d y~< z impl ies x ~ z ,

x~< y and y ~< x implies x = y ;

enr ich ordered set into totally o rdered set

with x ~ y o r y<~x;

T h e n we need to have some th ing to sort:

create orderable sequences

(Seq:sequences o f totally ordered set);

and a way to dis t inguish sor ted sequences:

create ordered sequences

(OrdSeq:subset o f orderable s equences

such that for all u and for all x,y in u,

x precedes y in u if and only if x ~< y).

Now we can write our first program:

provide ordered sequences with

merge :x ,y

if x = null or y = null then x c a t y

else if head(x) ~< head(y)

then < head(x) > cat merge (tail (x),y)

else < h e a d (y) > cat merge(x , t a i l (y)) ;

It is easy to see that the null sequence is an identi ty e l emen t for the
m e r g e func t ion and that merge is both c o m m u t a t i v e and associa-
tive. T h u s we may:

i n fo rm ordered sequences that

m e r g e (n u l l , x) = x = merge(x , nul l) ,

merge (x ,y) = merge(y ,x) ,

merge(merge(x ,y) ,z) = merge (x , merge(y ,z)) ;

This makes it r easonab le to make use o f some addi t ional s t ructures :

create s e m i g r o u p (S : s e t ; + : S + S ~ S)

with associativity: x+ (y+ z) = (x+ y) + z ;

create m o n o i d (S : s e m i g r o u p ; 0: ~ S)

with 0 + x = x + 0 = x ;

enr ich mono id into abel ian mono id

with commuta t iv i ty : x+ y = y + x ;

and to in t roduce an ope ra to r reduct ion:

provide sequences o f m o n o i d with

reduct ion: x ~ if x = null then 0

else head(x) + reduc t ion(ta i l (x)) ;

T h u s there is an ins tance o f an abel ian mono id in ordered

sequences :

ins tant ia te abel ian m o n o i d o f o rdered sequences

as m e r g e (S = OrdSeq , + = merge , 0 = null)

Here we have used the func t ion name " m e r g e " also as the name of
the ins tan t ia ted s t ruc ture . We shall refer to it as the " m e r g e
m o n o i d " . W h e n we use an opera to r such as " r e d u c t i o n " defined
in the m o n o i d s t ruc ture , we will deno te the co r re spond ing opera to r
in the merge m o n o i d as " r e d u c t i o n of m e r g e " . Thus we can use
" r e d u c t i o n of m e r g e " on sequences o f o rde red sequences to merge
t hem into one.

The next step is to recognize that sequences u n d e r " c a t " also
fo rm a mono id :

i n fo rm sequences that

null cat x = x c a t null = x ,

(x c a t (y c a t z)) = ((x c a t y) cat z);

ins tant ia te mono id o f sequences

as c a t (S = sequences , + = cat, 0 = null);

O u r pu rpose with this step is to define an abst ract ion func t ion for
the fol lowing representa t ion .

represen t orderable s equences as s equences o f

o rdered sequence us ing seqrep

and seqabs: x ~ reduc t ion of cat(x) ;

We have only given the represen ta t ion func t ion a name , " s e q r e p " ,
wi thout def in ing it. The reason for this will be seen in a m o m e n t ,
but now we can write ou r p rog ram for sor t ing as

provide o rderab le sequences with

sort: x ~ reduc t ion of m e r g e (s e q r e p (x)) ;

This is a gener ic a lgor i thm for two reasons. One is that different
i m p l e m e n t a t i o n s o f the reduc t ion ope ra to r will give different algo-
r i thms , a point we shall s tudy in the next section. The o ther reason
is that we can ins tant ia te " s e q r e p " in var ious ways. One possibility

is:

provide s equences with

oneify: x

if x = null then null

else < < head (x) > > cat onei fy (tail (x)) ;

ins tant ia te sort as sort 1 (seqrep = one i fy) ;

T h u s o n e i f y (< al,a2,...,an >) --- < < a l > , < a 2 > < an>>.
A n o t h e r possibil i ty would be a func t ion " r u n i f y " that keeps runs of
increas ing e l emen t s in the , s ame sequence ; e.g.,

61

r u n i f y (< 3 , 5 , 1 , 8 , 9 , 1 1 , 4 , 3 , 8 >) =

< < 3 , 5 > , < 1 , 8 , 9 , 1 1 > , < 4 > , < 3 , 8 > > .

This would be useful when it is known that long runs are likely to
exist, i.e., when the input to " s o r t " is known to be a lmost sorted.

4. A L G E B R A I C O P T I M I Z A T I O N

As we have thus far defined " s o r t " , it is not very efficient. Be-
cause of the way we defined the reduction operator to perform left-
most reductions, we are using the merge operation on ordered se-
quences merely to do insert ions of a single e l emen t into an ordered
sequence. Thus the algori thm we have obtained is essential ly
" inse r t ion sor t " , an order n 2 algori thm. Let us now see how a
s imple redefinit ion of reduction has the consequence that our al-
ready given sort program becomes an order (n log n) algori thm.

In making this new definition of reduction, we do not want to
s imply replace the current definit ion, since the current definit ion
may in fact be more efficient in other applications. The key idea we
want to demonst ra te now is that more than one definition of an
operator can exist and the decision as to which one to use in a par-
ticular application should be made on the basis of complexi ty prop-
ert ies of the s t ructures involved in the application.

For s tudying the complexi ty of the implementa t ions of secon-
dary operators associated with a structure, it is necessary to specify
complexi ty informat ion with the primit ive operat ions and the base
s tructure in its configuration. Every s tructure is assumed to have
an implicit real-valued nonnegat ive function length defined on the
e l emen t s of the base s t ructure of its configuration, and each opera-
tion, operator, and implementa t ion of an operator is a s sumed to
have an implicit real-valued nonnegat ive function cost associated
with it. The enrich and inform operat ions can be used to add ax ioms
and theorems expressing complexi ty propert ies in terms of length
and cost.

The discussion of the complexi ty analysis in this paper will be
very sketchy because of the scope of this paper. We will only intro-
duce a few concepts to illustrate some ideas in comparing different
implementa t ions of the reduct ion operator.

Our first task is to add some complexi ty propert ies to abelian
monoids.

enrich abelian monoid into Huffman monoid with

l eng th (x+y) = length(x) + length(y)

cost of + of (x,y) = order (length(x) + length(y)) ;

The name of this s t ructure derives from D. Huf fman ' s a lgori thm
(Ref. 9, Vol. 1, pp. 402-405 and Vol. 3, p. 365) for finding a tree
with m i n i m u m weighted path length. With this definit ion, it is pos-
sible to show that the merge monoid can be made into a Huffman
monoid.

inform ordered sequences that

addit ive length: l ength(merge(x ,y))

= length(x) + length(y)

l inear cost: cost of merge of (x,y)

= order(length(x) + length(y))

Now it makes sense to

implemen t reduct ion on sequences of Hhffman monoid as

huf f (makemul t i se t (x))

where " h u f f " is an operation on mul t i se t s that, as in Huffman 's
a lgori thm, chooses a pair of e lements to be combined based on
minimal i ty of their length:

provide mul t ise ts with

huff: s

if s = empty then 0

else if s ingleton?(s) then u where u : s

else huff((s - {u,v}) U {u+v})

where u, v: s and min ima lLeng th (u,s)

and min imalLength(v , s - -{ v});

We now see that, since the merge mono id is a Huffman monoid,
our sort program will be able to use this implementa t ion . Thus it
becomes the wel l -known merge sort a lgori thm, whose cost is order
(n log n).

With an additional property of the input, we can simplify the
Huffman implementa t ion of reduction.

provide sequences with

relat ion equalLengths : x

for all u, v inx , length(u) = length(v) ;

provide sequences of Huffman monoid with

huff l : x

if x = null then 0

else if s ing le ton?(x) then head(x)

else huff l (t a i l (t a i l (x))

cat < h e a d (x) + h e a d (t a i l (x)) >)

imp lemen t reduct ion on sequences of Huffman monoid

with equalLengths(x) as huff l (x);

This implementa t ion would be used by so r t l , since the instance
" o n e i f y " of " s e q r e p " produces sequences satisfying the '"equal-
Leng ths" relation.

In closing this discussion of opt imizat ion, let us now consider
briefly how the reduct ion operator introduced in Section 2 relates to
the parallel reduct ion operator discussed in the Introduct ion. In
Section 2, the definit ion of reduct ion is given recursively in te rms
of pr imit ive operat ions " h e a d " and " t a i l " on sequences. This per-
mits a s imple definit ion, but also implies a c o m m i t m e n t to sequen-
tial computat ion. With a different set of pr imit ive operat ions on
sequences we can express the definit ion of reduct ion in a way that
naturally implies parallel computat ion. We will thereby obtain the
possibili ty of parallel computa t ion in all applications of reduct ion
that obey the necessary algebraic laws, such as our sort program.

Let us suppose that operat ions on sequences of monoid include
an operator " p a i r s " that takes a sequence < x l , ... , xn> into a
sequence of two e lement sequences << x 1,x2>, < xa ,x4>, > ,
where the last pair is < xn ,0> if n is odd; and that there is a primi-
t ive operator " m a p a l l " that applies a funct ion " f " to each e l emen t
of a sequence, producing the sequence of the results. We could, of
course, define these with Tecton, e.g.,

provide sequences of domain of funct ion f with

mapall: x

if x = null then null

else < f (h e a d (x)) > cat mapal l (ta i l (x)) ;

but instead we assume " m a p a l l " is already imp lemen ted in a way
that permits parallel computat ion, so that it may be used to imple-
men t other parallel operators. For example , we may now

provide sequences of mono id with

addpair: x - - head(x) + head(ta i l (x)) ,

62

parallelReduction: x ~ if x = null then 0

else if singleton?(x) then head(x)

else parallelReduction(mapall of addpair(pairs(x)));

If we now

implement reduction as parallelReduction;

we obtain a parallel version of any algorithm that uses reduction,
such as our "sor t" program. We note that "mapal l" could also
have been used to define the function "oneify" , which was defined
recursively in the previous section.

5. CONCLUSION

By combining the notion of operators as used in languages such
as APL and FFP with the ideas of alge.braic structures, we have
proposed mechanisms to define structures and associate operators
with structures in a functional setting. This allows us to describe al-
gorithms abstractly and without committing to any particular model
of computation, thus emphasizing the algebraic properties they
depend on for their functional behavior. We have also suggested
an abstract way to associate complexity measures with a structure
and its operators. Below, we briefly discuss some topics closely re-
lated to the ideas presented in the paper which need further
investigation.

We used the structures " se t " , "mul t i se t" , and "sequences" for
illustrating various language constructs. There is a need to identify
other structures useful in describing systems and develop their the-
ory. Like the reduction operator on a monoid, other operators on a
monoid and other algebraic structures like group, semi-ring, ring,
etc., should be investigated within the proposed language frame-
work. We believe that the proposed language constructs, when
used with a library of judiciously chosert structures and operators,
can be highly expressive and useful in de:~cribing complex systems.

An important topic not discussed in the paper is the role of
computer-assisted theorem proving, in relating various structures
and operators and deriving properties about structures and opera-
tors, as well as about their complexity. An example is for the com-
puter to assist in checking that the monoid structure can be instan-
tiated into sequences by associating the configuration of the monoid
with that of sequences and by deducing the monoid properties from
the axioms and theorems of sequences. Another example is to
prove, using the computer, that the merge monoid discussed in
Section 4 is a Huffman monoid by showing that the merge operator
is length additive and its cost function is linear. Deducing such in-
formation can help in developing efficient implementations of the
algorithms. We also need to identify problem domain-independent
properties of structures such as univalenc',y, multivalency, consisten-
cy, completeness of axioms, etc., and develop algorithms for check-
ing these properties. In the study of th,ese questions, we will draw
heavilY' upon our experience with the capabilities of the AFFIRM
system t91 for theorem proving an:l analysis of algebraic
specifications.

Without giving any details, we have alluded to an abstract way
of associating complexity with structures and operators. This ap-
proach also seems to provide a unified framework for .discussing
complexity in both a parallel and a sequential environment. How-

ever, much work needs to be done toward developing such an ap-
proach as ~ basis for constructing new algorithms and analyzing
their complexity.

One of the main considerations for the design of Tecton is to
identify abstraction mechanisms that aid in describing systems in a
natural way. The abstraction mechanisms should also be amenable
to formal reasoning so that the computer can assist in applying
them. In this paper, we have introduced several constructs for com-
municating knowledge of algebraic structures in a way that facili-
tates the development and selection of algorithms. Besides these
constructs, Tecton has constructs for manipulating objects other
than structures, which will be discussed in forthcoming reports.

ACKNOWLEDGMENTS

We would like to thank John Guttag, Chuck Fiduccia, and Jim
Thatcher for many valuable comments on the first draft of this pa-
per. We would also like to acknowledge John Hutchison's partici-
pation in the initial stage of this research.

REFERENCES

1. Bourbaki, N., Theory of Sets, Chapter IV, "Structures" and
Summary of Results, Section 8, "Scales of Sets. Structures,"
Addison-Wesley, 1968.

2. Backus, J., "Can Programming Be Liberated from the yon
Neumann Style? A Functional Style and Its Algebra of Pro-
grams," CACM 8 (21), August 1978.

3. Burstall, R.M., Goguen, J.A., "Putting Theories Together to
Make Specifications," Fifth International Joint Conference on
Artificial Intelligence, Cambridge, MA, August 1977.

4. Falkoff, A.D. and Orth, D.L., "Development of an APL Stan-
dard," RC 7542, IBM Thomas J. Watson Research Center,
Yorktown Heights, NY, February 1979.

5. Goguen, J.A., Thatcher, J.W., Wagner, E.W., "Initial Algebra
Approach to the Specification, Correctness, and Implementa-
tion of Abstract Data Types" in Current Trends in Programming
Methodology. Vol. IV, Data Structuring (R.T. Yeh, ed.), Pren-
tice Hall, Englewood Cliffs, N J, 1978.

6. Guttag, J.V., "'Abstract Data Types and the Development of
Data Structures," CACM 20 (6), pp. 396-404, June 1977..

7. lverson, K.E., "Operators," TOPLAS •(2), October 1979.
8. Jenks, R.D., Trager, B.M., "A Language for Computational

Algebra," Proceedings of the 1981 A CM Symposium on Symbolic
and Algebraic Computation, Snowbird, August 1981.

9. Knuth, D.E. The Art of Computer Programming, Vol. 1, Vol. 3,
Addison-Wesley, 1968, 1973.

10. Musser, D.R., "Abstract Data Types in the AFFIRM System,"
IEEE TSE •(6), January 1980.

11. Nakajima, R., Nakahara, H., Honda, M., "'Hierarchical Pro-
gram Specification and Verification - A Many Sorted Logical
Approach," preprint RIMS 256, November 1978.

12. Winkler, F., "A Language for Specifying Algebraic Struc-
tures," unpublished manuscript, Fall 1979.

13. Zilles, S.N., "An Introduction to Data Algebra," Draft Work-
ing Paper, IBM San Jose Research Laboratory, Sep-
tember 1975.

14. Zippel, R., private communication, March 1981.

63

64

