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ABSTRACT 

Operators in functional languages such as APL and FFP are a 
useful programming concept. However, this concept cannot be ful- 
ly exploited in these languages because of certain constraints. It is 
proposed that an operator should be associated with a structure hav- 
ing the algebraic properties on which the operator's behavior 
depends. This is illustrated by introducing a language that provides 
mechanisms for defining structures and operators on them. Using 
this language, it is possible to describe algorithms abstractly, thus 
empliasizing the algebraic properties on which the algorithms 
depend. The role that formal representation of mathematical 
knowledge can play in the development of programs is illustrated 
through an example. An approach for associating complexity mea- 
sures with a structure and operators is also suggested. This ap- 
proach is useful in analyzing the complexity of algorithms in an 
abstract setting. 

1. INTRODUCTION 

One of the most important notions which makes functional 
languages different from conventional programming languages is 
the notion of operator or functional form. Along with a notion of 
abstract data types, it constitutes the most interesting development 
in programming languages since the early sixties. We are going to 
make some suggestions about further development of these two no- 
tions and their possible merger. Our main thesis will be that opera- 
tors should be defined within the context of the algebraic structures 
to which they naturally belong. We shall describe a fragment of a 
programming language that supports the description of algebraic 
structures and their operators, and illustrate the role that formal 
representation of mathematical knowledge can play in the develop- 
ment of programs. 

Operators were systematically introduced into programming by 
Kenneth Iverson. (7) His APL language is a widely used program- 
ming language which contains a rich set of operators. According to 
Iverson, "an operator is an object which applies to a function or 
functions to produce a related function" (Ref. 7, p. 161). How- 
ever, the use of operators in APL is limited by the fact that it is 
impossible to apply operators to user-defined functions. 

Let us consider reduction, a commonly used operator in APL. It 
is monadic, which means that it takes one function as an argument. 
The reduction operator applied to the function "p lus" ,  for instance, 
produces the "summat ion"  function. Reduction takes as its argu- 
ment any primitive binary scalar function. Since user-defined func- 
tions do not have types, the APL system cannot distinguish be- 
tween scalar and vector user-defined functions. Another property 
of the function which the reduction operator must know is the ex- 
istence of left and right identity elements (Ref. 4, p. 19). Yet there 
is no way to specify such elements for user-defined functions in 
APL. 

Another problem with operators in APL is that it is impossible 
for the user to define new operators, since APL functions do not 
take functions as their arguments. 

John Backus in his Formal System for Functional Programming 
(FFP) attempted to resolve both of these problems. (2) The prob- 
lem of defining the types of user-defined functions is eliminated be- 
cause there is no typing in FFP. Any function can be applied to 
any element of the universal domain of objects. The problem of 
specifying properties of the user-defined functions still remains. 
For example, the " inser t"  functional form, which is the FFP ana- 
log of the APL reduction operator, utilizes the existence of a 
unique right identity element, but there is no facility in the 
language for defining the right identity of a function. 

The problem of defining a new functional form is resolved by 
representing functions as objects of the same universal domain, and 
then defining new functional forms as functions which operate on 
representations of other functions. But by doing so, FFP loses one 
of its novel features: association between functional forms and alge- 
braic laws for them. It is impossible to specify laws associated with 
a user-defined functional form (Ref. 2, p. 633). 

If we consider the use of reduction operator in APL, it will be- 
come apparent that in many cases, such as "p lus" ,  " t imes" ,  
"and" ,  "o r" ,  "min imum" ,  and "max imum" ,  the result is in- 
dependent of the order in which the reduction is performed. This 
property of the reduction operator applied to these functions be- 
comes important for parallel computers. We shall call this case of 
the reduction operator the parallel reduction operator. As it will be 
shown later, even in the case of sequential computation it can pro- 
vide a basis for organizing programs and obtaining more efficient al- 
gorithms. All functions for which the reduction can be executed in 
an arbitrary order share the same two properties: associativity and 
commutativity. An algebraic structure with an associative and com- 
mutative operation is called a commutative semigroup. So the 
parallel reduction operator is applicable in the algebraic structure of 
a commutative semigroup. 

A structure on a finite family of sets is defined as a finite 
number of operations satifying a system of axioms. If any two 
structures satisfying a system of axioms are isomorphic, then the 
theory generated by the system of axioms is said to be univalent; 
otherwise, the theory is said to be multivalent. We will also call 
structures satisfying a univalent theory as univalent structures and 
structures satisfying a a multivalent theory as multivalent struc- 
tures. For example, structures of " integers",  "real numbers",  and 
"group of order 3" are univalent. On the other hand, structures of 
"semigroup",  " r ing" ,  and "group of order 4"  are multivalent 
(Ref. 1 p. 385). (If we were to restrict ourselves to first order 
theories, "real number,"  for example, would be multivalent as 
non-standard models exist; however, we make no such restriction. 
The theorem that "any tWOcompletely ordered fields are isomorphic" 
may be found in any advanc,~u calculus text.) We nave decided to 
use the old-fashioned formalism of Bourbaki instead of the category 
theoretic formalism used by Burstall and Goguen, (3) because we be- 
lieve that it is much less esoteric. 

On any structure we can define new operations with the help of 
the set of primitive operations. In the case of univalent structures, 
these new operations correspond to user-defined functions in APL 
or FFP. But in the case of multivalent structures, they correspond 
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to opera tors  or func t iona l  forms.  It is, thus ,  reasonable  to incor-  
porate  the not ion  of  s t ruc ture  into the f r a m e w o r k  of  func t iona l  
languages .  

In the next  sect ion,  we shall build a language  to i l lustrate how it 
can be done.  We will descr ibe it informal ly ,  omi t t ing  m a n y  details 
and  i l lustrat ing undef ined  metavar iab les  with examples .  This  
language  is a part  o f  a very high-level  l anguage  Tecton ( " b u i l d e r " )  
for  descr ib ing sof tware  sys tems  which is being deve loped  at the 
Gene ra l  Electric Research  and  D e v e l o p m e n t  Cente r .  

Before con t inu ing ,  we remark  that  the subject  o f  s t ruc tu res  in 
p r o g r a m m i n g  languages  is u n d e r  active inves t iga t ion  by a n u m b e r  
o f  o the r  au thors .  We note  part icular ly the work  o f  Gu t t ag ,  (6) 
Zilles, (13) and  the A D J  g roup  ~5) on abst ract  data  types,  of  Burstall  
and  G o g u e n  TM and  Nakaj ima et al. (lIJ on  hierarchical  specif icat ion 
languages ,  and  the  efforts to formal ly  descr ibe  c o m p u t e r  a lgebra  
sys tems  by Jenks,t8) Winkler ,  (12) and  Zippel. (14) 

2. S T R U C T U R E S  IN T E C T O N  

The  descr ip t ion  o f  a s t ruc ture  includes  its configuration, which  is 
the list o f  s t ruc tu res  f rom which the descr ibed s t ruc tu re  is buil t  and  
the list of  pr imit ive opera t ions  def ined on these  s t ruc tures .  Exam-  
ples o f  conf igura t ions  are: 

g roup (S : s e t ;  + : S + S  ~ S, inv :S  ~ S, 0 : -  S) 

m o d u l e ( G : a b e l i a n  g roup ,  R: r ing;  *:R*G ~ G)  

The first m e m b e r  of  the list of  s t ruc tu res  is cal led the " b a s e  s t ruc-  
t u r e "  o f  the conf igura t ion  ( G  is the base s t ruc tu re  o f  the 
conf igura t ion  for  modu le ) .  In the list o f  opera t ions  we write 
*:R*G ~ G to mean  that  * is a b inary infix opera t ion  whose  

d o m a i n  is R x G a n d w h o s e  range is G. ( I f*  were  to be used  a s a  
prefix opera t ion ,  we would  write * : R , G  ~ G.) 

A s t ruc ture  descr ipt ion may also inc lude  a set o f  ax ioms  and  
t h e o r e m s  k n o w n  about  the s t ruc ture  and  a set of  secondary  opera-  
tors,  def ined in t e rms  of  the pr imit ive ones .  The  ax ioms  and  
t h e o r e m s  may include a descr ipt ion o f  proper t ies  o f  the  complex i ty  
of  pr imit ive and  secondary  opera t ions ,  as will be d iscussed in Sec- 
t ion 4. 

These  parts  o f  the descr ipt ion are i n t roduced  by cons t ruc t s  o f  
Tec ton  which  permi t  c rea t ing  new s t ruc tu res  f rom exis t ing ones  and  
modi fy ing  exis t ing s t ruc tures .  The  mos t  impor t an t  are: create, en-  
rich, inform, provide, instantiate, implement,  and  represent. 

The create cons t ruc t  adds  a new e l emen t  to the d o m a i n  o f  s t ruc-  
tures.  Its fo rmat  is: 

create  < c o n f i g u r a t i o n >  [with < p r o p e r t i e s >  ] 

(Brackets  enclose  parts  o f  the cons t ruc t  that  can be omi t ted . )  For  
example ,  if we have  a s t ruc ture  " s e t " ,  then we can add  a s t ruc tu re  
" g r o u p " :  

create  g roup (S : s e t ;  + : S + S  - -  S, inv :S  ~ S, 0: - -  S)  

with associativity:  x + ( y + z )  = ( x + y ) + z ,  

left identi ty:  0 + x  = x, 

lef t inverses:  inv(x)  + x  = 0; 

By conven t ion ,  the symbols  x,y,  and  z that  appear  in the proper t ies  
are variables that  are o f  the type of  the base s t ruc tu re  (S  in this 
casa) .  W h e n  variables o f  o the r  types are needed ,  they  will be ex- 
plicitly typed. The  n a m e s  of  the proper t ies  can  be omi t ted ;  they 
mere ly  provide an extra  way of  re fe r r ing  to the propert ies .  

The  enrich cons t ruc t  allows us to add  a new s t ruc tu re  to the 
doma in  of  s t ruc tures  by m e a n s  o f  adding new ax ioms  to an exis t ing 
s t ruc ture .  Its fo rmat  is: 

enr ich  < s t ruc ture  n a m e >  

[into < s t r u c t u r e  n a m e >  ] 

with < p r o p e r t i e s >  

For  example ,  hav ing  crea ted  " g r o u p "  we can  in t roduce  a s t ruc tu re  
" a b e l i a n  g r o u p " :  

enr ich  g r o u p  into abel ian g roup  

with x + y  = y + x ;  

As ano the r  example ,  a " g r o u p  with all e l emen t s  o f  o rde r  2 "  can  be 
in t roduced  by: 

enr ich g roup  

with all e l emen t s  of  order  2: x + x  = 0; 

The  instantiate cons t ruc t  replaces the fo rmal  pa rame te r s  o f  a 
conf igura t ion  with actual  pa ramete r s ,  g iving an ins tance  o f  one  
s t ruc ture  within another .  Its fo rmat  is: 

ins tant ia te  < s t r u c t u r e  n a m e >  of  < s t ruc ture  n a m e >  

[as < n a m e > ]  ] < p l u g g e d  i n t e r f a c e > ]  

For  example ,  if, in addi t ion to the previously  def ined s t ruc tu res ,  we 
have  in the domain  of  s t ruc tures  the s t ruc ture  o f  " i n t e g e r s "  with 
the conf igura t ion  

in tegers ( l : se t ;  + : / + 1  ~ L n e g a t e : / ~  L 0: ~ / )  

then  we can 

instant iate  abelian g roup  of  in tegers  

(S  = L + = + ,  inv = negate ,  0 = 0); 

We did not  give any name  to the s t ruc ture  we jus t  c rea ted ,  so we 
can reference  it only as " abe l i an  g roup  of  i n t ege r s " .  

The inform cons t ruc t  allows us to add  new proper t ies  tha t  are  
t h e o r e m s  

in form < s t ruc ture  n a m e >  that  < p r o p e r t i e s >  

For  example ,  we can add some  useful  proper t ies  to the s t ruc tu re  o f  
" g r o u p " :  

in form group  that  x + 0  = x, x + i n v ( x )  = 0; 

Note  that  this does  not  p roduce  a new s t ruc ture ,  since these  proper -  
ties are provable  f rom the ax ioms  of  " g r o u p " .  

The  provide cons t ruc t  allows us to define, addi t ional  ope ra to r s  on  
the already defined s t ruc tures .  Its format :  

provide < n a m e >  with < o p e r a t o r  de f in i t ions>  

For  example ,  we can now define a subt rac t ion  ope ra to r  on  the 
" g r o u p "  s t ruc ture :  

provide g r o u p  with - :  x - y  ~ x + i n v ( y ) ;  

F r o m  now on we can use the subt rac t ion  opera to r  with any  ins tance  
of  " g r o u p " .  

The  implement  cons t ruc t  allows us to specify some  special  ways  
in which opera tors  can be imp lemen ted  on  those  ins tances  o f  a 
s t ruc ture  which possess some  par t icular  set o f  propert ies .  Its for-  
ma t  is: 

imp lemen t  < opera tor  n a m e >  [ o n <  s t ruc ture  n a m e >  ] 

[with < p r o p e r t i e s >  ] as < i m p l e m e n t a t i o n >  

For  example ,  on groups  with all e l emen t s  of  o rder  2, it is possible 
to s implify the subt rac t ion  operator :  

imp lemen t  - on "group with all e l emen t s  o f  o rder  2 

as x +  y ;  

In this example  we used a proper ty  o f  the s t ruc tu re ,  but  a n o t h e r  
possibili ty is to refer  to a proper ty  of  the par t icular  inputs  to the  
opera tor ,  as will be i l lustrated in Sect ion 4. 

The  final cons t ruc t  of  Tec ton  we shall  d iscuss  is the  represent 
const ruct :  

r epresen t  < s t r u c t u r e  n a m e >  as < s t r u c t u r e  n a m e >  

using < r e p r e s e n t a t i o n  f u n c t i o n >  

and  < abs t rac t ion  f u n c t i o n >  
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This  allows in t roduc t ion  of  a mapp ing  f rom one  s t ruc ture  to ano th-  
er  as an aid to def ining opera t ions  or express ing  their  implementa -  
t ions.  The  abs t rac t ion  func t ion  is requi red  to be a h o m o m o r p h i s m  
f rom the second  s t ruc ture  back to the first, and  is included as a way 
of  gua ran t ee ing  that  opera t ions  on  the second s t ruc ture  preserve  
those  o f  the first. For  example ,  if we have  a s t ruc ture  of  complex  
n u m b e r s  we can in t roduce  t h e i r  polar representa t ion ,  which is use- 
ful for  m a n y  a lgor i thms.  

We have  given only a sketch of  some  of  the main  cons t ruc t s  
descr ib ing  s t ruc tures  in Tecton.  We shall now a t tempt  to illustrate 
the ma in  ideas with an example .  

3. P R O G R A M M I N G  U S I N G  S T R U C T U R E S  

The  first obse rva t ion  which can be made  is that  it is impossible  
to p rog ram in Tec ton  as we have  descr ibed it, since it does  not  con- 
tain any  pr imit ive s t ruc tures  f rom which o ther  s t ruc tures  can be 
cons t ruc ted .  As an initial set of  s t ruc tures  for  our  exercise in pro- 
g r a m m i n g ,  we shall  use the s t ruc tures  " s e t " ,  " m u l t i s e t ' ,  and  " s e -  , 
q u e n c e "  with m a n y  different  opera t ions  and  opera tors  defined on 
t h e m ,  which will be seen in context .  As a t heme  for  the exercise,  
we shall  select  one  of  the mos t  classical of  all p r o g r a m m i n g  prob- 
lems: sor t ing.  

First ,  we need the not ion  o f  a totally o rdered  set: 

create  o rde red  se t (S:se t ;  relat ion ~< : S~< S) 

with x <  x, 
x < y a n d  y~< z impl ies  x ~ z ,  

x~< y and  y ~< x implies x = y  ; 

enr ich  ordered  set into totally o rdered  set 

with x ~ y o r  y<~x;  

T h e n  we need  to have some th ing  to sort: 

create  orderable  sequences  

(Seq:sequences  o f  totally ordered  set);  

and  a way to dis t inguish sor ted sequences:  

create  ordered  sequences  

(OrdSeq:subset  o f  orderable  s equences  

such  that  for all u and  for  all x,y in u, 

x precedes y in u if and  only  if x ~< y). 

Now we can  write our  first program:  

provide ordered  sequences  with 

merge :x ,y  

if x = null  or y = null then  x c a t  y 

else if head(x)  ~< head(y)  

then  < head(x)  > cat  merge  (tail (x),y) 

else < h e a d ( y ) >  cat merge(x , t a i l (y ) ) ;  

It is easy to see that  the null  sequence  is an  identi ty e l emen t  for  the 
m e r g e  func t ion  and  that  merge  is both  c o m m u t a t i v e  and  associa- 
tive. T h u s  we may:  

i n fo rm ordered  sequences  that  

m e r g e ( n u l l , x )  = x = merge(x ,  nul l ) ,  

merge (x ,y )  = merge(y ,x ) ,  

merge(merge(x ,y) ,z )  = merge (x ,  merge(y ,z ) ) ;  

This  makes  it r easonab le  to make  use o f  some  addi t ional  s t ructures :  

create  s e m i g r o u p ( S : s e t ;  + : S + S  ~ S) 

with associativity: x+  (y+ z) = (x+ y ) +  z ; 

create  m o n o i d ( S : s e m i g r o u p ;  0: ~ S) 

with 0 + x  = x + 0  = x ;  

enr ich  mono id  into abel ian mono id  

with commuta t iv i ty :  x+  y = y + x  ; 

and  to in t roduce  an ope ra to r  reduct ion:  

provide sequences  o f  m o n o i d  with 

reduct ion:  x ~ if x = null then 0 

else head(x)  + reduc t ion( ta i l (x ) ) ;  

T h u s  there  is an ins tance o f  an  abel ian mono id  in ordered  

sequences :  

ins tant ia te  abel ian m o n o i d  o f  o rdered  sequences  

as m e r g e ( S  = OrdSeq ,  + = merge ,  0 = null) 

Here  we have  used  the func t ion  name  " m e r g e "  also as the name  of  
the ins tan t ia ted  s t ruc ture .  We shall  refer  to it as the " m e r g e  
m o n o i d " .  W h e n  we use an opera to r  such  as " r e d u c t i o n "  defined 
in the m o n o i d  s t ruc ture ,  we will deno te  the co r re spond ing  opera to r  
in the merge  m o n o i d  as " r e d u c t i o n  of  m e r g e " .  Thus  we can use 
" r e d u c t i o n  of  m e r g e "  on sequences  o f  o rde red  sequences  to merge  
t hem into one.  

The  next  step is to recognize  that  sequences  u n d e r  " c a t "  also 
fo rm a mono id :  

i n fo rm sequences  that  

null cat x = x c a t  null = x ,  

( x c a t  ( y c a t  z)) = ( ( x c a t  y) cat z);  

ins tant ia te  mono id  o f  sequences  

as c a t ( S  = sequences ,  + = cat,  0 = null);  

O u r  pu rpose  with this step is to define an abst ract ion func t ion  for  
the fol lowing representa t ion .  

represen t  orderable  s equences  as s equences  o f  

o rdered  sequence  us ing seqrep 

and  seqabs: x ~ reduc t ion  of  cat(x) ;  

We have  only  given the represen ta t ion  func t ion  a name ,  " s e q r e p " ,  
wi thout  def in ing  it. The  reason for  this will be seen in a m o m e n t ,  
but  now we can write ou r  p rog ram for sor t ing  as 

provide  o rderab le  sequences  with 

sort:  x ~ reduc t ion  of  m e r g e ( s e q r e p ( x ) ) ;  

This  is a gener ic  a lgor i thm for two reasons.  One  is that  different  
i m p l e m e n t a t i o n s  o f  the reduc t ion  ope ra to r  will give different  algo- 
r i thms ,  a point  we shall  s tudy  in the next  section. The  o ther  reason 
is that  we can  ins tant ia te  " s e q r e p "  in var ious  ways. One  possibility 

is: 

provide s equences  with 

oneify:  x 

if x = null  then  null  

else < <  head  (x) > >  cat onei fy  (tail (x)) ; 

ins tant ia te  sort  as sort  1 (seqrep = one i fy) ;  

T h u s  o n e i f y ( <  al,a2,...,an > ) --- < <  a l >  , <  a 2 >  ..... < an>>. 
A n o t h e r  possibil i ty would  be a func t ion  " r u n i f y "  that  keeps  runs  of  
increas ing  e l emen t s  in the ,  s ame  sequence ;  e.g.,  
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r u n i f y ( < 3 , 5 , 1 , 8 , 9 , 1 1 , 4 , 3 , 8 >  ) = 

< < 3 , 5 > , < 1 , 8 , 9 , 1 1 > , < 4 > , < 3 , 8 > > .  

This  would be useful when it is known that long runs are likely to 
exist,  i.e., when the input to " s o r t "  is known to be a lmost  sorted. 

4. A L G E B R A I C  O P T I M I Z A T I O N  

As we have thus far defined " s o r t " ,  it is not very efficient. Be- 
cause of the way we defined the reduction operator to perform left- 
most  reductions,  we are using the merge  operation on ordered se- 
quences merely to do insert ions of a single e l emen t  into an ordered 
sequence.  Thus  the algori thm we have obtained is essential ly 
" inse r t ion  sor t " ,  an order n 2 algori thm. Let us now see how a 
s imple  redefinit ion of reduction has the consequence  that our  al- 
ready given sort program becomes an order (n log n) algori thm. 

In making this new definition of reduction,  we do not want to 
s imply replace the current  definit ion, since the current  definit ion 
may in fact be more efficient in other applications. The key idea we 
want to demonst ra te  now is that more than one definition of an 
operator can exist  and the decision as to which one to use in a par- 
ticular application should be made on the basis of complexi ty  prop- 
ert ies of the s t ructures  involved in the application. 

For s tudying the complexi ty  of the implementa t ions  of secon- 
dary operators associated with a structure,  it is necessary to specify 
complexi ty  informat ion with the primit ive operat ions and the base 
s tructure in its configuration. Every s tructure is assumed to have 
an implicit  real-valued nonnegat ive  function length defined on the 
e l emen t s  of the base s t ructure  of its configuration,  and each opera- 
tion, operator,  and implementa t ion  of an operator is a s sumed  to 
have an implicit  real-valued nonnegat ive  function cost associated 
with it. The enrich and inform operat ions can be used to add ax ioms 
and theorems expressing complexi ty  propert ies in terms of length 
and cost. 

The discussion of the complexi ty  analysis  in this paper will be 
very sketchy because of the scope of this paper. We will only intro- 
duce a few concepts  to illustrate some ideas in comparing different 
implementa t ions  of the reduct ion operator. 

Our first task is to add some complexi ty  propert ies to abelian 
monoids.  

enrich abelian monoid  into Huffman monoid  with 

l eng th (x+y)  = length(x)  + length(y)  

cost of + of (x,y) = order ( length(x)  + length(y) ) ;  

The name of this s t ructure derives from D. Huf fman ' s  a lgori thm 
(Ref. 9, Vol. 1, pp. 402-405 and Vol. 3, p. 365) for finding a tree 
with m i n i m u m  weighted path length. With this  definit ion,  it is pos- 
sible to show that the merge  monoid  can be made into a Huffman 
monoid.  

inform ordered sequences  that  

addit ive length: l ength(merge(x ,y) )  

= length(x)  + length(y)  

l inear cost: cost of merge  of (x,y) 

= order( length(x)  + length(y))  

Now it makes  sense to 

implemen t  reduct ion on sequences  of Hhffman monoid  as 

huf f (makemul t i se t  (x)) 

where " h u f f "  is an operation on mul t i se t s  that,  as in Huffman 's  
a lgori thm, chooses  a pair of e lements  to be combined  based on 
minimal i ty  of their  length: 

provide mul t ise ts  with 

huff: s 

if  s = empty then 0 

else if s ingleton?(s)  then  u where  u :  s 

else huff( (s - {u,v}) U {u+v})  

where u, v: s and min ima lLeng th  (u,s) 

and min imalLength(v , s - -{  v}); 

We now see that,  since the merge mono id  is a Huffman monoid,  
our sort program will be able to use this  implementa t ion .  Thus  it 
becomes  the wel l -known merge sort a lgori thm, whose cost is order 
(n log n). 

With an additional property of the input,  we can simplify the 
Huffman implementa t ion  of reduction. 

provide sequences  with 

relat ion equalLengths :  x 

for all u, v inx ,  length(u)  = length(v) ;  

provide sequences  of Huffman monoid  with 

huff l :  x 

if x = null  then  0 

else if  s ing le ton?(x)  then  head(x)  

else huff l  ( t a i l ( t a i l (x ) )  

cat < h e a d ( x )  + h e a d ( t a i l ( x ) ) >  ) 

imp lemen t  reduct ion on sequences  of Huffman monoid  

with equalLengths(x)  as huff l  (x); 

This implementa t ion  would be used by so r t l ,  since the instance 
" o n e i f y "  of " s e q r e p "  produces sequences  satisfying the '"equal- 
Leng ths"  relation. 

In closing this discussion of opt imizat ion,  let us now consider  
briefly how the reduct ion operator  introduced in Section 2 relates to 
the parallel reduct ion operator  discussed in the Introduct ion.  In 
Section 2, the definit ion of  reduct ion is given recursively in te rms  
of pr imit ive operat ions " h e a d "  and " t a i l "  on sequences.  This per- 
mits  a s imple definit ion, but  also implies  a c o m m i t m e n t  to sequen-  
tial computat ion.  With  a different  set  of pr imit ive operat ions on 
sequences  we can express  the definit ion of reduct ion in a way that 
naturally implies parallel computat ion.  We will thereby obtain the 
possibili ty of parallel computa t ion  in all applications of reduct ion 
that obey the necessary algebraic laws, such as our  sort program. 

Let us suppose that  operat ions on sequences  of  monoid  include 
an operator " p a i r s "  that  takes a sequence  < x l ,  ... , xn>  into a 
sequence of two e lement  sequences  <<  x 1,x2>,  < xa ,x4>,  . . . .  > ,  
where  the last pair is < xn ,0> if n is odd; and that  there is a primi- 
t ive operator " m a p a l l "  that applies a funct ion " f "  to each e l emen t  
of a sequence,  producing the sequence  of the results. We could, of 
course,  define these with Tecton,  e.g., 

provide sequences  of  domain  of funct ion f with 

mapall:  x 

if x = null  then  null 

else < f ( h e a d ( x ) )  > cat mapal l ( ta i l (x) ) ;  

but  instead we assume " m a p a l l "  is already imp lemen ted  in a way 
that  permits  parallel computat ion,  so that  it may be used to imple- 
men t  other parallel operators. For  example ,  we may now 

provide sequences  of mono id  with 

addpair: x - -  head(x)  + head( ta i l (x) ) ,  
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parallelReduction: x ~ if x = null then 0 

else if singleton?(x) then head(x) 

else parallelReduction(mapall of addpair(pairs(x))); 

If we now 

implement reduction as parallelReduction; 

we obtain a parallel version of any algorithm that uses reduction, 
such as our "sor t"  program. We note that "mapal l"  could also 
have been used to define the function "oneify" ,  which was defined 
recursively in the previous section. 

5. CONCLUSION 

By combining the notion of operators as used in languages such 
as APL and FFP with the ideas of alge.braic structures, we have 
proposed mechanisms to define structures and associate operators 
with structures in a functional setting. This allows us to describe al- 
gorithms abstractly and without committing to any particular model 
of computation, thus emphasizing the algebraic properties they 
depend on for their functional behavior. We have also suggested 
an abstract way to associate complexity measures with a structure 
and its operators. Below, we briefly discuss some topics closely re- 
lated to the ideas presented in the paper which need further 
investigation. 

We used the structures " se t " ,  "mul t i se t" ,  and "sequences" for 
illustrating various language constructs. There is a need to identify 
other structures useful in describing systems and develop their the- 
ory. Like the reduction operator on a monoid, other operators on a 
monoid and other algebraic structures like group, semi-ring, ring, 
etc., should be investigated within the proposed language frame- 
work. We believe that the proposed language constructs, when 
used with a library of judiciously chosert structures and operators, 
can be highly expressive and useful in de:~cribing complex systems. 

An important topic not discussed in the paper is the role of 
computer-assisted theorem proving, in relating various structures 
and operators and deriving properties about structures and opera- 
tors, as well as about their complexity. An example is for the com- 
puter to assist in checking that the monoid structure can be instan- 
tiated into sequences by associating the configuration of the monoid 
with that of sequences and by deducing the monoid properties from 
the axioms and theorems of sequences. Another example is to 
prove, using the computer, that the merge monoid discussed in 
Section 4 is a Huffman monoid by showing that the merge operator 
is length additive and its cost function is linear. Deducing such in- 
formation can help in developing efficient implementations of the 
algorithms. We also need to identify problem domain-independent 
properties of structures such as univalenc',y, multivalency, consisten- 
cy, completeness of axioms, etc., and develop algorithms for check- 
ing these properties. In the study of th,ese questions, we will draw 
heavilY' upon our experience with the capabilities of the AFFIRM 
system t91 for theorem proving an:l analysis of algebraic 
specifications. 

Without giving any details, we have alluded to an abstract way 
of associating complexity with structures and operators. This ap- 
proach also seems to provide a unified framework for .discussing 
complexity in both a parallel and a sequential environment. How- 

ever, much work needs to be done toward developing such an ap- 
proach as ~ basis for constructing new algorithms and analyzing 
their complexity. 

One of the main considerations for the design of Tecton is to 
identify abstraction mechanisms that aid in describing systems in a 
natural way. The abstraction mechanisms should also be amenable 
to formal reasoning so that the computer can assist in applying 
them. In this paper, we have introduced several constructs for com- 
municating knowledge of algebraic structures in a way that facili- 
tates the development and selection of algorithms. Besides these 
constructs, Tecton has constructs for manipulating objects other 
than structures, which will be discussed in forthcoming reports. 
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