
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 24(7), 623–642 (JULY 1994)

Algorithm-oriented Generic Libraries

david r. musser
Rensselaer Polytechnic Institute, Computer Science Department, Troy, New York 12180,

U.S.A. (email: musserKcs.rpi.edu)

and

alexander a. stepanov
Hewlett-Packard Laboratories, Software Technology Laboratory, 1501 Page Mill Road,

Palo Alto, California 94303, U.S.A. (email: stepanovKhplabs.hp.com)

SUMMARY

We outline an approach to construction of software libraries in which generic algorithms
(algorithmic abstractions) play a more central role than in conventional software library technology
or in the object-oriented programming paradigm. Our approach is to consider algorithms first,
decide what types and access operations they need for efficient execution, and regard the types
and operations as formal parameters that can be instantiated in many different ways, as long as
the actual parameters satisfy the assumptions on which the correctness and efficiency of the
algorithms are based. The means by which instantiation is carried out is language dependent; in
the C11 examples in this paper, we instantiate generic algorithms by constructing classes that
define the needed types and access operations. By use of such compile-time techniques and careful
attention to algorithmic issues, it is possible to construct software components of broad utility
with no sacrifice of efficiency.

key words: Generic algorithms Algorithmic abstractions Software libraries Abstract data types C++ Templates

INTRODUCTION

The last few years have seen the development of software libraries in which the
library components are parameterized by data types and functions, making them
more general, or ‘generic’, than components in older libraries. Parameterization is
done using compile time mechanisms such as generics or templates (e.g. References
1 or 2) or preprocessing mechanisms (e.g. Reference3), achieving greater run-time
efficiency than was possible with older methods, such as passing at run-time the
size of data elements and a comparison function to C library routines such asqsort
or bsearch. But in most cases parameters are still restricted to scalar parameters,
data types, or functions, and do not include what might be called ‘container
representations’—ways of representing data containers such as sequences, sets, trees,
graphs, matrices, etc. (e.g. for operations on sequences, one might have container
representations using arrays, linked lists, ranked red–black trees, etc.). Consequently,
such libraries may have to reimplement the same algorithm many times, once for
each of the possible container representations.

In our approach to software library construction, we allow algorithms to be

CCC 0038–0644/94/070623–20 Received 1 June 1992
 1994 by John Wiley & Sons, Ltd. Revised 17 February 1994

624 d. r. musser and a. a. stepanov

parameterized not only by scalar values, data types, and functions, but also by
container representations. Of course, many algorithms are efficient only with a
particular kind of container representation, say linked lists, but even within this
single kind of representation there is a wide variety of concrete ways of setting up
node structure, managing storage allocation, and handling error conditions. Many
commonly useful operations on sequences, such as inserting, deleting, substituting,
concatenating, merging, and searching, can be performed with algorithms that depend
for their correct and efficient operation only on a few basic access operations. By
expressing the algorithms in terms of these basic access operations and making the
operations parameters, we permit a single expression of the algorithms to be used
with any concrete representation of the container.

Outline of the algorithm-oriented approach
The key steps of our approach to generic library construction are

1. Start with the most efficient known algorithms and data structures, identify
container access operations, such as data moves, exchanges, or comparisons,
on which the algorithms depend, and abstract (generalize) those operations by
determining the minimal behavior they must exhibit in order for the algorithm
to perform a useful operation.

2. Separately develop various ways of implementing the container access operations
using different container representations with different efficiency characteristics,
such as using random access or linked structures, with further classification
according to use of different processor or storage allocation strategies and
different ways of handling errors.

3. Practice software reuse within the library itself, by identifying small algorithmic
building blocks and implementing them as separate functions from which larger
algorithms can be composed.

4. Thoroughly document the algorithms in overviews that compare various algor-
ithms and identify favorable contexts for their use and in individual component
‘data sheets’ that describe key attributes that programmers need to know for
intelligent selection and proper use.

The intended use of such a library involves several steps of selection and instantiation
of components from the library:

(a) selection of the algorithms to be used
(b) selection of a container representation suited to the selected algorithms and

other constraints
(c) combining the container representation with the algorithms, which essentially

consists of instantiating the container access parameters used in the algorithms
with types that provide those operations

(d) instantiating other parameters of the generic algorithms, such as data types
and problem size.

Altogether, this flexibility means that a single generic algorithm can have broad
utility. Yet efficiency is not sacrificed, because algorithmic efficiency is respected in
the design of the algorithms and their recommended uses, and because the container
representations and algorithms can be combined without the overhead of subprogram
calls, by using inline declarations and templates and/or macros.

625algorithm-oriented generic libraries

The algorithm-oriented approach in C11

We demonstrated an earlier version of the algorithm-oriented approach in Ada in
References4–6. In this paper, we illustrate the approach with a number of generic
algorithms implemented in C11. These algorithms are part of a library of operations
on sequences of values, using array, linked-list, or hybrid array/linked representations
of sequences, including partitioning, merging, and sorting operations.

The algorithms in the library are designed to work with a variety of different
choices for type of data elements and container representations. The specialization
to particular choices occurs at compile time, according to definitions given in the
source code of the application program. In C11, we express generic algorithms by
means of template function definitions and container representations by template (or
ordinary) class definitions. For example, the generic quicksort algorithm given in
this paper can be combined with an array representation of sequences or a variety
of other representations.

Some algorithms have even greater flexibility; consider, for example, the count
algorithm, which is defined on a sequence of values and returns the number of
elements in the sequence that satisfy a given predicate. It could be used to count
the number of elements in a sequence of integers that are positive, for example, by
using a predicate on integers which tests whether its argument is positive. The
algorithm used by count is simply to consider each element in turn, and for this
purpose it uses a11 operator; this operator can be supplied as either one of the
standard ones that advance a pointer, or a user-defined one that chases a link in a
linked representation. The sequence can thus be represented in a linked-list structure
as well as in a block of consecutive locations.

TYPE REQUIREMENTS ON ITERATORS AND APPLICATIVE OBJECTS

Nongeneric algorithms are expressed in terms of types that are fixed built-in or user-
defined types, not subject to substitution. Generic algorithms are expressed in terms
of type parameters that can be instantiated with any actual types that meet certain
requirements. Part of the specification of a generic algorithm is the set of requirements
on types. The fewer the requirements the more generic the algorithm is, since there
are more possibilities for actual types with which the algorithm can be instantiated.
We thus need good ways to specify the type requirements without overspecifying
them. In C11, one can use the template mechanism to express a generic algorithm,
as in

template kclass Tl
void f(T x) {

T y;
% g(y);

}

Here T, though called a class, can be instantiated with any type, either one defined
by the C11 class mechanism or a built-in type. Within the body off, T can be
used explicitly in declarations (as shown) or implicitly as the supplier of functions
such asg. Although it could be made explicit thatg must come fromT by writing
T::g(y), the other requirements one needs to place on a function such asg cannot

626 d. r. musser and a. a. stepanov

be spelled out completely within the language. Although one can infer the number
and types of the arguments and return value ofg from calls such as% g(y), one
might prefer to have a separate specification of these type requirements against
which calls could be type-checked. Similarly, nothing about semantic or computing
time requirements ong can be specified in C11, though in some cases some
requirements might be deduced from requirements on the functionality and computing
time of f.

Lacking facilities in C11, we must adopt some meta-level specification method-
ology for spelling out the requirements a generic algorithm places on its template
type parameters. There are many possibilities, some (such as algebraic axioms or
model-based specifications) more formal than others. In this paper our approach is
essentially model-based, but not fully formal in that we do not spell out all the
specifics of the main mathematical model used, finite sequences; instead we use
standard terminology and notation for finite sequences and appeal to the reader’s
prior experience with these mathematical objects.

Two of the broad categories of types that are used in the algorithms of our library
are iterator types andapplicative types. Iterators generalize the notion of pointers,
encapsulating information about locations in objects. Applicative types provide objects
whose role is purely to supply the definition of one or more functions; they are
useful for expressing higher-order algorithms, i.e. ones that take functions as para-
meters. Iterator and applicative types can be defined in C11 using the class
mechanism; any such definition or built-in type that meets certain requirements,
detailed below, will do. The requirements are all on attributes of operations: operator
names, argument lists, meanings, and computing times.

Iterators

Iterators provide for sequencing through a sequence of locations and obtaining
information from them. Generally, iterator types are defined in C11 using the class
mechanism, but for an important class of iterators called ‘random access’ iterators
(defined below) for sequence containers, they may simply be C11 pointer types,
i.e. T* where T is any built-in or user-defined type). This is possible since the
requirements we place on random access iterators are consistent with C11 notation
and operation meanings for pointer types. Some of the general requirements for
iterators, including all of the requirements that must be met by sequence iterator
types, are spelled out in this section.†

Equality and inequality testing

An iterator object is said to refer to alocation within a container; sometimes we
also say it refers to the value, or ‘element’, in that location. We require that all
iterator types provide

int operator55(Iterator) (equality check)

† The remainder of this section should be treated as a reference manual for iterator terminology and requirements; for
a first reading those familiar with C11 may want to just skim this material and rely mainly on their knowledge of
C11 pointer notation and semantics for understanding the algorithm descriptions in later sections. TheReverseIterator
example of an iterator defined by a C11 class should also help to clarify the role of the iterator requirements.

627algorithm-oriented generic libraries

int operator!5(Iterator) (inequality check)

where the equality operator returns true (i.e. a nonzero value) if its operands refer
to the same location, false (i.e. zero) otherwise; and the inequality operator has the
opposite meaning. These are required to be constant time operations.

Dereferencing

An operation we require of all iterator types is dereferencing (operator*()). Related
to dereferencing is the classification of iterators is asreadableor writable (or both).
If an iteratorx for a container of elements of typeT refers to locationi, the meaning
of *x is given as follows: Ifi is a valid location for dereferencing, then

1. If *x is in a context that requires a value of typeT—in C11 parlance, an
‘rvalue’ is required, as for example on the right-hand side of an assignment—
and x is a readable iterator,*x means the element at locationi.

2. If *x is in a context that requires a location—in C11 parlance, an ‘lvalue’ is
required, as for example on the left-hand side of an assignment—andx is a
writable iterator,*x means locationi itself.

Otherwise,*x is undefined.
In C11, a purely syntactic means of making an iterator readable but not writable

is to declare its dereference operator asT operator*() or const T& operator*(). To
make an iterator writable but not readable, one can make its dereference operator
return the iterator itself and define anoperator5(const T&) on the iterator.

A regular iterator is one that is both readable and writable; regular is the default
if no mention is made of readability or writability. Other useful terms areread-only,
meaning readable but not writable, andwrite-only, meaning writable but not readable.

Dereferencing is required to be a constant time operation.

Sequence elements and locations

For the remainder of this paper we restrict the discussion to the case that the
container is a sequence. We assume that for any (finite) sequence of elementsx0,
x1, %, xn21 there is a sequence of distinct locationsi0, i1, %, in, where i j is the
location of xj for j 5 0, %, n 2 1, and in is an additional location considered to be
‘off the end’ of the sequence. Locationsi0, %, in21 are valid for dereferencing, but
in might or might not be.

An array representation of sequences commonly uses a set of integers in an
arithmetic progression as locations, with the off-the-end location just being the next
higher integer in the progression following the location of the last element, whereas
a linked-list representation uses a set of pointers, usually with the null pointer as
the off-the-end location.

Traversal classification of sequence iterators

An important classification of sequence iterators is based on the kinds of traversal
they efficiently support:forward, bidirectional, andrandom access. Loosely speaking,
forward iterators are those that provide for efficient traversal through the locations

628 d. r. musser and a. a. stepanov

i0, i1, %, in in that order; a bidirectional iterator is a forward iterator that also
provides for efficient traversal in the opposite direction; and a random access iterator
is a bidirectional iterator that also provides for efficient ‘long jumps’ in the sequence
and for comparisons based on relative position in the sequence. The precise definitions
of forward, bidirectional, and random access iterators are given in terms of the
names and meanings of the operations they are required to efficiently support, as
detailed below.

Ordering of locations in a sequence

We treat the locationsi0, i1, %, in of a sequence as being ordered by their indices
0, 1, %, n. Each locationij11 is called thesuccessorof ij, and ij is called the
predecessorof i j11, for j 5 0, %, n 2 1.

We say that locationij is before location ik if j , k and is after location ih if
h , j. Thus it makes sense to speak of thefirst location in a sequence with a
particular property: no location before it has that property.

The notion of ‘before’ is defined for all sequence iterators but forward and
bidirectional iterators do not necessarily provide any efficient way of computing it.
For random access iterators, we do require a constant-time comparison operationint
operator,(Iterator) which returns true if its first operand refers to a location before
that referenced by its second operand; i.e., ifx refers to i j and y refers to ik, then
x , y returns true (i.e. a nonzero value) when 0# j , k # n, false (zero) when
0 # k # j # n, undefined otherwise. Random access iterators for sequences must also
provide other constant-time comparison operators,5, ., and .5, whose meanings
are defined similarly.

Successor and predecessor operations

All sequence iterators must also provide a traversal operation (operator11()) for
advancing from a location to its successor; bidirectional iterators must also provide
an operation (operator22()) that decrements from a location to its predecessor. Since
C11 allows different definitions to be given for either prefix or postfix applications
of these operators,7 we define the requirements on both:

1. For j 5 0, %, n 2 1, if the iterator x refers to locationij then x11 or 11x
causes it to refer toij11; x11 returns the original iterator that refers toi j
whereas11x returns the new iterator that refers toij11. If x refers to in, then
the effect and return values of bothx11 or 11x are undefined.

2. For j 5 1, %, n, if the iteratorx refers to locationij then x22 or 22x causes
it to refer to i j21; x22 returns the original iterator that refers toi j while 22x
returns the new iterator that refers toij21. If x refers to i0, then the effect and
return values of bothx22 or 22x are undefined.

3. All four of these operations must be constant time operations.

Random access operations

A random access sequence iterator must provide

629algorithm-oriented generic libraries

Iterator operator1(ptrdiff t) (addition)
Iterator operator2(ptrdiff t) (subtraction)

with the meaning that forj 5 0, %, n, if x refers to locationij, then if 0# k # n 2 j
then the iterator returned byx 1 k refers to ij1k, and if 0# k # j then the iterator
returned byx 2 k refers toi j2k. Both operations must be constant time operations.

A random access sequence iterator must also provide ‘long jump’ operators

Iterator operator15(ptrdiff t) (positive long jump)
Iterator operator25(ptrdiff t) (negative long jump)

with the meaning that forj 5 0, %, n, if x refers to locationij then if 0# k # n 2 j
then x is changed by x 15 k to refer to ij1k, and if 0# k # j then x is changed by
x 25 k to refer to ij2k. In both cases the resulting iterator is returned. Both operations
must be constant time operations.

It is sometimes useful to construct forward or bidirectional iterator types that
provide operations that have these names and meanings but that do not meet the
requirement of constant time execution. For example a linked-list representation only
permits a positive long jump to be programmed with (the equivalent of) iteration of
11, and thus it is a linear time operation in that case. When combined with
algorithms that expect constant time long jumps, execution speed is degraded, but
in some cases not by much if other parts of the computation make significantly
larger contributions to the total time. For example, our library contains a binary
search algorithm that can be combined with a forward iterator for a linked-list
representation, producing an algorithm that is linear in the number of iterator
operations but only logarithmic in the number of comparisons it does. In many cases
in which comparisons are more expensive than iterator operations, such an algorithm
can beat a straight sequential search, which is linear in both iterator operations
and comparisons.

Iterator subtraction

Finally, some algorithms require a sequence iterator to provide

int operator2(Iterator) iterator subtraction

with the meaning that for 0# j,k # n if x holds locationij and y holds locationik,
then the integer returned byx 2 y is j 2 k.† A random access iterator must provide
iterator subtraction as a constant time operation. A forward or bidirectional iterator
is not required to provide iterator subtraction, but if it does the operation must
execute in linear time.

Iterator ranges

In describing algorithms that use sequence iterators, it is convenient to use range
notation. Let ij and ik be two locations in the same sequence, withj # k; one or
both of i j or ik might be the off-the-end location. Then

† Note that this is defined even ifx or y holds in, the ‘off-the-end’ value; for example, ifx holds in and y holds
i0 then x 2 y returnsn, the length of the sequence.

630 d. r. musser and a. a. stepanov

range [i j,ik] is ij,i j11, %, ik
range [i j,ik) is ij,i j11, %, ik21

range (i j,ik] is ij11, %, ik
range (i j,ik) is ij11, %, ik21

If x is an iterator that refers toij and y is an iterator that refers toik, then [x, y]
means the same as [i j,ik] and similarly for the other kinds of ranges. Many of the
sequence algorithms take iterator parametersfirst and last, which are regarded by the
algorithm as specifying the range [first,last), i.e. the location referred to bylast is
not regarded as part of the sequence that is processed by the algorithm. Note that
in the case thatfirst 5 last, the range [first,last) is empty; for such an input most
algorithms would do nothing or would return a default value.

The forward iterator requirements are met by a singly-linked list class in our
library. This class also provides addition, positive long jumps, and iterator subtraction,
but in linear rather than constant time. The bidirectional iterator requirements are
met by a doubly-linked list class; linear-time subtraction and negative long jumps
are also provided.‡ All random access iterator requirements are fulfilled by pointer
types in C11. The ReverseIterator type given in a later section is another example
of a random access iterator.

Applicative objects

Some of the algorithms in our library have function parameters, such as predicates.
Rather than following the common C/C11 programming practice of passing a
pointer to a function, we can produce more efficient code by taking advantage of
the ability in C11 to overload the function call operator,operator(), and to create
types that provide such an overloading. We call such typesapplicative types.

For example, our sorting algorithms are parameterized by acomparator type, i.e.
an applicative type that provides a function to compare two valuesx and y of some
type T and return either a negative integer, 0, or a positive integer according to
whetherx is less than, equal to, or greater thany in some total ordering ofT. The
function must execute in constant time.

Such a comparator type can be defined in C11 by a class definition such as

class intComparator {
public:

intComparator(){}
int operator()(int x, int y) {return x 2 y;}

};

which in this case definesoperator() in terms of subtraction. For a different way of
defining comparison, only the body of theoperator() definition would be changed.
Using the constructor,intComparator, we can create an object of this class and pass
it to a function, such as thequickSort function described in a later section, with a
call such as

‡ The requirements on22 and 2 for a doubly linked representation imply that it is necessary to use a non-null
value as the off-the-end locationin to enable backward traversal to work even when starting fromin.

631algorithm-oriented generic libraries

quickSort(first, last, intComparator());

More generally, one could use a template class definition such as

template kclass Tl
class Comparator {
public:

Comparator(){}
int operator()(T x, T y) {return x 2 y;}

};

which provides a definition that can be used with any of the C11 signed integer
types. The constructor call forT 5 int would then be as in

quickSort(first, last, Comparatorkintl());

In general, we say that a type is anapplicative typeif it is defined by a C11
class that provides one or more definitions of the function call operator. Since a
C11 compiler can inline the definition of the function at the site of calls, using
applicative types not only avoids the overhead of an indirect function call, as occurs
when a pointer to a function is passed, it even eliminates the cost of a direct call!

EXAMPLES OF GENERIC SEQUENCE ALGORITHMS

To illustrate the algorithm-oriented approach in C11, we give a small sample of
algorithms for operations on sequences, specifically partitioning and sorting algorithms
and some auxiliary data movement algorithms. Some of these algorithms require
bidirectional iterators; others require random access iterators. The partitioning and
sorting algorithms also require a comparator type to define the function used to
compare elements of the sequence.

The generic algorithms presented in this section also serve to illustrate the coding
and documentation conventions we have chosen to use. We begin with an overview
and comparison of the algorithms and follow it with datasheets for individual algor-
ithms.

Overview

Two sorting algorithms,insertionSort and quickSort, are included. Both operate in
place: the result is placed in the storage occupied by the original sequence and only
a constant or logarithmic amount of extra storage is required. The first hasO(n2)
worst-case computing time on a sequence of lengthn, but runs in linear time and
is the sorting algorithm of choice in special circumstances, as detailed on its data
sheet. It is a stable sort, in the sense that elements that compare equal appear in
the result in the same relative order as in the original sequence. The second is based
on Hoare’s quicksort algorithm and has expected time ofO(n log n); taking O(n2)
time is possible but occurs only with extremely low probability. This algorithm
makes more comparisons but makes substantially fewer data moves than merge sort,
and thus is recommended in settings where stable sorting is not required and the

632 d. r. musser and a. a. stepanov

cost of a comparison is not substantially more than that of a data move. The
partitioning algorithm used byquickSort, and by other algorithms, isunguardedPar-
tition, which permutes a sequence into two subsequences, one containing elements
that compare less than or equal to a given value, and the other containing elements
that compare greater than or equal to the value.

Concrete versions of these algorithms may be found in standard references, e.g.
References8 and 9, and the research literature, e.g. Reference10. In constructing
generic algorithms, one can often benefit from this prior work, but one must be
careful to ensure that optimizations can still be done in a general setting and, if so,
that they remain optimizations in most, if not all, settings. For example, use of some
special sentinel value in an extra array position to stop a search, as is typically done
in coding insertion sort in order to have the fastest possible inner loop, must be
modified since in some instances an extra array position might not be available. We
could just abandon the sentinel technique and provide an algorithm that is general
but whose instances are in some cases less efficient than hand-tailored code. Instead,
we provide different versions of crucial routines, in which we use the sentinel
technique in one and not in the other and limit the use of the non-sentinel, less
efficient version to a case with a small number of elements.

Algorithm datasheets

Insert an element into a sorted range

Declaration.

template kclass Iterator, class T, class Comparatorl
inline Iterator unguardedLinearInsert(Iterator last, T value,

Comparator compare);

template kclass Iterator, class T, class Comparatorl
Iterator linearInsert(Iterator first, Iterator last, T value,

Comparator compare);

Description. Either function insertsvalue in an ascendingly sorted sequence so
that the result is still ascendingly sorted (according tocompare).

Type requirements. Iterator must be a regular bidirectional iterator.

Group. Unary pseudo-permutation.

Time complexity. Linear. The number ofT assignments is the size of the range
from the insertion point tolast.

Space complexity. Constant.

Details. It must be possible to assign to locationlast, as it is used to hold a
value of the resulting sequence.

unguardedLinearInsert assumes there is some location beforelast that holds a value
no larger thanvalue; if the last such value is in locationp, it inserts value in
location p after shifting the values in the range [p,last) over by one location. If the
sequence in locations [p,last) was previously in ascending order according tocompare,
then the resulting sequence in the range [p,last] is also in ascending order according
to compare.

633algorithm-oriented generic libraries

linearInsert assumes thatfirst ± last, and insertsvalue in one of the locations in
the range [first,last), after shifting later by one all the values from the insertion point
to the end. If the values in the range [first,last) were previously in ascending order
according tocompare, value is inserted in the proper place to make all the values
in the range [first,last] in ascending order according tocompare.

Implementation.

template kclass Iterator, class T, class Comparatorl
inline Iterator unguardedLinearInsert(Iterator last, T value,

Comparator compare)
{

Iterator previous 5 last;
while (compare(value, *22previous) , 0) {

*last 5 *previous;
last 5 previous;

}
*last 5 value;
return last;

}

template kclass Iterator, class T, class Comparatorl
Iterator linearInsert(Iterator first, Iterator last, T value,

Comparator compare)
{

if (compare(value, *first) .5 0)
return unguardedLinearInsert(last, value, compare);

Iterator next 5 last;
moveBackward(first, last, 11next);
*first 5 value;
return first;

}

Sort a range by insertions (insertion sort)

Declaration.

template kclass Iterator, class Comparatorl
void insertionSort(Iterator first, Iterator last,

Comparator compare);

template kclass Iterator, class Comparatorl
void unguardedInsertionSort(Iterator first, Iterator last,

Comparator compare);

template kclass Iterator, class Comparatorl
void thresholdInsertionSort(Iterator first, Iterator last,

int threshold, Comparator compare);

Description. insertionSort sorts the range [first,last) in place, into ascending order
according to the ordering determined bycompare. unguardedInsertionSort is faster
but possibly includes additional locations precedingfirst in the sequence sorted (see

634 d. r. musser and a. a. stepanov

details). thresholdInsertionSort is faster thaninsertionSort but assumes the minimum
value in [first,last) occurs in the firstthreshold locations. These functions are not
recommended for general use but are a good choice for sorting short or ‘almost
sorted’ sequences.

Type requirements. Iterator must be a regular random access iterator.

Group. Unary pseudo-permutation.

Time complexity. Quadratic, in the average and worst cases. The number of
compare operations performed is aboutn2/4 in the average case and aboutn2/2 in
the worst case, and the number ofT assignment operations is the same, wheren is
the size of [first,last). For most inputs these functions are very slow compared to
the best sorting algorithms. However, they are quite fast for small sequences (n # 16
or so) or for large ones that are ‘almost sorted’ in one of the following senses: (1)
the number of elements out of order is small, or (2) the average distance between
the original location of an element and its final destination is small. For such
sequences the worst case time is linear in the size of the sequence.

Space complexity. Constant.

Details. All these functions are stable sorts; that is, the relative order of elements
that are equal (according tocompare) is preserved.

unguardedInsertionSort is the fastest version (has the smallest coefficient in its
computing time bound), but it correctly sorts only under an extra assumption: that
for some locationp # first the range [p,first) is already sorted and the value in
location p is a minimum for theextendedrange [p, last). The result is that [p,last]
is sorted into ascending order. Note that ifp ± first, the sequenceunguardedInser-
tionSort leaves in [first,last] is in ascending order but is not a permutation of the
values originally in those locations (some values change places with those in [p,first)).

Implementation.

template kclass Iterator, class Comparatorl
void insertionSort(Iterator first, Iterator last,

Comparator compare)
{

if (first 55 last) return;
for (Iterator i 5 first 1 1; i !5 last; i11)

(void)linearInsert(first, i, *i, compare);
}

template kclass Iterator, class Comparatorl
void unguardedInsertionSort(Iterator first, Iterator last,

Comparator compare)
{

for (Iterator i 5 first; i !5 last; i11)
(void)unguardedLinearInsert(i, *i, compare);

}

template kclass Iterator, class Comparatorl
void thresholdInsertionSort(Iterator first, Iterator last,

635algorithm-oriented generic libraries

int threshold, Comparator compare)
{

if (last 2 first . threshold) {
insertionSort(first, first 1 threshold, compare);

unguardedInsertionSort(first 1 threshold, last, compare);
} else

insertionSort(first, last, compare);
}

Implementation notes. The basic idea is to scan the sequence from beginning to
end and insert the current element into its proper place among the previously scanned
and already sorted elements. Each insertion just involves a scan from the current
location to preceding ones, shifting elements over by one location as the scan
proceeds, so that there will be a place for the element being inserted.

For greater speedunguardedInsertionSort usesunguardedLinearInsert, which omits
any check for the scan passing the beginning location,first. Hence it depends on
the assumptions stated in ‘Details’ being satisfied.

Advantage ofunguardedInsertionSort is taken bythresholdInsertionSort, which uses
insertionSort to sort the first threshold values. Unguarded scans may then be used
for the rest of the sequence, since by the assumption stated in the ‘Description’ and
the results ofinsertionSort, the assumptions described in ‘Details’ are satisfied for
the call to unguardedInsertionSort.

Partition a range

Declaration.

template kclass Iterator, class T, class Comparatorl
inline Iterator unguardedPartition(Iterator first, Iterator last,

T pivot, Comparator compare);

Description. Permutes the range [first,last) in place, partitioning it into two ranges
such thatcompare (* i,pivot) # 0 for all locations i in the first range andcompare
(* j,pivot) $ 0 for all locationsj in the second range. Returns an iterator that refers
to the beginning location of the second range.

Type requirements. Iterator must be a regular random access iterator.

Group. Unary permutation.

Time complexity. Linear. The number of comparisons performed (usingcompare)
is either n 1 1 or n 1 2, wheren is the size of [first,last), and the number ofswap
operations is at most[n/2¥.

Space complexity. Constant.

Details. There must be at least one locationi for which compare(* i,pivot) # 0
and at least one locationj for which compare(* j,pivot) $ 0. These conditions are
met if there is at least one locationi in [first,last) for which

compare(* i,pivot) 5 0

The beginning locationp of the second range is in [first,last]. (Thus, either sub-

636 d. r. musser and a. a. stepanov

sequence may be empty.) Unlike some versions of partitioning, it is not guaran-
teed that

compare(*p,pivot) 5 0

The permutation is not stable. (Stability in this case would mean that within each
subsequence the relative order of the elements is the same as in the original sequence.)

Implementation.

template kclass Iterator, class T, class Comparatorl
inline Iterator unguardedPartition(Iterator first, Iterator last,

T pivot, Comparator compare)
{

while (1) {
while (compare(*first, pivot) , 0) first11;
last22;
while (compare(*last, pivot) . 0) last22;
if (last ,5 first) return first;
swap(*first, *last);
first11;

}
}

Implementation notes. The basic idea of the algorithm is to search from the
beginning for an element that compares non-negative withpivot, search from the
end for an element that compares non-positive withpivot, and, provided the iterators
haven’t converged or crossed, swap the elements found; then the iterators are moved
one step further and the process is repeated.

The inner loops need no check for running off the end of the sequence: by the
assumption described in ‘Details’, for each loop there is some element that will stop
it, and after a swap is performed, there are still elements in locations to stop
both loops.

As coded, the algorithm sometimes swaps elements that compare equal, which
might seem unnecessary. But avoiding this would require adding checks in the loops
for the iterators crossing, and, of more concern, it would also mean that for a
sequence with all equal elementsquickSort would obtain partitionings into 1 and
k 2 1 elements, fork 5 n,n 2 1, %, which means thatquickSort would take order
n2 steps. The code as given results in a split into two equal parts, so thatquickSort
only takes ordern log n time on such inputs.

Sort a range by partitioning (quicksort)

Declaration.

template kclass Iterator, class Comparatorl
static void quickSortLoop(Iterator first, Iterator last,

Comparator compare);

template kclass Iterator, class Comparatorl
void quickSort(Iterator first, Iterator last, Comparator compare);

637algorithm-oriented generic libraries

Description. Sorts the sequence in place, into ascending order according to the
ordering determined bycompare. For most inputs, this is one of the fastest sorting
algorithms, but it can be unacceptably slow.

Type requirements. Iterator must be a regular random access iterator.

Group. Unary permutation.

Time of complexity. Ordern log n, on the average, wheren is the size of [first,last).
Quadratic in the worst case, but this behavior is highly improbable. Recommended
in cases where worst case performance is not critical, stable sorting is not required,
and the cost of a comparison (usingcompare) is not too high relative to that of a
data move.

Space complexity. Order logn, in the average and worst cases (stack space for
recursive calls).

Details. This is not a stable sort; that is, the relative order of elements that are
equal (according tocompare) is not preserved. If stability is necessary, seemergeSort
(which, however, is not an in-place sort).

Implementation.

#ifndef QUICKSORT THRESHOLD
#define QUICKSORT THRESHOLD 16
#endif

template kclass Iterator, class Comparatorl
static void quickSortLoop(Iterator first, Iterator last,

Comparator compare)
{

while (last 2 first . QUICKSORT THRESHOLD) {
Iterator partition 5 unguardedPartition(first, last,

*medianOf3Select(first, last, compare), compare);
if (partition 2 first .5 last 2 partition) {

quickSortLoop(partition, last, compare);
last 5 partition;

} else {
quickSortLoop(first, partition, compare);
first 5 partition;

}
}

}

template kclass Iterator, class Comparatorl
void quickSort(Iterator first, Iterator last, Comparator compare)
{

quickSortLoop(first, last, compare);
if (QUICKSORT THRESHOLD . 1)

thresholdInsertionSort(first, last,
QUICKSORT THRESHOLD, compare);

}

638 d. r. musser and a. a. stepanov

Implementation notes. This divide-and-conquer algorithm first partitions the
sequence into two parts (working in-place) such that all of the elements in the first
part are less than or equal to all of the elements in the second part. It then repeats
the partitioning in each of the two parts, continuing in this way until it has achieved
a sequence of small partitions in which every element in each partition is less than
or equal to all of the elements in the next partition. Then, insertion sort is used to
finish putting the elements in order. The algorithm achieves high efficiency because
the partitioning step is fast and usually breaks its input into two parts of roughly
equal size, and because insertion sort works in linear time on the type of input that
quicksort presents to it.

The algorithm is expressed using recursion, but the overhead of recursion is kept
small by recursing on only one of the two subsequences produced by a partitioning,
with the other taken care of iteratively.

The recursive calls and iterations both stop when subsequence length drops below
a threshold; thresholdInsertionSort is used to finish. The value t of
QUICKSORT THRESHOLD controls the switch-over; t 5 16 is used unless
QUICKSORT THRESHOLD is #defined as a different value.

The final insertion sorting takes only linear time, since no element is more than
t locations out of place. It is correct to usethresholdInsertionSort (as opposed to the
slower insertionSort) since quicksortLoop guarantees that the minimum value for the
entire sequence occurs in the firstt locations.

In the codeif (partition 2 first .5 last 2 partition) we choose the smaller of the
two subsequences to recurse on: since the smaller must be no more than half the
length of the current subsequence, the number of stack frames at any one time due
to recursion is no more than log2n.

There can be up ton 2 t partitionings, on sequences of lengthn,n 2 1, %, t 1 1,
if each partitioning puts only one element on one side of the partition. This yields
the order n2 worst case time. The median-of-three method of choosing the pivot
element makes a long series of such unbalanced partitions extremely unlikely.

For partitioning,unguardedPartition is used, which exchanges elements even when
they are equal according tocompare. This technique avoids unbalanced partitionings
that would otherwise occur when there are many equal elements. Such a sequence
is sorted in ordern log n time.

Datasheets for two other functions used in implementing quicksort,moveBackward
and medianOf3Select, may be found in Reference11.

AN EXAMPLE OF A SEQUENCE ITERATOR TYPE

The generic algorithms discussed in the previous section can be used not only with
the built-in C11 pointer types for the iterators, but with any user-defined type that
ments all of the requirements of a random access iterator. In this section, we present
a simple example of such an iterator type, one that provides for traversal in the
reverse direction from that defined by a given iterator type.

Overview

To allow our algorithms to work with the sequence of elements in reverse order,
the ReverseIterator class definition transforms a given iterator into one for which,

639algorithm-oriented generic libraries

for example,11 has the meaning of the original iterator’s22, and vice versa. As
an example of the use of this iterator type, consider sorting with a combination of
quickSort, ReverseIterator, and a comparator that would ordinarily produce ascend-
ing order:

const size t length 5 100;
void main() {

int a[length];
%

typedef ReverseIteratorkint*l ReverseInt;
ReverseInt k(a 1 length);
quickSort(k, k 1 length, Comparatorkintl());

where the template classComparator is as defined earlier. Note thatk refers to
a[length21] and k 1 length refers to an off-the-end location (k 1 length 2 1 refers
to a[0]). Since the sequence is being scanned in the reverse of the normal order,
the result produced is sorted into ascending order when scanned in reverse order,
and thus is in descending order when scanned in the normal order.

Iterator datasheet

Reverse the direction of an iterator

Declaration.

template kclass Iterator, class Tl
class ReverseIterator;

Description. From a given random access iterator type,Iterator, this class defines
a new random access iterator type that reverses the direction ofIterator’s traversal.

Type requirements. Iterator must be a regular random access iterator.

Provides. ReverseIterator provides a regular random access iterator type.

Time complexity. All operations are constant time, provided that allIterator
operations are constant time.

Space complexity. Constant.

Details. If [first,last) is a range of sizen defined for Iterator, a declaration of
the form

ReverseIteratorkIteratorl i(last);

sets up i to refer to last 2 1 and to traverse a range whose locations arelast 2 1,
last 2 2, %, first in that order, followed by an off-the-end location. Computing the
off-the-end location does not require locationfirst 2 1 to be defined forIterator.

640 d. r. musser and a. a. stepanov

Implementation.

template kclass Iterator, class Tl
class ReverseIterator {
protected:

Iterator current;
public:

ReverseIterator(Iterator x) : current(x) {}
T& operator*() const {return *(current 2 1);}
int operator55(ReverseIteratorkIterator, Tl& other) const

{return current 55 other.current;}
int operator!5(ReverseIteratorkIterator, Tl& other) const

{return current !5 other.current;}
int operator,5(ReverseIteratorkIterator, Tl& other) const

{return other.current ,5 current;}
// % similar definitions for ,, ., and .5.
ReverseIteratorkIterator, Tl operator11() {current22; return *this;}
ReverseIteratorkIterator, Tl operator22() {current11; return *this;}
ReverseIteratorkIterator, Tl operator11(int)

{ReverseIteratorkIterator, Tl tmp 5 *this; current22; return tmp;}
ReverseIteratorkIterator, Tl operator22(int)

{ReverseIteratorkInterator, Tl tmp 5 *this; current11; return tmp;}
ReverseIteratorkIterator, Tl operator15(ptrdiff t k)

{current 25 k; return *this;}
ReverseIteratorkIterator, Tl operator25(ptrdiff t k)

{current 15 k; return *this;}
ReverseIteratorkIterator, Tl operator1(ptrdiff t k) const

{ReverseIteratorkIterator, Tl tmp 5 *this; return tmp 15 k;}
ReverseIteratorkIterator, Tl operator2(ptrdiff t k) const

{ReverseIteratorkIterator, Tl tmp 5 *this; return tmp 25 k;}
ptrdiff t operator2(ReverseIteratorkIterator, Tl& other) const

{return other.current 2 current;}
};

Implementation notes. The class maintains anIterator location in current and uses
it to compute the next new location requested. Dereferencing is applied tocurrent 2 1
so that a reverse iterator initialized to thelast location for a range [first,last) can
traverse all the locations of the range in reverse order and usefirst as the off-the-
end location for the new range.

Iterator and applicative type transformers
ReverseIterator is an example of aniterator transformer, an iterator type that is

itself parameterized by an iterator. Such transformers can composed, if the functions
provided by one iterator meet all of the requirements of the next iterator in the
chain. For example, as a stringent test of bothReverseIterator and our generic
algorithms—and also of a C11 compiler’s ability to handle templates—we can try
composingReverseIterator with itself:

641algorithm-oriented generic libraries

const size t length 5 100;
void main() {

int a[length];
%

typedef ReverseIteratorkint*l ReverseInt;
ReverseInt k(a 1 length);
typedef ReverseIteratorkReverseIntl DoubleReverseInt;
DoubleReverseInt l(k 1 length);
quickSort(l, l 1 length, Comparatorkintl());

This results in the array being sorted in ascending order, just as though we worked
directly with the original int* iterator type.

Similarly, we can define applicative type transformers. One example would be a
comparator transformer that inverts the comparison, providing another way of chang-
ing an ascending sort into a descending one. As another example, consider

template kclass BinaryFun, class Tl
class IndirectBinaryFun {

BinaryFun b;
public:

IndirectBinaryFun() {}
operator()(T* x, T* y) {return b(*x, *y);}

};

which transforms any binary function type to one that uses a level of indirection.
By thus transforming a comparator type and combining it withquickSort, we
immediately obtain a version ofquickSort that can work with an array of pointers
to the actual values and thus only move the pointers, not the actual values. Such a
version is of course particularly useful for sorting large records. Conventionally the
source code of such a version would have the indirection done inline and thus it
would have to be distinct from the normal version, but with our approach the
adaptation is done by the compiler and only the one version of the source code has
to be maintained.

These are but a few of the many cases in which several different useful versions
of the same algorithm are obtainable from a single generic algorithm by combining
with different iterators or comparators.

CONCLUDING REMARKS

An algorithm-oriented approach to generic software library development has been
outlined and illustrated by a small sample of generic algorithms coded in C11.
The basic approach is similar to that of our earlier work in Ada, but is adapted to
the specific language features available in C11. We have also placed more emphasis
than in the Ada work on describing implementation design decisions in the docu-
mentation. These design decisions arise both from known optimizations that carry
over from concrete versions of the algorithms and from constraints imposed by the
need to operate in a wide variety of contexts.

The form of the documentation used in this paper is only an approximation to

642 d. r. musser and a. a. stepanov

what will probably be necessary. Some potential library users may find the degree
of abstraction baffling or the amount of detail overwhelming. This problem can
probably best be solved by structuring the documentation in several layers, beyond
the two illustrated in this paper, overviews of a collection of related algorithms and
data sheets on individual algorithms. For example, another layer could be provided
that specifies a ‘typical’ concrete instance of each algorithm; a programmer inexperi-
enced with the notion of algorithmic abstraction might find it useful to examine this
layer first, then progress to the more general descriptions.

Although we have opted for run-time efficiency by using strictly compile-time
mechanisms for instantiating parameters, one could instead emphasize run-time
flexibility and reduction of code size by defining some of the access operations as
virtual functions (Reference7, p. 208) that are implemented in derived classes. Such
a choice fits within our framework because it does not require any textual changes
to the source code of the algorithms, only to the container classes.

In this paper, we have concentrated on issues of development and documentation
of the individual algorithmic components, but we recognize that there are other
important aspects of the development and effective use of software libraries, which
we plan to address in future papers.

acknowledgments

Meng Lee is also a designer of the present library and worked on many of the
components mentioned in the paper. We would like to thank her, Bob Cook, Mehdi
Jazayeri, and two anonymous referees for many suggestions for improvement of
the paper.

REFERENCES

1. G. Booch,Software Components with Ada,Benjamin/Cummings, 1987.
2. G. Booch and M. Vilot, ‘The design of the C11 Booch components’,Proc. OOPSLA/ECOOP ’90,

SIGPLAN Notices,25, (10), 1–11 (1990).
3. D. Lea, The GNU C11 Library, software and documentation, The Free Software Foundation, 675

Mass Ave, Cambridge, MA, February 1988.
4. D. R. Musser and A. A. Stepanov, ‘A library of generic algorithms in Ada’,Proc. 1987 ACM SIGAda

International Conference,Boston, December 1987, pp. 216–225.
5. D. R. Musser and A. A. Stepanov, ‘Generic programming’, invited paper, in P. Gianni (ed.),ISSAC

’88 Symbolic and Algebraic Computation Proceedings, Lecture Notes in Computer Science 358,Springer-
Verlag, 1989.

6. D. R. Musser and A. A. Stepanov,The Ada Generic Library: Linear List Processing Packages,Springer-
Verlag, 1989.

7. M. Ellis and B. Stroustrup,The Annotated C11 Reference Manual,Addison-Wesley, New York 1990.
8. T. H. Cormen, C. E. Leiserson and R. L. Rivest,Introduction to Algorithms,McGraw-Hill, New

York, 1990.
9. D. E. Knuth,The Art of Computer Programming, Volume 3: Sorting and Searching,Addison-Wesley,

Reading, Mass., 1973.
10. R. Sedgewick, ‘Implementing quicksort programs’,Communications of the ACM,21, (10), 847–

857 (1978).
11. D. R. Musser and A. A. Stepanov, ‘Algorithm-oriented generic libraries’, Rensselaer Polytechnic Institute

Computer Science Department,Technical Report 93-23,September 1993, revised January 1994.

	SUMMARY
	INTRODUCTION
	Outline of the algorithm-oriented approach
	The algorithm-oriented approach in C++

	TYPE REQUIREMENTS ON ITERATORS AND APPLICATIVE OBJECTS
	Iterators
	Equality and inequality testing
	Dereferencing
	Sequence elements and locations
	Traversal classification of sequence iterators
	Ordering of locations in a sequence
	Successor and predecessor operations
	Random access operations
	Iterator subtraction
	Iterator ranges

	Applicative objects

	EXAMPLES OF GENERIC SEQUENCE ALGORITHMS
	Overview
	Algorithm datasheets
	Insert an element into a sorted range

	AN EXAMPLE OF A SEQUENCE ITERATOR TYPE
	Overview
	Iterator datasheet
	Reverse the direction of an iterator

	Iterator and applicative type transformers

	CONCLUDING REMARKS

