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Abstract

It is argued that a programming style based on higher order techniques—the use
of procedures that have other procedures as arguments and/or results—can be most
effectively employed if

e it is driven by abstraction from real algorithms, rather than attempting to work

with a fixed set of functional forms; and

e the use of imperative forms and mutative procedures is permitted (even encour-

aged!), rather than restricting to a purely applicative style.
A sequence of examples is presented illustrating a number of higher order techniques—
operators, iterators, accumulation, reduction, parallel reduction—and their effective use
in conjunction with mutative procedures. The examples culminate with an interesting
family of sorting algorithms, illustrating how higher order techniques can lead naturally
to new algorithms.

1 Introduction

The central idea of higher order programming is the use of higher order procedures; i.e.,
procedures that take other procedures as arguments and/or return procedures as their
results. Higher order techniques have been in use to a limited degree in Lisp programming
for many years (e.g., mapcar and other functions that apply a function given as a parameter
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to each element of a given list), and more extensively in APL (e.g., the notion of reduction
that produces summation over an array from +, product over an array from X, etc.).
APL especially promotes the notion that higher order techniques give the programmer
significantly greater power, in terms of conciseness of expression, than most other languages.

The functional programming community has also been using higher order techniques
(e.g., in languages such as FP [1], ML [5], and Miranda [12]). However, as with APL, there
is an widespread emphasis in functional programming on working with a fixed, predefined
set of functional forms. There is usually a further restriction to a purely applicative (no
side-effects) style of programming. The applicative style is seen as providing the best
foundation both for reasoning about programs, and, in the long run, most efficient use of
computing resources, since program optimizations for parallel architectures can be more
comprehensively applied in the absence of side-effects.

Our approach to higher order programming diverges from these trends in two significant
ways. First, our higher order operators are derived from experience with real algorithms
rather than by defining an a prior: universal set of functional forms, as done for example in
FP. Thus, we do not attempt to express algorithms in terms of already defined primitives,
but instead, we examine real algorithms and derive useful operators from them via the
process of algorithmic abstraction.

Second, we recognize that the use of higher order techniques is orthogonal to the question
of applicative vs. non-applicative styles. Higher order techniques can in fact be used with
great effectiveness with imperative forms and mutative' procedures, and hence can be put
into much more widespread use today, in existing languages, without the need for new
language or architectural advances. The usual objections to imperative forms and mutative
procedures, that they are less easy to understand or to formally verify than applicative
constructs, can be overcome by disciplining their use in higher order programming to a
small number of well-behaved cases. The examples in this paper will, we hope, provide
some initial evidence for these points.

Even for the long run we question whether a purely applicative style of programming
is desirable. This is a controversial subject that we won’t dwell on at any length in this
paper, but in essense we argue, first, that imperative forms and mutative procedures capture
natural aspects of many problems, and, secondly, many efficient algorithms are by nature
mutative. The use of higher order techniques with mutative procedures is a highly effective
way to express such algorithms; this is a key idea of what we refer to as higher order
programming.

!The perjorative term “destructive” is frequently used, but “mutative” more closely captures the notion
that the purpose of a procedure can be to have an effect (not a “side-effect”) on its arguments.



2 The Scheme Language

Some languages have better support than others for higher order programming techniques.
Most of our work to date has been carried out in Scheme [9], Ada [8], and C++ [11]. We will
use Scheme for the examples in this paper, since Scheme supports higher order techniques
in a simple, natural way, and since readers with a modest familiarity with Lisp should be
able to read the subset of Scheme used in the examples. However, the techniques can be
adapted to other languages, and our use of them in Ada will be discussed briefly in the
conclusions section.
We will use only the following special forms of Scheme:

(lambda (parameter; ... parametery)
formq ... formy)

for creating a procedural object with parameters;

(et ((wary vformy) ... (wvar, vform,))
formy ... formy)

for creating local, initialized variables;
(if condition formq formsg)

for conditional execution of form; or formsy based on whether condition evaluates to true or
false;

(begin formy ... formy)

for sequential execution of form; ... formy;
(set! identifier form)

for changing the value bound to a variable;
(define identifier form)

for binding a variable to a value of a form; and

(define C(identifier parameter; ... parametery,)
formy ...formy)

which is shorthand for



(define identifier
(lambda (parameter; ... parametery)
formy .. .formg))

For list-manipulation, Scheme retains the traditional Lisp names car, cdr and cons. Using
traditional Lisp terminology, we refer to the halves of a “cons cell,” or a “pair,” as its “car”
and “cdr”. For mutating the car of a pair, Scheme provides set-car! instead of the more
traditional rplaca, and, similarly, set-cdr! instead of rplacd.

The procedures set-car! and set-cdr! and the special form set! illustrate the con-
vention usually followed in Scheme of syntactically distinguishing the names of procedures
and special forms that mutate their arguments by ending them with an exclamation point.
These forms are executed primarily, or in some cases solely, for their effect rather than for
any value they return. We follow this convention in the examples below.

One of the main characteristics of Scheme that makes it well-suited to higher order
programming is that it treats procedures as first-class values: they can be assigned to
variables, passed as arguments to other procedures, and even returned as values by other
procedures. Scheme makes this even more convenient than in other Lisp dialects such as
Common Lisp, since in a procedure application,

(formq forms ... form,)

each of the component forms are evaluated in the same way: form; is not given any special
treatment. Thus procedures can be passed as parameters and used as values with exactly
the same syntax as any other values; the necessity for funcall is eliminated.

Although most examples in this paper use lists for data representation, we should point
out that this is in no way essential to higher order programming. We have also developed
a large number of examples using arrays and other fundamental data structures.

3 Operators

An operator is a procedure which takes one or more other procedures as arguments. Among
other benefits, operators allow us to simplify both informal understanding and formal verifi-
cation of programs by encapsulating iterative constructs. We begin by considering a simple
example to illustrate these ideas. As we progress, we will see increasingly more substantial
examples of the expressive power of programs written using operators.

The following procedure, until, takes as its arguments two procedures done? and
compute-next, each of which takes a single argument. Done? is assumed to return true
or false, and is treated as a stopping condition for an iteration, namely the computation of
value, (compute-next value), (compute-next (compute-next value)), etc., until the



result satisfies done?. The result of until is a new procedure which takes a single argument,
value, and performs this iterative computation.



(define (until done? compute-next)
(define (new-procedure value)
(if (done? value)
value
(new-procedure (compute-next value))))
new-procedure)

For example, to compute the smallest power of 3 greater than 1000, we could write:

(define (domne? x) (> x 1000))
(define (compute-next x) (* x 3))
((until done? compute-next) 3)

Note that the call of until produces a procedure, and that procedure is what is applied to
3. In writing until, we are using the feature of Scheme that allows a procedure definition
to contain nested definitions. A value (usually a procedure) thus created may be referenced
by its associated identifier only within the outer define. Such a value may however be
returned as the value of the outer define, as is new-procedure in until. These nested
definitions may reference any formal parameters of the outer definition and also any other
definitions at the same level (lexical scoping is used in Scheme).

Another example of the use of until is the following definition of a square root procedure
using a Newton iteration:

(define (sqrt x epsilon)
(define (acceptable? y)
(< (abs (- x (*x y y))) epsilon))
(define (compute-next-approximation y)
(x .6 (+y (/ xy))))
(define iteration (until acceptable? compute-next-approximation))
(iteration x))

Another important feature of Scheme that we are making use of in defining new-procedure
within until is the fact that Scheme executes tail-recursive procedure calls (those calls of
the procedure being defined that are not followed by any computation) without using stack
space; they become, in effect, efficient iterative loops. In most other languages, one would
program operators like until using explicit iteration rather than recursion. As we shall see,
however, we can build other iterative operators out of until, so that the need for either
tail-recursion or explicit iteration is minimal. In general, we believe that explicit iteration
and recursion should be avoided in favor of higher order procedures when possible, so that
most code is “straight-line.”
An alternative, simpler, way to define until would be



(define (until done? compute-next value)
(if (done? value)
value
(until done? compute-next (compute-next value))))

i.e., rather than producing a procedure that operates on a data value to produce another
value, it works directly with data values as well as procedural arguments. However, we have
generally chosen to write higher order procedures in the form of our previous definition of
until, so that it is possible to use the definition first to define a new procedure, then sepa-
rately apply that procedure to data values. This style increases the possibilities for compile
time evaluation of higher order procedures and allows our techniques to be applicable to
languages that do not treat procedures as first class objects, but do have generics (e.g.,
Ada) or type polymorphism (e.g., CLU [4]).

4 Iterators

Until is an example of one kind of operator called an iterator; i.e., a procedure that al-
lows us to repeat another procedure. Another example of an iterator is the procedure
for-each-pair given below. For-each-pair is the basis for many other important opera-
tors.

(define (for-each-pair operate-on)
(define (new-procedure list)
(if (pair? list)
(begin (operate-on list)
(new-procedure (cdr list)))))
new-procedure)

For-each-pair takes a procedure, operate-on, and produces a procedure which applies
operate-on repeatedly, each time to a different argument. The first time, the entire list
is used as the argument. On each successive application, cdr is used to advance by one
element until finally only the empty list is left (detected when pair? returns false) and
for-each-pair terminates. As an example,

((for-each-pair print) ’(1 2 3))
will print:

(12 3)
(2 3)
(3)



For-each-pair returns a value, but we are not interested in what it returns. The purpose
of invoking for-each-pair is to cause the procedure operate-on to be executed. Thus,
we expect operate—-on to be mutative or, as in the case of print, to cause some effect such
as output.2

For-each-pair is really a special case of the type of iteration we have already encapsu-
lated in the until iterator. In order to take advantage of until in defining for-each-pair,
and for many other uses, we define the following procedure combinators:

(define (compose f g)
(lambda (x) (f (g x))))

(define (apply-and-return operate-on)
(lambda (x) (operate-on x) x))

There is little to say about these procedures that is not implied by their names; the moti-
vation for them is shown by their usefulness in many subsequent examples. For-each-pair
can be now be written:

(define (for-each-pair operate-on)
(until null? (compose cdr (apply-and-return operate-on))))

Using for-each-pair we can define the iterator for-each which iteratively invokes a
procedure successively using each element of a given list as the procedure’s argument. (A
slightly different version of for-each is actually a built-in procedure in Scheme.)

(define (for-each operate-on)
(for-each-pair (compose operate-on car)))

As with for-each-pair, procedures produced using for-each are executed for their effect
rather than to return a value. For example,

((for-each print) ’(1 2 3))
1
2
3

5 Accumulation

We often desire not just to execute a procedure iteratively, but also to accumulate the
results computed. We might, for example, wish to find the sum of the values of all the
elements in a list. Rather than writing a specific piece of code to do this in each instance,
it is possible to write a single operator which will do the job in all cases:

2The case in which operate-on mutates the cdr of its argument is discussed in Section 6.



(define (accumulate iterate combine)
(define (new-procedure structure accumulator)
(define (reset-—accumulator! item)

(set! accumulator (combine item accumulator)))
((iterate reset-accumulator!) structure)
accumulator)

new-procedure)

Accumulate takes as input an iterator, iterate, and another procedure, combine, and
produces a new procedure which takes a structure (not necessarily a list) and an initial
value. The result returned by the new procedure is result of using iterate over structure
with a procedure that mutates accumulator by combine-ing it with its argument. Combine
is assumed to be a binary operation. A simple example is:

((accumulate for-each +) (3 1 -5 8) 0)

which returns 7, the sum of the elements in the list. Accumulate is a very powerful operator.
The structure need not be a list; the only requirement is that the iterator passed as an
argument must work on the structure passed. For example:

((accumulate for-each-in-file string-append) file "")

will accumulate the contents of a file into a character string in memory, given the it-
erator for-each-in-file which reads records from the file, and the built-in procedure
string-append which concatenates strings. Even more powerful procedures can be built
by passing as the second argument a procedure which selectively accumulates based on some
property of elements of the structure. Thus, for example,

((accumulate for-each
(lambda (x y)
(if (positive? x) (+ x y) y)))
’(3 -8 9 -4)
0)

returns 12, the sum of just the positive numbers in a list.

The examples just shown illustrate that higher order programming is simplified by the
dynamic typing of Scheme and other Lisp dialects; strong-typing would require multiple
versions of accumulate or else would require types also to be passed as parameters and
used to declare the operations so that types matched. In Ada, generics provide a partial
solution. In general we believe that the advantages of strong-typing, particularly the way
it allows many errors to be detected at compile-time, outweigh the inconveniences.



We can also use accumulate to produce reverse (also a built-in procedure in Scheme),
which returns a list whose elements are in the reverse of the order of those in the list passed
to it as an argument. We first define reverse-append, which takes two lists as arguments
and produces a list whose elements are those of the first argument in reverse order followed
by those of the second argument in order. In terms of accumulate, it is simply:

(define reverse-append (accumulate for-each cons))

Then

(define (reverse list)
(reverse-append list ’()))

where ’ () denotes an empty list.

6 Mutative Procedures and Operators

Note that reverse produces a new list and does not alter its argument. This is often
desirable, but it is wasteful if the original list will no longer be needed, as it involves
creating new cons cells, which takes both time and space. Even more important is that in
some cases the intent is to rearrange the original list, not to produce a copy. There may be
other variables pointing at this list, and it could be important that these all point at cells
of the rearranged list.

Thus, it is important also to be able to work with mutative procedures in higher order
programming. As an example we now define reverse!, a mutative version of reverse.
The built-in set-cdr! procedure of Scheme returns an unspecified value, so we create the
following procedure which mutates the cdr of a pair and also returns the new cdr value (all
characters on a line following a semicolon are comments):

(define (replace-cdr! pair x) ; also known as rplacd in Lisp
(set-cdr! pair x)
pair)

Let us also define another procedure combinator,

(define (apply-and-return-old-cdr operate-on)
(define (new-procedure pair)
(let ((old-cdr (cdr pair)))
(operate-on pair)
old-cdr))
new-procedure)

10



with which we can define a useful new iterator analogous to for-each-pair:

(define (for-each-original-pair operate-on)
(until null? (apply-and-return-old-cdr operate-omn)))

This iterator is intended for use with mutative procedures, in particular those which alter
structure of the list passed as an argument. Note that for-each-original-pair produces
a procedure with one argument, a list, which saves the cdr of the current list before calling
operate-on so that even if operate-on mutates the cdr of the list, the original list will still
be traversed, whereas for-each-pair would traverse the altered list. In different situations,
each behavior could be appropriate. When operate-on is applicative with respect to its
list argument, the procedures produced by for-each-pair and for-each-original-pair
have the same effect.

The definitions of reverse-append! and reverse! now follow naturally from the above
definitions:

(define reverse-append!
(accumulate for-each-original-pair replace-cdr!))

(define (reverse! list)
(reverse-append! list *()))

We thus see that it is possible to create a mutative analog to an applicative procedure.
Another important example of this is map!. Scheme has a built-in procedure, map, which
applies a procedure to the elements of a list, forming a list of the results and leaving the
original list unaltered. It is often desirable to replace the elements of the original list with
the results of the procedure applications. The map! procedure we define is analogous to
map, except that we make it a combinator. First we define two additional combinators for
working with mutative procedures:

(define (change-car! operate-on)
(define (new-procedure! pair)
(set-car! pair (operate-on (car pair))))
new-procedure!)

(define (change-cdr! operate-on)
(define (new-procedure! pair)
(set-cdr! pair (operate-on (cdr pair))))
new-procedure!)

(The second of these will be used later.) Now
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(define (map! operate-on)
(apply-and-return (for-each-pair (change-car! operate-on))))

In general, we prefer to use map! when we can, rather than map, as the former is more
efficient in that it reuses the original list. The question then arises, when are we free to
replace an applicative operator by a mutative one? Clearly, we can when we can prove that
the list passed as an argument is not used again.

Another closely related question is how to show that a procedure, p!, is the mutative
analog of another procedure, p. Informally, we say the procedures are analogs if the only
difference between them is their effect on the argument; i.e., if:

(p x) == (p! (copy x))

where (copy x) makes a copy of the entire data structure x and == signifies that not only
do both procedures return that same values, but also that they both have the same effects.
Note in this regard that since the value returned by (copy x) is not bound to any variable,
that the fact that p! mutates it is not considered a side effect.

We thus see that it is possible to create an applicative analog of a mutative procedure
in a mechanical way. Often we need only create the mutative version of a procedure, which
we will use in most cases, and pass a copy of the argument in the remaining cases where an
applicative procedure is required. If the mutative procedure only mutates a restricted part
of the representation of its arguments, then only a partial, more efficient copy operation
can be used. For example, if we only had reverse! and wanted to create an applica-
tive reverse procedure, we could implement it as (compose reverse! copy-top-level),
where copy-top-level creates new cells only for the top level cells in the representation of
its argument, sharing any other cells.? Such analysis can be extended to other cases of pro-
ducing an applicative procedure by composition of a mutative procedure with an applicative
procedure that does not share, or shares in only a restricted way, the representation of its
result with that of its argument; e.g., (compose (map! operate-on) reverse).

Strictly speaking, however, there is more to the issue of one procedure being the mutative
analog of another. By the above definition, a procedure could be its own mutative analog.
This is not our intent. When we speak of a mutative procedure, we expect it to actually
change its argument. Thus, we require that (unless p! is an identity function) that x
change after (p! x) is evaluated. An even stronger requirement would be to require that
after executing (p! x) that x is changed to be the result of (p! x). Unfortunately, it is
not always possible to guarantee this and so we rely on the less stringent requirement that
p! mutate its argument at least for some inputs.

3In this case it is undoubtably more efficient to program reverse independently, as is done in Section 5.
This independence also would permit us to implement copy-top-level as (compose reverse! reverse).
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7 Reduction

Reduction operators were first introduced in APL [3]. Given a binary operation and a
structure, we define the reduction of that operation over the structure as the result of
successively combining all elements of the structure with the operation. This notion is very
similar to the discussion of accumulate above and, indeed, we define reduce for lists in
terms of accumulate:

(define (reduce combine default)
(define (new-procedure list)
(if (null? 1list)
default
((accumulate for-each combine) (cdr list)
(car list))))
new-procedure)

Here default is a value that is to be returned if 1ist is empty.* For example,
((reduce * 1) ’(1 2 3 4 5))

returns 5!.

There are many different possible forms of reduction. The above implementation ac-
cumulates the result using the elements of the list from left to right. It is also possible to
define a right-to-left reduction:

(define (right-reduce! combine default)
(compose (reduce combine default) reverse!))

If the combine operation is associative and commutative, the order of reduction does not
matter, but in many cases we will want to apply reduction to operations which do not
have these properties. Indeed, in some cases, as we will see below, the order of reduc-
tion is very important and by choosing different forms, algorithms with different efficiency
characteristics are created.

8 Parallel Reduction

Reduction can also be done “in parallel]” by combining pairs of elements.” We will use
parallel reduction to define an interesting class of sorting algorithms in the following section.

* Although it would allow a slightly simpler definition of reduce, we are not assuming that there is an
an identity value for combine (a value e such that (combine e x) = (combine x e) = x, since in some of
the examples of sorting procedures given later we use a combine that has no identity value. Note that when
list has only one element, new-procedure always returns that element.

®To the best of our knowledge, the notion of parallel reduction as an operator was introduced in [6].
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In order to define parallel reduction, we first define the following combinator which, given
a binary procedure combine, returns a procedure which replaces the first element of a non-

empty list by the result of applying combine to the first two elements of the list; the second
element is eliminated.

(define singleton? (compose null? cdr))
(define (combine-first-two! combine)
(define (new-procedure! list)
(if (not (singleton? list))
(begin
(set-car! list
(combine (car list) (car (cdr list))))
(set-cdr! 1list (cdr (cdr 1list))))))
new-procedure!)

For example, ((combine-first-two! +) ’(3 4 5 6)) transforms its argument into (7 5
6).

The following combinator yields a procedure that replaces the elements in a non-empty
list by the results of applying an operation to each pair of elements:

(define (pairwise-combine! combine)
(apply-and-return (for-each-pair (combine-first-two! combine))))

For example,
(define pair-min! (pairwise-combine! min))

binds pair-min! to a mutative procedure which replaces the first and second element of a
list by their minimum, and similarly for the third and fourth, the fifth and sixth, etc. Thus

(pair-min! ’(7 4 2 9 3))

returns (4 2 3).

We can now define parallel-reduce! as a procedure which keeps applying pairwise-combine!
until the result is a singleton list:

(define (parallel-reduce! combine default)
(define (new-procedure! list)
(if (null? list)
default
(car ((until singleton? (pairwise-combine! combine))
1list))))
new-procedure!)

14



Note that the application of the until iterator to 1ist returns a singleton list whose element
is the desired result; we therefore return the car of this list. For example,

((parallel-reduce! pair-min! 0) ’(7 4 2 9 3))

first computes (4 2 3), then (2 3), then (2), finally returning 2 as the result.
Also note that in this case it is essential that the new-procedure! produced by parallel-reduce!
is mutative, because it is making repeated passes over its argument; if it had to allocate
storage for its result every time, a great deal of unnecessary memory management overhead
would be incurred.

9 Sorting Algorithms Based on Reduction

We are now ready to apply higher order programming techniques to the problem of imple-
menting sorting algorithms. We limit the discussion to algorithms which sort numbers into
increasing order. By passing a predicate as an argument to the sort, it is possible to sort in
descending order or, in fact, to sort a list containing any type of objects using the criterion
embodied in the predicate.

We can easily implement merge-sorting efficiently in terms of parallel-reduce. We
assume a merge procedure is given, and define listify! as a mutative procedure that
replaces each element of a list by a singleton list containing that element:

(define (list-ome x) (coms x ’()))
(define listify! (map! list-one))

e.g.,
(listify! *(1 2 3))

yields ((1) (2) (3)). Merge sorting is then achieved simply by

(define merge-sort! (compose (parallel-reduce! merge ’()) listify!))

This algorithm begins by merging singleton lists into ordered two-element lists, which are
then merged into ordered four-element lists, etc., until a single ordered list is obtained. Since
merge is a linear time algorithm, each stage of merging (each call to pairwise-combine!
within parallel-reduce!) is linear in the length N of the original list, and since there are
log N stages, merge-sort! is an efficient N log N algorithm.®

5Merge sorting could also be accomplished by traversing the input list in order to divide it in two, and
so on recursively, but this approach is both clumsy and inefficient (neither of which has prevented it from
appearing in some textbooks).
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Figure 1 - A Tournament Tree

A less familiar approach to sorting, and one which produces a number of sorting al-
gorithms with unusual properties, can be defined in terms of a data structure called a
tournament tree which captures the results of comparisons done among the elements of the
list to be sorted. By remembering the results of previous comparisons, tournament trees
help to create highly efficient sorting procedures. The algorithms that will be presented
were discovered while attempting to find a higher order representation of Floyd’s Treesort
algorithm [2].

A tournament tree is an ordered tree whose nodes satisfy the relation

parent < child

An example is given in Figure 1. Tournament trees are generalizations of heaps, as used in
heapsorting, in that they embody the same relationship between parent and child nodes,
but do not restrict the number of children of a node. Tournament trees are created by
comparing node values and making the node with the larger value a child of the node with
the smaller one. The nodes compared are the roots of two tournament trees and so when
we compare them, we are actually merging the two trees by making the root of one a child
of the root of the other. The tree in Figure 1 could have been formed, for example, by
comparing the root of a tree rooted at 3 (containing 3, 8, and 5) and a tree rooted at 1
(containing 1, 2, 4, 6, 9, and 10).
We represent tournament trees as lists. The tree in Figure 1 is represented as:

(1 (3 (8 (5)) (2 (4)) (6 (9 (10))))

Note that such lists have the structure:

(parent childy ... childy)
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where each child is itself a tournament tree. The leaves are singleton lists, the simplest
possible tournament trees. To facilitate the creation and manipulation of tournament trees
we define the procedure adopt!, which adds a (leftmost) child to a parent’s list of children:

(define (adopt! parent child)
(replace-cdr! parent (cons child (cdr parent))))

Using adopt!, we define play!, the basic comparison procedure which all our sorts use.
Play! compares two nodes and makes the larger the leftmost child of the smaller:

(define (play! x y)
(if (<= (car x) (car y))
(adopt! x y)
(adopt! y x)))

We refer to a list of tournament trees as a forest. If we apply play! to (the roots of) two
tournament trees in a forest, they will be merged as described above. If we pass play! and
a forest to any reduction operator, reductionl, say, it will return a tournament tree.

The smallest element is now at the root of the tree. We may output it and remove it
from further consideration. This leaves us with a forest of children of the root which can be
passed to another reduction operator, reduction2, which will return a tournament tree. In
a manner analogous to pulling a tangled rope through one’s fist, we thus have Tournament
Sort:

(define (make-tournament-sort! reductionl reduction2)
(define (new-sort! list)
(let ((tournament-tree
((reductionl play! () (listify! list))))
((for-each-pair
(lambda (pair)
(set-cdr! pair ((reduction2 play! ’()) (cdr pair)))))
tournament-tree) ; the tournament-tree is transformed
tournament-tree)) ; step by step into a linear list
new-sort!)

Note that make-tournament-sort! is not a sorting procedure, but a a combinator which
constructs a sorting procedure, given two reduction operators. If we pass it parallel-reduce!
and right-reduce! (in that order), it creates a sorting procedure which does exactly the
same comparisons (in the same order) as Floyd’s Treesort [2], but using a different data
structure.
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(define parallel-sequential-tournament-sort!
(make-tournament-sort! parallel-reduce! right-reduce!))

Figure 2 illustrates how parallel-sequential-tournament-sort! works, given the se-
quence of values 5, 1, 3, 4, 2. Fig. 2A shows the initial forest after the first call to
pairwise-combine! within parallel-reduce!. Fig. 2B shows the initial tournament tree
formed after completing the call to parallel-reduce!. Fig. 2C shows the forest formed
by outputting node 1. Finally, Fig. 2D shows the tournament tree formed by the first call
to right-reduce!. In Figure 3 we show the sequence of tournament-trees generated and
the way in which the original tournament tree is transformed into a linear list with the
elements in order. By passing parallel-reduce! for both reduction parameters, we obtain
an entirely new sorting algorithm [10]:

(define parallel-tournament-sort!
(make-tournament-sort! parallel-reduce! parallel-reduce!))

which sorts NV elements by making slightly more than N log N comparisons when the ele-
ments are randomly ordered and only slightly more than 2N comparisons when they start
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out nearly in order or nearly in reverse order. No other algorithm currently known has all
these properties.
By passing right-reduce! twice we obtain a sort

(define sequential-sequential-tournament-sort!
(make-tournament-sort! right-reduce! right-reduce!))

which does the same comparisons as Insertion Sort, but has the added advantage that it
functions as a priority queue; i.e., it returns the elements in order one at a time so that the
sort can be halted after finding the k£ smallest elements, if that is what is desired. Actually,
all versions of Tournament Sort function as priority queues. Note that all these sorts are
mutative but could be used as applicative sorts by passing a copy of the list in place of the
list to be sorted.

The Tournament Sort family of algorithms demonstrates a key point regarding our
experience with the higher order imperative programming approach: it often allows us not
only to find highly concise expressions of known algorithms, but also to derive entirely new
algorithms in the process.

10 Conclusions

Operators such as until, for-each-pair, reduce, parallel-reduce!, etc., allow us to
control complexity by creating procedures from simpler ones without constantly having
to keep in mind details of the implementation of the lower level procedures. While to
some extent the same can be said of any procedure called from inside another, operators
are particularly effective in this regard because they allow us to extend a programming
language directly to express algorithms more clearly.

Of course, the line between programming and language design could easily become
blurred. It is easy to create a Tower of Babel where each person writes programs in a
different language or, worse yet, where every program a person writes is expressed in a
language which was never used before and will never be used again. To avoid this, the
operators used to extend a language must be carefully chosen and their semantics must be
very clear.

Higher order programming techniques deal directly with this issue. Using a compara-
tively small number of operators, including a few that are designed to work with mutative
procedures, it is possible to dramatically increase the expressive power of a language and
to create substantial and practically useful algorithms.

In this paper, to keep our examples simple for publication purposes, we did not use some
features available in most Scheme implementations, such as (define-integrable ... )
for directing the compiler to replace certain procedure calls by the procedure definition
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inline. In practice, one would want to take advantage of the efficiency improvements afforded
by these features.

Many of the techniques illustrated in this paper can be used in Ada programming via
generics, and, in principle, can result in highly efficient code, since no run-time type check-
ing is required and much of the layering of procedure calls can be removed by inlining.”
Although some techniques are not supported, such as procedures with second order proce-
dure parameters (e.g., make-tournament-sort!), other techniques not provided in Scheme
become available via generic packages. These techniques are particularly suitable as the
basis for development of generic software libraries [7].
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