
Higher Order Imperative Programming�

Aaron Kershenbaum y David Musser z Alexander Stepanov x

Abstract

It is argued that a programming style based on higher order techniques�the use
of procedures that have other procedures as arguments and�or results�can be most
e�ectively employed if

� it is driven by abstraction from real algorithms� rather than attempting to work
with a �xed set of functional forms� and

� the use of imperative forms and mutative procedures is permitted �even encour�
aged�	� rather than restricting to a purely applicative style


A sequence of examples is presented illustrating a number of higher order techniques�
operators� iterators� accumulation� reduction� parallel reduction�and their e�ective use
in conjunction with mutative procedures
 The examples culminate with an interesting
family of sorting algorithms� illustrating how higher order techniques can lead naturally
to new algorithms


� Introduction

The central idea of higher order programming is the use of higher order procedures� i�e��
procedures that take other procedures as arguments and�or return procedures as their
results� Higher order techniques have been in use to a limited degree in Lisp programming
for many years �e�g�� mapcar and other functions that apply a function given as a parameter

�Rensselaer Polytechnic Institute Computer Science Department Technical Report ������ April ����
yComputer Science Department� Polytechnic University� Brooklyn NY
zComputer Science Department� Rensselaer Polytechnic Institute� Troy NY
xComputer Science Department� Polytechnic University� Brooklyn NY �presently with AT�T Bell Lab�

oratories� Liberty Corner� NJ�

�



to each element of a given list�� and more extensively in APL �e�g�� the notion of reduction
that produces summation over an array from �� product over an array from �� etc���
APL especially promotes the notion that higher order techniques give the programmer
signi�cantly greater power� in terms of conciseness of expression� than most other languages�

The functional programming community has also been using higher order techniques
�e�g�� in languages such as FP 	�
� ML 	�
� and Miranda 	��
�� However� as with APL� there
is an widespread emphasis in functional programming on working with a �xed� prede�ned
set of functional forms� There is usually a further restriction to a purely applicative �no
side
e�ects� style of programming� The applicative style is seen as providing the best
foundation both for reasoning about programs� and� in the long run� most e�cient use of
computing resources� since program optimizations for parallel architectures can be more
comprehensively applied in the absence of side
e�ects�

Our approach to higher order programming diverges from these trends in two signi�cant
ways� First� our higher order operators are derived from experience with real algorithms
rather than by de�ning an a priori universal set of functional forms� as done for example in
FP� Thus� we do not attempt to express algorithms in terms of already de�ned primitives�
but instead� we examine real algorithms and derive useful operators from them via the
process of algorithmic abstraction�

Second� we recognize that the use of higher order techniques is orthogonal to the question
of applicative vs� non
applicative styles� Higher order techniques can in fact be used with
great e�ectiveness with imperative forms and mutative� procedures� and hence can be put
into much more widespread use today� in existing languages� without the need for new
language or architectural advances� The usual objections to imperative forms and mutative
procedures� that they are less easy to understand or to formally verify than applicative
constructs� can be overcome by disciplining their use in higher order programming to a
small number of well
behaved cases� The examples in this paper will� we hope� provide
some initial evidence for these points�

Even for the long run we question whether a purely applicative style of programming
is desirable� This is a controversial subject that we won�t dwell on at any length in this
paper� but in essense we argue� �rst� that imperative forms and mutative procedures capture
natural aspects of many problems� and� secondly� many e�cient algorithms are by nature
mutative� The use of higher order techniques with mutative procedures is a highly e�ective
way to express such algorithms� this is a key idea of what we refer to as higher order
programming�

�The perjorative term 	destructive
 is frequently used� but 	mutative
 more closely captures the notion
that the purpose of a procedure can be to have an e�ect �not a 	side�e�ect
� on its arguments�

�



� The Scheme Language

Some languages have better support than others for higher order programming techniques�
Most of our work to date has been carried out in Scheme 	�
� Ada 	�
� and C�� 	��
� We will
use Scheme for the examples in this paper� since Scheme supports higher order techniques
in a simple� natural way� and since readers with a modest familiarity with Lisp should be
able to read the subset of Scheme used in the examples� However� the techniques can be
adapted to other languages� and our use of them in Ada will be discussed brie�y in the
conclusions section�

We will use only the following special forms of Scheme�

�lambda �parameter� � � � parametern�

form� � � � formk�

for creating a procedural object with parameters�

�let ��var� vform�� � � � �varn vformn��

form� � � � formk�

for creating local� initialized variables�

�if condition form� form��

for conditional execution of form� or form� based on whether condition evaluates to true or
false�

�begin form� � � � formk�

for sequential execution of form� � � � formk�

�set� identi�er form�

for changing the value bound to a variable�

�define identi�er form�

for binding a variable to a value of a form� and

�define �identi�er parameter� � � � parametern�

form� � � �formk�

which is shorthand for

�



�define identi�er

�lambda �parameter� � � � parametern�

form� � � �formk��

For list
manipulation� Scheme retains the traditional Lisp names car� cdr and cons� Using
traditional Lisp terminology� we refer to the halves of a �cons cell�� or a �pair�� as its �car�
and �cdr�� For mutating the car of a pair� Scheme provides set�car� instead of the more
traditional rplaca� and� similarly� set�cdr� instead of rplacd�

The procedures set�car� and set�cdr� and the special form set� illustrate the con

vention usually followed in Scheme of syntactically distinguishing the names of procedures
and special forms that mutate their arguments by ending them with an exclamation point�
These forms are executed primarily� or in some cases solely� for their e�ect rather than for
any value they return� We follow this convention in the examples below�

One of the main characteristics of Scheme that makes it well
suited to higher order
programming is that it treats procedures as �rst
class values� they can be assigned to
variables� passed as arguments to other procedures� and even returned as values by other
procedures� Scheme makes this even more convenient than in other Lisp dialects such as
Common Lisp� since in a procedure application�

�form� form� � � � formn�

each of the component forms are evaluated in the same way� form� is not given any special
treatment� Thus procedures can be passed as parameters and used as values with exactly
the same syntax as any other values� the necessity for funcall is eliminated�

Although most examples in this paper use lists for data representation� we should point
out that this is in no way essential to higher order programming� We have also developed
a large number of examples using arrays and other fundamental data structures�

� Operators

An operator is a procedure which takes one or more other procedures as arguments� Among
other bene�ts� operators allow us to simplify both informal understanding and formal veri�

cation of programs by encapsulating iterative constructs� We begin by considering a simple
example to illustrate these ideas� As we progress� we will see increasingly more substantial
examples of the expressive power of programs written using operators�

The following procedure� until� takes as its arguments two procedures done� and
compute�next� each of which takes a single argument� Done� is assumed to return true
or false� and is treated as a stopping condition for an iteration� namely the computation of
value� �compute�next value�� �compute�next �compute�next value��� etc�� until the

�



result satis�es done�� The result of until is a new procedure which takes a single argument�
value� and performs this iterative computation�

�



�define �until done� compute�next�

�define �new�procedure value�

�if �done� value�

value

�new�procedure �compute�next value����

new�procedure�

For example� to compute the smallest power of � greater than ����� we could write�

�define �done� x� �� x ������

�define �compute�next x� �� x 	��

��until done� compute�next� 	�

Note that the call of until produces a procedure� and that procedure is what is applied to
�� In writing until� we are using the feature of Scheme that allows a procedure de�nition
to contain nested de�nitions� A value �usually a procedure� thus created may be referenced
by its associated identi�er only within the outer define� Such a value may however be
returned as the value of the outer define� as is new�procedure in until� These nested
de�nitions may reference any formal parameters of the outer de�nition and also any other
de�nitions at the same level �lexical scoping is used in Scheme��

Another example of the use of until is the following de�nition of a square root procedure
using a Newton iteration�

�define �sqrt x epsilon�

�define �acceptable� y�

�
 �abs �� x �� y y��� epsilon��

�define �compute�next�approximation y�

�� �� �
 y �� x y����

�define iteration �until acceptable� compute�next�approximation��

�iteration x��

Another important feature of Scheme that we are making use of in de�ning new�procedure
within until is the fact that Scheme executes tail
recursive procedure calls �those calls of
the procedure being de�ned that are not followed by any computation� without using stack
space� they become� in e�ect� e�cient iterative loops� In most other languages� one would
program operators like until using explicit iteration rather than recursion� As we shall see�
however� we can build other iterative operators out of until� so that the need for either
tail
recursion or explicit iteration is minimal� In general� we believe that explicit iteration
and recursion should be avoided in favor of higher order procedures when possible� so that
most code is �straight
line��

An alternative� simpler� way to de�ne until would be

�



�define �until done� compute�next value�

�if �done� value�

value

�until done� compute�next �compute�next value����

i�e�� rather than producing a procedure that operates on a data value to produce another
value� it works directly with data values as well as procedural arguments� However� we have
generally chosen to write higher order procedures in the form of our previous de�nition of
until� so that it is possible to use the de�nition �rst to de�ne a new procedure� then sepa

rately apply that procedure to data values� This style increases the possibilities for compile
time evaluation of higher order procedures and allows our techniques to be applicable to
languages that do not treat procedures as �rst class objects� but do have generics �e�g��
Ada� or type polymorphism �e�g�� CLU 	�
��

� Iterators

Until is an example of one kind of operator called an iterator� i�e�� a procedure that al

lows us to repeat another procedure� Another example of an iterator is the procedure
for�each�pair given below� For�each�pair is the basis for many other important opera

tors�

�define �for�each�pair operate�on�

�define �new�procedure list�

�if �pair� list�

�begin �operate�on list�

�new�procedure �cdr list�����

new�procedure�

For�each�pair takes a procedure� operate�on� and produces a procedure which applies
operate�on repeatedly� each time to a di�erent argument� The �rst time� the entire list
is used as the argument� On each successive application� cdr is used to advance by one
element until �nally only the empty list is left �detected when pair� returns false� and
for�each�pair terminates� As an example�

��for�each�pair print� ��� � 	��

will print�

�� � 	�

�� 	�

�	�

�



For�each�pair returns a value� but we are not interested in what it returns� The purpose
of invoking for�each�pair is to cause the procedure operate�on to be executed� Thus�
we expect operate�on to be mutative or� as in the case of print� to cause some e�ect such
as output��

For�each�pair is really a special case of the type of iteration we have already encapsu

lated in the until iterator� In order to take advantage of until in de�ning for�each�pair�
and for many other uses� we de�ne the following procedure combinators�

�define �compose f g�

�lambda �x� �f �g x����

�define �apply�and�return operate�on�

�lambda �x� �operate�on x� x��

There is little to say about these procedures that is not implied by their names� the moti

vation for them is shown by their usefulness in many subsequent examples� For�each�pair
can be now be written�

�define �for�each�pair operate�on�

�until null� �compose cdr �apply�and�return operate�on����

Using for�each�pair we can de�ne the iterator for�each which iteratively invokes a
procedure successively using each element of a given list as the procedure�s argument� �A
slightly di�erent version of for�each is actually a built
in procedure in Scheme��

�define �for�each operate�on�

�for�each�pair �compose operate�on car���

As with for�each�pair� procedures produced using for�each are executed for their e�ect
rather than to return a value� For example�

��for�each print� ��� � 	��

�

�

	

� Accumulation

We often desire not just to execute a procedure iteratively� but also to accumulate the
results computed� We might� for example� wish to �nd the sum of the values of all the
elements in a list� Rather than writing a speci�c piece of code to do this in each instance�
it is possible to write a single operator which will do the job in all cases�

�The case in which operate�on mutates the cdr of its argument is discussed in Section 
�

�



�define �accumulate iterate combine�

�define �new�procedure structure accumulator�

�define �reset�accumulator� item�

�set� accumulator �combine item accumulator���

��iterate reset�accumulator�� structure�

accumulator�

new�procedure�

Accumulate takes as input an iterator� iterate� and another procedure� combine� and
produces a new procedure which takes a structure �not necessarily a list� and an initial
value� The result returned by the new procedure is result of using iterate over structure
with a procedure that mutates accumulator by combine
ing it with its argument� Combine
is assumed to be a binary operation� A simple example is�

��accumulate for�each 
� ��	 � �� �� ��

which returns �� the sum of the elements in the list� Accumulate is a very powerful operator�
The structure need not be a list� the only requirement is that the iterator passed as an
argument must work on the structure passed� For example�

��accumulate for�each�in�file string�append� file ���

will accumulate the contents of a �le into a character string in memory� given the it

erator for�each�in�file which reads records from the �le� and the built
in procedure
string�append which concatenates strings� Even more powerful procedures can be built
by passing as the second argument a procedure which selectively accumulates based on some
property of elements of the structure� Thus� for example�

��accumulate for�each

�lambda �x y�

�if �positive� x� �
 x y� y���

��	 �� � ���

��

returns ��� the sum of just the positive numbers in a list�
The examples just shown illustrate that higher order programming is simpli�ed by the

dynamic typing of Scheme and other Lisp dialects� strong
typing would require multiple
versions of accumulate or else would require types also to be passed as parameters and
used to declare the operations so that types matched� In Ada� generics provide a partial
solution� In general we believe that the advantages of strong
typing� particularly the way
it allows many errors to be detected at compile
time� outweigh the inconveniences�

�



We can also use accumulate to produce reverse �also a built
in procedure in Scheme��
which returns a list whose elements are in the reverse of the order of those in the list passed
to it as an argument� We �rst de�ne reverse�append� which takes two lists as arguments
and produces a list whose elements are those of the �rst argument in reverse order followed
by those of the second argument in order� In terms of accumulate� it is simply�

�define reverse�append �accumulate for�each cons��

Then

�define �reverse list�

�reverse�append list �����

where ��� denotes an empty list�

� Mutative Procedures and Operators

Note that reverse produces a new list and does not alter its argument� This is often
desirable� but it is wasteful if the original list will no longer be needed� as it involves
creating new cons cells� which takes both time and space� Even more important is that in
some cases the intent is to rearrange the original list� not to produce a copy� There may be
other variables pointing at this list� and it could be important that these all point at cells
of the rearranged list�

Thus� it is important also to be able to work with mutative procedures in higher order
programming� As an example we now de�ne reverse�� a mutative version of reverse�
The built
in set�cdr� procedure of Scheme returns an unspeci�ed value� so we create the
following procedure which mutates the cdr of a pair and also returns the new cdr value �all
characters on a line following a semicolon are comments��

�define �replace�cdr� pair x� � also known as rplacd in Lisp

�set�cdr� pair x�

pair�

Let us also de�ne another procedure combinator�

�define �apply�and�return�old�cdr operate�on�

�define �new�procedure pair�

�let ��old�cdr �cdr pair���

�operate�on pair�

old�cdr��

new�procedure�

��



with which we can de�ne a useful new iterator analogous to for�each�pair�

�define �for�each�original�pair operate�on�

�until null� �apply�and�return�old�cdr operate�on���

This iterator is intended for use with mutative procedures� in particular those which alter
structure of the list passed as an argument� Note that for�each�original�pair produces
a procedure with one argument� a list� which saves the cdr of the current list before calling
operate�on so that even if operate�on mutates the cdr of the list� the original list will still
be traversed� whereas for�each�pair would traverse the altered list� In di�erent situations�
each behavior could be appropriate� When operate�on is applicative with respect to its
list argument� the procedures produced by for�each�pair and for�each�original�pair

have the same e�ect�
The de�nitions of reverse�append� and reverse� now follow naturally from the above

de�nitions�

�define reverse�append�

�accumulate for�each�original�pair replace�cdr���

�define �reverse� list�

�reverse�append� list �����

We thus see that it is possible to create a mutative analog to an applicative procedure�
Another important example of this is map�� Scheme has a built
in procedure� map� which
applies a procedure to the elements of a list� forming a list of the results and leaving the
original list unaltered� It is often desirable to replace the elements of the original list with
the results of the procedure applications� The map� procedure we de�ne is analogous to
map� except that we make it a combinator� First we de�ne two additional combinators for
working with mutative procedures�

�define �change�car� operate�on�

�define �new�procedure� pair�

�set�car� pair �operate�on �car pair����

new�procedure��

�define �change�cdr� operate�on�

�define �new�procedure� pair�

�set�cdr� pair �operate�on �cdr pair����

new�procedure��

�The second of these will be used later�� Now

��



�define �map� operate�on�

�apply�and�return �for�each�pair �change�car� operate�on����

In general� we prefer to use map� when we can� rather than map� as the former is more
e�cient in that it reuses the original list� The question then arises� when are we free to
replace an applicative operator by a mutative one� Clearly� we can when we can prove that
the list passed as an argument is not used again�

Another closely related question is how to show that a procedure� p�� is the mutative
analog of another procedure� p� Informally� we say the procedures are analogs if the only
di�erence between them is their e�ect on the argument� i�e�� if�

�p x� �� �p� �copy x��

where �copy x� makes a copy of the entire data structure x and �� signi�es that not only
do both procedures return that same values� but also that they both have the same e�ects�
Note in this regard that since the value returned by �copy x� is not bound to any variable�
that the fact that p� mutates it is not considered a side e�ect�

We thus see that it is possible to create an applicative analog of a mutative procedure
in a mechanical way� Often we need only create the mutative version of a procedure� which
we will use in most cases� and pass a copy of the argument in the remaining cases where an
applicative procedure is required� If the mutative procedure only mutates a restricted part
of the representation of its arguments� then only a partial� more e�cient copy operation
can be used� For example� if we only had reverse� and wanted to create an applica

tive reverse procedure� we could implement it as �compose reverse� copy�top�level��
where copy�top�level creates new cells only for the top level cells in the representation of
its argument� sharing any other cells�� Such analysis can be extended to other cases of pro

ducing an applicative procedure by composition of a mutative procedure with an applicative
procedure that does not share� or shares in only a restricted way� the representation of its
result with that of its argument� e�g�� �compose �map� operate�on� reverse��

Strictly speaking� however� there is more to the issue of one procedure being the mutative
analog of another� By the above de�nition� a procedure could be its own mutative analog�
This is not our intent� When we speak of a mutative procedure� we expect it to actually
change its argument� Thus� we require that �unless p� is an identity function� that x

change after �p� x� is evaluated� An even stronger requirement would be to require that
after executing �p� x� that x is changed to be the result of �p� x�� Unfortunately� it is
not always possible to guarantee this and so we rely on the less stringent requirement that
p� mutate its argument at least for some inputs�

�In this case it is undoubtably more e�cient to program reverse independently� as is done in Section ��
This independence also would permit us to implement copy�top�level as �compose reverse� reverse��

��



� Reduction

Reduction operators were �rst introduced in APL 	�
� Given a binary operation and a
structure� we de�ne the reduction of that operation over the structure as the result of
successively combining all elements of the structure with the operation� This notion is very
similar to the discussion of accumulate above and� indeed� we de�ne reduce for lists in
terms of accumulate�

�define �reduce combine default�

�define �new�procedure list�

�if �null� list�

default

��accumulate for�each combine� �cdr list�

�car list����

new�procedure�

Here default is a value that is to be returned if list is empty�� For example�

��reduce � �� ��� � 	 � ���

returns ���
There are many di�erent possible forms of reduction� The above implementation ac


cumulates the result using the elements of the list from left to right� It is also possible to
de�ne a right
to
left reduction�

�define �right�reduce� combine default�

�compose �reduce combine default� reverse���

If the combine operation is associative and commutative� the order of reduction does not
matter� but in many cases we will want to apply reduction to operations which do not
have these properties� Indeed� in some cases� as we will see below� the order of reduc

tion is very important and by choosing di�erent forms� algorithms with di�erent e�ciency
characteristics are created�

� Parallel Reduction

Reduction can also be done �in parallel� by combining pairs of elements�� We will use
parallel reduction to de�ne an interesting class of sorting algorithms in the following section�

�Although it would allow a slightly simpler de�nition of reduce� we are not assuming that there is an
an identity value for combine �a value e such that �combine e x� � �combine x e� � x� since in some of
the examples of sorting procedures given later we use a combine that has no identity value� Note that when
list has only one element� new�procedure always returns that element�

�To the best of our knowledge� the notion of parallel reduction as an operator was introduced in �
��

��



In order to de�ne parallel reduction� we �rst de�ne the following combinator which� given
a binary procedure combine� returns a procedure which replaces the �rst element of a non

empty list by the result of applying combine to the �rst two elements of the list� the second
element is eliminated�

�define singleton� �compose null� cdr��

�define �combine�first�two� combine�

�define �new�procedure� list�

�if �not �singleton� list��

�begin

�set�car� list

�combine �car list� �car �cdr list����

�set�cdr� list �cdr �cdr list������

new�procedure��

For example� ��combine�first�two� 
� ��	 � � ��� transforms its argument into �� �

���
The following combinator yields a procedure that replaces the elements in a non
empty

list by the results of applying an operation to each pair of elements�

�define �pairwise�combine� combine�

�apply�and�return �for�each�pair �combine�first�two� combine����

For example�

�define pair�min� �pairwise�combine� min��

binds pair�min� to a mutative procedure which replaces the �rst and second element of a
list by their minimum� and similarly for the third and fourth� the �fth and sixth� etc� Thus

�pair�min� ��� � � � 	��

returns �� � 	��
We can now de�ne parallel�reduce� as a procedure which keeps applying pairwise�combine�

until the result is a singleton list�

�define �parallel�reduce� combine default�

�define �new�procedure� list�

�if �null� list�

default

�car ��until singleton� �pairwise�combine� combine��

list����

new�procedure��

��



Note that the application of the until iterator to list returns a singleton list whose element
is the desired result� we therefore return the car of this list� For example�

��parallel�reduce� pair�min� �� ��� � � � 	��

�rst computes �� � 	�� then �� 	�� then ���� �nally returning � as the result�
Also note that in this case it is essential that the new�procedure� produced by parallel�reduce�

is mutative� because it is making repeated passes over its argument� if it had to allocate
storage for its result every time� a great deal of unnecessary memory management overhead
would be incurred�

� Sorting Algorithms Based on Reduction

We are now ready to apply higher order programming techniques to the problem of imple

menting sorting algorithms� We limit the discussion to algorithms which sort numbers into
increasing order� By passing a predicate as an argument to the sort� it is possible to sort in
descending order or� in fact� to sort a list containing any type of objects using the criterion
embodied in the predicate�

We can easily implement merge�sorting e�ciently in terms of parallel�reduce� We
assume a merge procedure is given� and de�ne listify� as a mutative procedure that
replaces each element of a list by a singleton list containing that element�

�define �list�one x� �cons x �����

�define listify� �map� list�one��

e�g��

�listify� ��� � 	��

yields ���� ��� �	��� Merge sorting is then achieved simply by

�define merge�sort� �compose �parallel�reduce� merge ���� listify���

This algorithm begins by merging singleton lists into ordered two
element lists� which are
then merged into ordered four
element lists� etc�� until a single ordered list is obtained� Since
merge is a linear time algorithm� each stage of merging �each call to pairwise�combine�

within parallel�reduce�� is linear in the length N of the original list� and since there are
logN stages� merge�sort� is an e�cient N logN algorithm��

�Merge sorting could also be accomplished by traversing the input list in order to divide it in two� and
so on recursively� but this approach is both clumsy and ine�cient �neither of which has prevented it from
appearing in some textbooks��

��



�

� � �

	 � �

� � � �

� � � �

�

��

Figure � � A Tournament Tree

A less familiar approach to sorting� and one which produces a number of sorting al

gorithms with unusual properties� can be de�ned in terms of a data structure called a
tournament tree which captures the results of comparisons done among the elements of the
list to be sorted� By remembering the results of previous comparisons� tournament trees
help to create highly e�cient sorting procedures� The algorithms that will be presented
were discovered while attempting to �nd a higher order representation of Floyd�s Treesort
algorithm 	�
�

A tournament tree is an ordered tree whose nodes satisfy the relation

parent � child

An example is given in Figure �� Tournament trees are generalizations of heaps� as used in
heapsorting� in that they embody the same relationship between parent and child nodes�
but do not restrict the number of children of a node� Tournament trees are created by
comparing node values and making the node with the larger value a child of the node with
the smaller one� The nodes compared are the roots of two tournament trees and so when
we compare them� we are actually merging the two trees by making the root of one a child
of the root of the other� The tree in Figure � could have been formed� for example� by
comparing the root of a tree rooted at � �containing �� �� and �� and a tree rooted at �
�containing �� �� �� �� �� and ����

We represent tournament trees as lists� The tree in Figure � is represented as�

�� �	 ��� ���� �� ���� �� �� �������

Note that such lists have the structure�

�parent child� � � � childk�

��



where each child is itself a tournament tree� The leaves are singleton lists� the simplest
possible tournament trees� To facilitate the creation and manipulation of tournament trees
we de�ne the procedure adopt�� which adds a �leftmost� child to a parent�s list of children�

�define �adopt� parent child�

�replace�cdr� parent �cons child �cdr parent����

Using adopt�� we de�ne play�� the basic comparison procedure which all our sorts use�
Play� compares two nodes and makes the larger the leftmost child of the smaller�

�define �play� x y�

�if �
� �car x� �car y��

�adopt� x y�

�adopt� y x���

We refer to a list of tournament trees as a forest� If we apply play� to �the roots of� two
tournament trees in a forest� they will be merged as described above� If we pass play� and
a forest to any reduction operator� reduction�� say� it will return a tournament tree�

The smallest element is now at the root of the tree� We may output it and remove it
from further consideration� This leaves us with a forest of children of the root which can be
passed to another reduction operator� reduction�� which will return a tournament tree� In
a manner analogous to pulling a tangled rope through one�s �st� we thus have Tournament
Sort�

�define �make�tournament�sort� reduction� reduction��

�define �new�sort� list�

�let ��tournament�tree

��reduction� play� ���� �listify� list����

��for�each�pair

�lambda �pair�

�set�cdr� pair ��reduction� play� ���� �cdr pair�����

tournament�tree� � the tournament�tree is transformed

tournament�tree�� � step by step into a linear list

new�sort��

Note that make�tournament�sort� is not a sorting procedure� but a a combinator which
constructs a sorting procedure� given two reduction operators� If we pass it parallel�reduce�
and right�reduce� �in that order�� it creates a sorting procedure which does exactly the
same comparisons �in the same order� as Floyd�s Treesort 	�
� but using a di�erent data
structure�

��



� 	 � � � 	 � �

� � � � � � �

� � � 	 � � 	

� � �

� � �

Fig� �A Fig� �B Fig� �C Fig� �D

� �� � �� �� 	 �� �� 	� � �� �� 	� �� �

� � � � � � �

� 	 � 	 � � �

� � �

� � �

Fig� 	

�define parallel�sequential�tournament�sort�

�make�tournament�sort� parallel�reduce� right�reduce���

Figure � illustrates how parallel�sequential�tournament�sort� works� given the se

quence of values �� �� �� �� �� Fig� �A shows the initial forest after the �rst call to
pairwise�combine� within parallel�reduce�� Fig� �B shows the initial tournament tree
formed after completing the call to parallel�reduce�� Fig� �C shows the forest formed
by outputting node �� Finally� Fig� �D shows the tournament tree formed by the �rst call
to right�reduce�� In Figure � we show the sequence of tournament
trees generated and
the way in which the original tournament tree is transformed into a linear list with the
elements in order� By passing parallel�reduce� for both reduction parameters� we obtain
an entirely new sorting algorithm 	��
�

�define parallel�tournament�sort�

�make�tournament�sort� parallel�reduce� parallel�reduce���

which sorts N elements by making slightly more than N logN comparisons when the ele

ments are randomly ordered and only slightly more than �N comparisons when they start

��



out nearly in order or nearly in reverse order� No other algorithm currently known has all
these properties�

By passing right�reduce� twice we obtain a sort

�define sequential�sequential�tournament�sort�

�make�tournament�sort� right�reduce� right�reduce���

which does the same comparisons as Insertion Sort� but has the added advantage that it
functions as a priority queue� i�e�� it returns the elements in order one at a time so that the
sort can be halted after �nding the k smallest elements� if that is what is desired� Actually�
all versions of Tournament Sort function as priority queues� Note that all these sorts are
mutative but could be used as applicative sorts by passing a copy of the list in place of the
list to be sorted�

The Tournament Sort family of algorithms demonstrates a key point regarding our
experience with the higher order imperative programming approach� it often allows us not
only to �nd highly concise expressions of known algorithms� but also to derive entirely new
algorithms in the process�

�	 Conclusions

Operators such as until� for�each�pair� reduce� parallel�reduce�� etc�� allow us to
control complexity by creating procedures from simpler ones without constantly having
to keep in mind details of the implementation of the lower level procedures� While to
some extent the same can be said of any procedure called from inside another� operators
are particularly e�ective in this regard because they allow us to extend a programming
language directly to express algorithms more clearly�

Of course� the line between programming and language design could easily become
blurred� It is easy to create a Tower of Babel where each person writes programs in a
di�erent language or� worse yet� where every program a person writes is expressed in a
language which was never used before and will never be used again� To avoid this� the
operators used to extend a language must be carefully chosen and their semantics must be
very clear�

Higher order programming techniques deal directly with this issue� Using a compara

tively small number of operators� including a few that are designed to work with mutative
procedures� it is possible to dramatically increase the expressive power of a language and
to create substantial and practically useful algorithms�

In this paper� to keep our examples simple for publication purposes� we did not use some
features available in most Scheme implementations� such as �define�integrable ��� �

for directing the compiler to replace certain procedure calls by the procedure de�nition

��



inline� In practice� one would want to take advantage of the e�ciency improvements a�orded
by these features�

Many of the techniques illustrated in this paper can be used in Ada programming via
generics� and� in principle� can result in highly e�cient code� since no run
time type check

ing is required and much of the layering of procedure calls can be removed by inlining��

Although some techniques are not supported� such as procedures with second order proce

dure parameters �e�g�� make�tournament�sort��� other techniques not provided in Scheme
become available via generic packages� These techniques are particularly suitable as the
basis for development of generic software libraries 	�
�

Acknowledgements� Earlier drafts of this paper were written while the second au

thor was at General Electric Research and Development Center� Schenectady� NY� We are
grateful to Leon Levy and Martin Shannon of AT�T Bell Labs for insightful comments and
suggestions�

References

	�
 J� Backus� �Can Programming Be Liberated from the von Neumann Style�� Commu�

nications of ACM� Vol� ��� No��� August �����

	�
 R� W� Floyd� �Treesort �Algorithm ������ Communications of ACM� December �����
����

	�
 K� E� Iverson� �Operators�� TOPLAS � ���� October �����

	�
 B� Liskov� et al�� �CLU Reference Manual�� Springer
Verlag� �����

	�
 R� Milner� �A Proposal for Standard ML�� ���� ACM Symposium on Lisp and Func�

tional Programming� Austin� Texas� August �����

	�
 D� Kapur� D� R� Musser� and A� A� Stepanov� �Operators and Algebraic Structures��
Proceedings of Conference on Functional Programming Languages and Computer Ar�

chitecture� Portsmouth� New Hampshire� October �����

	�
 D�R� Musser and A�A� Stepanov� �A Library of Generic Algorithms in Ada�� Proc�

ACM SIGAda Conference� Boston� December �
��� �����

	�
 Reference Manual for the Ada Programming Language� ANSI�MIL
STD
����A� U� S�
Department of Defense� January �����

�	In principle
 because currently many Ada compilers do not handle complex combinations of layered
generics and inlining directives at all�

��



	�
 J�A� Rees and W� Clinger� eds�� �The Revised� Report on the Algorithmic Language
Scheme�� SIGPLAN Notices ��� ��� December �����

	��
 A� Stepanov and A� Kershenbaum� �Using Tournament Trees to Sort�� Technical Re

port ��
��� Center for Advanced Technology In Telecommunications� Polytechnic Uni

versity�

	��
 B� Stoustrup� The C�� Programming Language� Addison
Wesley� December �����

	��
 D� A� Turner� �Miranda� A non
strict functional language with polymorphic types��
in J�
P� Jouannaud �ed��� Functional Programming Languages and Computer Archi�

tecture� Lecture Notes in Computer Science ���� Springer Verlag� �����

��


