
Elements of Programming

Transformations and their orbits

Alexander Stepanov Paul McJones

May 21, 2010

Stepanov, McJones () Elements of Programming May 21, 2010 1 / 47



Contents I

2 Transformations and Their Orbits

Transformations

Orbits

Collision Point

Measuring Orbit Sizes

Actions

Conclusions

Stepanov, McJones () Elements of Programming May 21, 2010 2 / 47



Chapter 2 – Transformations and their orbits

This chapter defines a transformation as a unary regular function from
a type to itself. Successive applications of a transformation starting
from an initial value determine an orbit of this value. Depending only
on the regularity of the transformation and the finiteness of the orbit,
we implement an algorithm for determining orbit structures that can be
used in different domains. For example, it could be used to detect a
cycle in a linked list or to analyze a pseudorandom number generator.
We derive an interface to the algorithm as a set of related procedures
and definitions for their arguments and results. This analysis of an
orbit-structure algorithm allows us to introduce our approach to
programming in the simplest possible setting.

Stepanov, McJones () Elements of Programming May 21, 2010 3 / 47



Homogeneous predicates and operations

While there are functions from any sequence of types to any type,
particular classes of signatures commonly occur. In this book we
frequently use two such classes: homogeneous predicates and operations.
Homogeneous predicates are of the form T × . . .× T → bool; operations
are functions of the form T × . . .× T → T . While there are n-ary
predicates and n-ary operations, we encounter mostly unary and binary
homogeneous predicates and unary and binary operations.

Stepanov, McJones () Elements of Programming May 21, 2010 4 / 47



Concepts Predicate and UnaryPredicate

A predicate is a functional procedure returning a truth value:

Predicate(P) ,
FunctionalProcedure(P)

∧ Codomain(P) = bool

A homogeneous predicate is one that is also a homogeneous function:

HomogeneousPredicate(P) ,
Predicate(P)

∧ HomogeneousFunction(P)

A unary predicate is a predicate taking one parameter:

UnaryPredicate(P) ,
Predicate(P)

∧ UnaryFunction(P)

Stepanov, McJones () Elements of Programming May 21, 2010 5 / 47



Concept Operation

An operation is a homogeneous function whose codomain is equal to its
domain:

Operation(Op) ,
HomogeneousFunction(Op)

∧ Codomain(Op) = Domain(Op)

Stepanov, McJones () Elements of Programming May 21, 2010 6 / 47



Examples of operations

Examples of operations:
int abs(int x) {

if (x < 0) return -x; else return x;
} // unary operation

double euclidean_norm(double x, double y) {
return sqrt(x * x + y * y);

} // binary operation

double euclidean_norm(double x, double y, double z) {
return sqrt(x * x + y * y + z * z);

} // ternary operation

Lemma
euclidean_norm(x,y, z) = euclidean_norm(euclidean_norm(x,y), z)

This lemma shows that the ternary version can be obtained from the
binary version. For reasons of efficiency, expressiveness, and, possibly,
accuracy, the ternary version is part of the computational basis for
programs dealing with three-dimensional space.

Stepanov, McJones () Elements of Programming May 21, 2010 7 / 47



Total and partial procedures

A procedure is partial if its definition space is a subset of the direct
product of the types of its inputs; it is total if its definition space is
equal to the direct product. We follow standard mathematical usage,
where partial function includes total function. We call partial
procedures that are not total nontotal. Implementations of some total
functions are nontotal on the computer because of the finiteness of the
representation. For example, addition on signed 32-bit integers is
nontotal.

Stepanov, McJones () Elements of Programming May 21, 2010 8 / 47



Dealing with nontotal functions

A nontotal procedure is accompanied by a precondition specifying its
definition space. To verify the correctness of a call of that procedure,
we must determine that the arguments satisfy the precondition.
Sometimes, a partial procedure is passed as a parameter to an
algorithm that needs to determine at runtime the definition space of
the procedural parameter. To deal with such cases, we define a
definition-space predicate with the same inputs as the procedure; the
predicate returns true if and only if the inputs are within the definition
space of the procedure. Before a nontotal procedure is called, either its
precondition must be satisfied, or the call must be guarded by a call of
its definition-space predicate.

Exercise
Implement a definition-space predicate for addition on 32-bit signed
integers.

Stepanov, McJones () Elements of Programming May 21, 2010 9 / 47



Concept Transformation

This chapter deals with unary operations, which we call
transformations:

Transformation(F) ,
Operation(F)

∧ UnaryFunction(F)
∧ DistanceType : Transformation → Integer

We discuss DistanceType in the next section.

Stepanov, McJones () Elements of Programming May 21, 2010 10 / 47



Composition and reachability

Transformations are self-composable: f(x), f(f(x)), f(f(f(x))), and so on.
The definition space of f(f(x)) is the intersection of the definition space
and result space of f. This ability to self-compose, together with the
ability to test for equality, allows us to define interesting algorithms.

When f is a transformation, we define its powers as follows:

fn(x) =

{
x if n = 0,
fn−1(f(x)) if n > 0

Stepanov, McJones () Elements of Programming May 21, 2010 11 / 47



Concept Integer

To implement an algorithm to compute fn(x), we need to specify the
requirement for an integer type. We study various concepts describing
integers in Chapter ??. For now we rely on the intuitive understanding
of integers. Their models include signed and unsigned integral types, as
well as arbitrary-precision integers, with these operations and literals:

Specifications C++
Sum + +
Difference − -
Product · *
Quotient / /
Remainder mod %
Zero 0 I(0)
One 1 I(1)
Two 2 I(2)

where I is an integer type.
Stepanov, McJones () Elements of Programming May 21, 2010 12 / 47



power_unary

That leads to the following algorithm:
template<typename F, typename N>

requires(Transformation(F) && Integer(N))
Domain(F) power_unary(Domain(F) x, N n, F f)
{

// Precondition: n > 0∧ (∀i ∈N) 0 < i 6 n⇒ fi(x) is defined
while (n != N(0)) {

n = n - N(1);
x = f(x);

}
return x;

}

Stepanov, McJones () Elements of Programming May 21, 2010 13 / 47



Reachability, cyclic and terminal elements, and orbits

To understand the global behavior of a transformation, we examine the
structure of its orbits: elements reachable from a starting element by
repeated applications of the transformation. y is reachable from x

under a transformation f if for some n > 0, y = fn(x). x is cyclic under
f if for some n > 1, x = fn(x). x is terminal under f if and only if x is
not in the definition space of f. The orbit of x under a transformation f
is the set of all elements reachable from x under f.

Lemma
An orbit does not contain both a cyclic and a terminal element.

Lemma
An orbit contains at most one terminal element.

Stepanov, McJones () Elements of Programming May 21, 2010 14 / 47



Distance types

If y is reachable from x under f, the distance from x to y is the least
number of transformation steps from x to y. Obviously, distance is not
always defined.

Given a transformation type F, DistanceType(F) is an integer type large
enough to encode the maximum number of steps by any transformation
f ∈ F from one element of T = Domain(F) to another. If type T occupies
k bits, there can be as many as 2k values but only 2k − 1 steps between
distinct values. Thus if T is a fixed-size type, an integral type of the
same size is a valid distance type for any transformation on T . (Instead
of using the distance type, we allow the use of any integer type in
power_unary, since the extra generality does not appear to hurt there.)
It is often the case that all transformation types over a domain have
the same distance type. In this case the type function DistanceType is
defined for the domain type and defines the corresponding type
function for the transformation types.

Stepanov, McJones () Elements of Programming May 21, 2010 15 / 47



distance

The existence of DistanceType leads to the following procedure:
template<typename F>

requires(Transformation(F))
DistanceType(F) distance(Domain(F) x, Domain(F) y, F f)
{

// Precondition: y is reachable from x under f
typedef DistanceType(F) N;
N n(0);
while (x != y) {

x = f(x);
n = n + N(1);

}
return n;

}

Stepanov, McJones () Elements of Programming May 21, 2010 16 / 47



Classification of orbits

Orbits have different shapes. An orbit of x under a transformation is

infinite if it has no cyclic or terminal elements
terminating if it has a terminal element

circular if x is cyclic
ρ-shaped if x is not cyclic, but its orbit contains a cyclic element

An orbit of x is finite if it is not infinite. Figure 1 illustrates the various
cases.

Stepanov, McJones () Elements of Programming May 21, 2010 17 / 47



Orbit shapes

Infinite

Terminating

Circular

ρ-shaped

Figure: Orbit Shapes

Stepanov, McJones () Elements of Programming May 21, 2010 18 / 47



Structure of orbits

The orbit cycle is the set of cyclic elements in the orbit and is empty for
infinite and terminating orbits. The orbit handle, the complement of
the orbit cycle with respect to the orbit, is empty for a circular orbit.
The connection point is the first cyclic element, and is the first element
of a circular orbit and the first element after the handle for a ρ-shaped
orbit. The orbit size o of an orbit is the number of distinct elements in
it. The handle size h of an orbit is the number of elements in the orbit
handle. The cycle size c of an orbit is the number of elements in the
orbit cycle.

Lemma
o = h+ c

Stepanov, McJones () Elements of Programming May 21, 2010 19 / 47



Distances

Lemma
The distance from any point in an orbit to a point in a cycle of that
orbit is always defined.

Lemma
If x and y are distinct points in a cycle of size c,

c = distance(x,y, f) + distance(y, x, f)

Lemma
If x and y are points in a cycle of size c, the distance from x to y
satisfies

0 6 distance(x,y, f) < c

Stepanov, McJones () Elements of Programming May 21, 2010 20 / 47



Finite orbit assumption

If we observe the behavior of a transformation, without access to its
definition, we cannot determine whether a particular orbit is infinite: It
might terminate or cycle back at any point. If we know that an orbit is
finite, we can use an algorithm to determine the shape of the orbit.
Therefore there is an implicit precondition of orbit finiteness for all the
algorithms in this chapter.

There is, of course, a naive algorithm that stores every element visited
and checks at every step whether the new element has been previously
encountered. Even if we could use hashing to speed up the search, such
an algorithm still would require linear storage and would not be
practical in many applications. However, there is an algorithm that
requires only a constant amount of storage.

Stepanov, McJones () Elements of Programming May 21, 2010 21 / 47



Algorithmic intuition for cycle detection

The following analogy helps to understand the algorithm. If a fast car
and a slow one start along a path, the fast one will catch up with the
slow one if and only if there is a cycle. If there is no cycle, the fast one
will reach the end of the path before the slow one. If there is a cycle, by
the time the slow one enters the cycle, the fast one will already be there
and will catch up eventually. Carrying our intuition from the
continuous domain to the discrete domain requires care to avoid the
fast one skipping past the slow one.1

1?, page 7 attributes this algorithm to Robert W. Floyd.
Stepanov, McJones () Elements of Programming May 21, 2010 22 / 47



Collision point

The discrete version of the algorithm is based on looking for a point
where fast meets slow. The collision point of a transformation f and a
starting point x is the unique y such that

y = fn(x) = f2n+1(x)

and n > 0 is the smallest integer satisfying this condition. This
definition leads to an algorithm for determining the orbit structure that
needs one comparison of fast and slow per iteration. To handle partial
transformations, we pass a definition-space predicate to the algorithm:

Stepanov, McJones () Elements of Programming May 21, 2010 23 / 47



collision_point

template<typename F, typename P>
requires(Transformation(F) && UnaryPredicate(P) &&

Domain(F) == Domain(P))
Domain(F) collision_point(const Domain(F)& x, F f, P p)
{

// Precondition: p(x)⇔ f(x) is defined
if (!p(x)) return x;
Domain(F) slow = x; // slow = f0(x)

Domain(F) fast = f(x); // fast = f1(x)
// n← 0 (completed iterations)

while (fast != slow) { // slow = fn(x)∧ fast = f2n+1(x)

slow = f(slow); // slow = fn+1(x)∧ fast = f2n+1(x)
if (!p(fast)) return fast;
fast = f(fast); // slow = fn+1(x)∧ fast = f2n+2(x)
if (!p(fast)) return fast;
fast = f(fast); // slow = fn+1(x)∧ fast = f2n+3(x)

// n← n+ 1
}
return fast; // slow = fn(x)∧ fast = f2n+1(x)
// Postcondition: return value is terminal point or collision point

}

Stepanov, McJones () Elements of Programming May 21, 2010 24 / 47



Partial correctness of collision_point

We establish the correctness of collision_point in three stages: (1)
verifying that it never applies f to an argument outside the definition
space; (2) verifying that if it terminates, the postcondition is satisfied;
and (3) verifying that it always terminates.

While f is a partial function, its use by the procedure is well defined,
since the movement of fast is guarded by a call of p. The movement of
slow is unguarded, because by the regularity of f, slow traverses the
same orbit as fast, so f is always defined when applied to slow.

The annotations show that if, after n > 0 iterations, fast becomes equal
to slow, then fast = f2n+1(x) and slow = fn(x). Moreover, n is the
smallest such integer, since we checked the condition for every i < n.

Stepanov, McJones () Elements of Programming May 21, 2010 25 / 47



Termination of collision_point

If there is no cycle, p will eventually return false because of finiteness.
If there is a cycle, slow will eventually reach the connection point (the
first element in the cycle). Consider the distance d from fast to slow
at the top of the loop when slow first enters the cycle: 0 6 d < c. If
d = 0, the procedure terminates. Otherwise the distance from fast to
slow decreases by 1 on each iteration. Therefore the procedure always
terminates; when it terminates, slow has moved a total of h+ d steps.

Stepanov, McJones () Elements of Programming May 21, 2010 26 / 47



terminating

The following procedure determines whether an orbit is terminating:
template<typename F, typename P>

requires(Transformation(F) && UnaryPredicate(P) &&
Domain(F) == Domain(P))

bool terminating(const Domain(F)& x, F f, P p)
{

// Precondition: p(x)⇔ f(x) is defined
return !p(collision_point(x, f, p));

}

Stepanov, McJones () Elements of Programming May 21, 2010 27 / 47



collision_point_nonterminating_orbit

Sometimes, we know either that the transformation is total or that the
orbit is nonterminating for a particular starting element. For these
situations it is useful to have a specialized version of collision_point:

template<typename F>
requires(Transformation(F))

Domain(F)
collision_point_nonterminating_orbit(const Domain(F)& x, F f)
{

Domain(F) slow = x; // slow = f0(x)

Domain(F) fast = f(x); // fast = f1(x)
// n← 0 (completed iterations)

while (fast != slow) { // slow = fn(x)∧ fast = f2n+1(x)

slow = f(slow); // slow = fn+1(x)∧ fast = f2n+1(x)

fast = f(fast); // slow = fn+1(x)∧ fast = f2n+2(x)

fast = f(fast); // slow = fn+1(x)∧ fast = f2n+3(x)
// n← n+ 1

}
return fast; // slow = fn(x)∧ fast = f2n+1(x)
// Postcondition: return value is collision point

}

Stepanov, McJones () Elements of Programming May 21, 2010 28 / 47



Position of collision_point

In order to determine the cycle structure—handle size, connection
point, and cycle size—we need to analyze the position of the collision
point.

When the procedure returns the collision point

fn(x) = f2n+1(x)

n is the number of steps taken by slow, and 2n+ 1 is the number of
steps taken by fast.

n = h+ d

where h is the handle size and 0 6 d < c is the number of steps taken
by slow inside the cycle. The number of steps taken by fast is

2n+ 1 = h+ d+ qc

where q > 0 is the number of full cycles completed by fast when slow
enters the cycle. Since n = h+ d,

2(h+ d) + 1 = h+ d+ qc

Stepanov, McJones () Elements of Programming May 21, 2010 29 / 47



Position of collision_point, continued

Simplifying gives
qc = h+ d+ 1

Let us represent h modulo c:

h = mc+ r

with 0 6 r < c. Substitution gives

qc = mc+ r+ d+ 1

or
d = (q−m)c− r− 1

0 6 d < c implies
q−m = 1

so
d = c− r− 1

and r+ 1 steps are needed to complete the cycle.
Stepanov, McJones () Elements of Programming May 21, 2010 30 / 47



Position of collision_point, continued

Therefore the distance from the collision point to the connection point
is

e = r+ 1

Stepanov, McJones () Elements of Programming May 21, 2010 31 / 47



Distinguishing circular from ρ-shaped case

In the case of a circular orbit h = 0, r = 0, and the distance from the
collision point to the beginning of the orbit is

e = 1

Circularity, therefore, can be checked with the following procedures:
template<typename F>

requires(Transformation(F))
bool circular_nonterminating_orbit(const Domain(F)& x, F f)
{

return x == f(collision_point_nonterminating_orbit(x, f));
}

template<typename F, typename P>
requires(Transformation(F) && UnaryPredicate(P) &&

Domain(F) == Domain(P))
bool circular(const Domain(F)& x, F f, P p)
{

// Precondition: p(x)⇔ f(x) is defined
Domain(F) y = collision_point(x, f, p);
return p(y) && x == f(y);

}

Stepanov, McJones () Elements of Programming May 21, 2010 32 / 47



Finding connection point

We still don’t know the handle size h and the cycle size c. Determining
the latter is simple once the collision point is known: Traverse the cycle
and count the steps.

To see how to determine h, let us look at the position of the collision
point:

fh+d(x) = fh+c−r−1(x) = fmc+r+c−r−1(x) = f(m+1)c−1(x)

Taking h+ 1 steps from the collision point gets us to the point
f(m+1)c+h(x), which equals fh(x), since (m+ 1)c corresponds to going
around the cycle m+ 1 times. If we simultaneously take h steps from x

and h+ 1 steps from the collision point, we meet at the connection
point. In other words, the orbits of x and 1 step past the collision point
converge in exactly h steps, which leads to the following sequence of
algorithms:

Stepanov, McJones () Elements of Programming May 21, 2010 33 / 47



convergent_point

template<typename F>
requires(Transformation(F))

Domain(F) convergent_point(Domain(F) x0, Domain(F) x1, F f)
{

// Precondition: (∃n ∈ DistanceType(F))n > 0∧ fn(x0) = fn(x1)
while (x0 != x1) {

x0 = f(x0);
x1 = f(x1);

}
return x0;

}

Stepanov, McJones () Elements of Programming May 21, 2010 34 / 47



connection_point_nonterminating_orbit

template<typename F>
requires(Transformation(F))

Domain(F)
connection_point_nonterminating_orbit(const Domain(F)& x, F f)
{

return convergent_point(
x,
f(collision_point_nonterminating_orbit(x, f)),
f);

}

Stepanov, McJones () Elements of Programming May 21, 2010 35 / 47



connection_point

template<typename F, typename P>
requires(Transformation(F) && UnaryPredicate(P) &&

Domain(F) == Domain(P))
Domain(F) connection_point(const Domain(F)& x, F f, P p)
{

// Precondition: p(x)⇔ f(x) is defined
Domain(F) y = collision_point(x, f, p);
if (!p(y)) return y;
return convergent_point(x, f(y), f);

}

Stepanov, McJones () Elements of Programming May 21, 2010 36 / 47



Determining whether orbits intersect

Lemma
If the orbits of two elements intersect, they have the same cyclic
elements.

Exercise
Design an algorithm that determines, given a transformation and its
definition-space predicate, whether the orbits of two elements intersect.

Exercise
The precondition of convergent_point ensures termination. Implement
an algorithm convergent_point_guarded for use when that precondition
is not known to hold, but there is an element in common to the orbits
of both x0 and x1.

Stepanov, McJones () Elements of Programming May 21, 2010 37 / 47



Representing orbit sizes

The natural type to use for the sizes o, h, and c of an orbit on type T
would be an integer count type large enough to count all the distinct
values of type T . If a type T occupies k bits, there can be as many as
2k values, so a count type occupying k bits could not represent all the
counts from 0 to 2k. There is a way to represent these sizes by using
distance type.

Stepanov, McJones () Elements of Programming May 21, 2010 38 / 47



Representing sizes

An orbit could potentially contain all values of a type, in which case o
might not fit in the distance type. Depending on the shape of such an
orbit, h and c would not fit either. However, for a ρ-shaped orbit, both
h and c fit. In all cases each of these fits: o− 1 (the maximum distance
in the orbit), h− 1 (the maximum distance in the handle), and c− 1
(the maximum distance in the cycle). That allows us to implement
procedures returning a triple representing the complete structure of an
orbit, where the members of the triple are as follows:

Case m0 m1 m2

Terminating h− 1 0 terminal element
Circular 0 c− 1 x

ρ-shaped h c− 1 connection point

Stepanov, McJones () Elements of Programming May 21, 2010 39 / 47



orbit_structure_nonterminating_orbit

template<typename F>
requires(Transformation(F))

triple<DistanceType(F), DistanceType(F), Domain(F)>
orbit_structure_nonterminating_orbit(const Domain(F)& x, F f)
{

typedef DistanceType(F) N;
Domain(F) y = connection_point_nonterminating_orbit(x, f);
return triple<N, N, Domain(F)>(distance(x, y, f),

distance(f(y), y, f),
y);

}

Stepanov, McJones () Elements of Programming May 21, 2010 40 / 47



orbit_structure

template<typename F, typename P>
requires(Transformation(F) &&

UnaryPredicate(P) && Domain(F) == Domain(P))
triple<DistanceType(F), DistanceType(F), Domain(F)>
orbit_structure(const Domain(F)& x, F f, P p)
{

// Precondition: p(x)⇔ f(x) is defined
typedef DistanceType(F) N;
Domain(F) y = connection_point(x, f, p);
N m = distance(x, y, f);
N n(0);
if (p(y)) n = distance(f(y), y, f);
// Terminating: m = h− 1∧n = 0
// Otherwise: m = h∧n = c− 1
return triple<N, N, Domain(F)>(m, n, y);

}

Stepanov, McJones () Elements of Programming May 21, 2010 41 / 47



Exercises

Exercise
Derive formulas for the count of different operations (f, p, equality) for
the algorithms in this chapter.

Exercise
Use orbit_structure_nonterminating_orbit to determine the average
handle size and cycle size of the pseudorandom number generators on
your platform for various seeds.

Stepanov, McJones () Elements of Programming May 21, 2010 42 / 47



Actions

Algorithms often use a transformation f in a statement like
x = f(x);

Changing the state of an object by applying a transformation to it
defines an action on the object. There is a duality between
transformations and the corresponding actions: An action is definable
in terms of a transformation, and vice versa:

void a(T& x) { x = f(x); } // action from transformation

and
T f(T x) { a(x); return x; } // transformation from action

Despite this duality, independent implementations are sometimes more
efficient, in which case both action and transformation need to be
provided. For example, if a transformation is defined on a large object
and modifies only part of its overall state, the action could be
considerably faster.

Stepanov, McJones () Elements of Programming May 21, 2010 43 / 47



Exercise

Exercise
Rewrite all the algorithms in this chapter in terms of actions.

Stepanov, McJones () Elements of Programming May 21, 2010 44 / 47



Project

Project
Another way to detect a cycle is to repeatedly test a single advancing
element for equality with a stored element, while replacing the stored
element at ever increasing intervals. This and other ideas are described
in ?, ?, and ?. Implement other algorithms for orbit analysis, compare
their performance for different applications, and develop a set of
recommendations for selecting the appropriate algorithm.

Stepanov, McJones () Elements of Programming May 21, 2010 45 / 47



Conclusions

Abstraction allowed us to define abstract procedures that can be used
in different domains. Regularity of types and functions is essential to
make the algorithms work: fast and slow follow the same orbit
because of regularity. Developing nomenclature is essential (e.g., orbit
kinds and sizes). Affiliated types, such as distance type, need to be
precisely defined.

Stepanov, McJones () Elements of Programming May 21, 2010 46 / 47



End of chapter

Stepanov, McJones () Elements of Programming May 21, 2010 47 / 47


	Foundations
	Transformations and Their Orbits
	Transformations
	Orbits
	Collision Point
	Measuring Orbit Sizes
	Actions
	Conclusions


