
An STL Hash Table Implementation

With Gradual Resizing

Javier Barreiro and David R� Musser

Computer Science Department

Rensselaer Polytechnic Institute

Troy� NY �����

DRAFT
February ��� ���	

Abstract

This paper describes an implementation of hash tables that conforms to the proposed

requirements in Hash Tables for the Standard Template Library� by Barreiro� Fraley�

and Musser� The main characteristics of the implementation are its separate chaining

table organization and its use of gradual resizing to maintain expected constant time

performance�

� Introduction

In Hash Tables for the Standard Template Library ���� Barreiro� Fraley� and Musser propose
a restructuring and extension of the STL requirements ��� for associative containers to
accommodate hash table implementations� A rationale for the proposal is given in ���� In
this paper we brie	y describe a reference implementation of hash tables that conforms to
the requirements� A separate chaining table organization is used� and gradual resizing of
the table is used to maintain a number of hash buckets proportional to the number of
elements stored� That is� new buckets are added one at a time to the existing table and
some elements in old buckets are rehashed into the new ones� as opposed to resizing by
the more conventional means of allocating an entirely new table and rehashing all elements
into it� Resizing helps ensure that all storage and retrieval operations are performed in
expected constant time� and doing it gradually avoids the signi
cant delays that can occur
if an entire table has to be rehashed� The gradual resizing algorithm is based mainly on a
method of Larson ���� which is described more fully in Section ��

�



� HOW GRADUAL RESIZING IS DONE �

This implementation has been tested mainly by storing and retrieving words from dic�
tionaries of various sizes� but it is still experimental and subject to change� It still contains
some code whose only purpose is for debugging and which will be removed in a later version�
One operation required by the proposed standard� resize� for explicit resizing of the ta�
ble� is not yet implemented �it does nothing�� A future version of this paper will describe
the implementation in more detail and will report the results of extensive performance mea�
surements and comparisons to another hash table implementation ��� and to balanced tree
implementations of STL sorted associative containers�

The current code may be obtained by anonymous ftp from ftp�cs�rpi�edu in directory
pub�stl or from butler�hpl�hp�com in directory stl�

� How gradual resizing is done

The basic idea of Larson�s method of gradual hash table expansion ��� is to add one bucket
at a time at the end of the table� slightly adjusting the hash function accordingly �the actual
hash function in use at a given time is an adaptation of an initially�given hash function��
Some elements �ones whose keys hash to the new bucket using the new hash function� are
moved from an existing bucket to the new one� The existing bucket� the �buddy� of the
new one� can be chosen simply as the middle bucket� this choice simpli
es the transition
from the existing hash function to the new one� Similarly� contraction can be handled by
deleting a bucket at the end after moving its contents to its buddy�

Inserting a new position at the end of a random�access sequence is an operation that is
already supported in constant �amortized� time in STL by its vector and deque containers�
�Larson described a representation that is essentially equivalent to that used for deques
in the Hewlett�Packard reference implementation of STL�� Although reallocations of the
vector or deque may sometimes be necessary� it is then only necessary to copy the existing
entries to the new space rather than having to rehash all existing entries� which would be
much more time�consuming than just copying� Thus with gradual expansion rehashing does
occur but its cost is distributed over all the insertions instead of being concentrated in a
single insertion or resize operation�

� Singly�linked lists

This hash table implementation uses a singly�linked list class� slist� which is based on
the standard STL list class �which uses double linking�� The main reason for using
singly�linked lists in the hash table implementation is to reduce space requirements� some
time is saved also since only one link 
eld has to be maintained for each entry� At present
the implementation of slist is incomplete �member functions remove� unique�



REFERENCES �

merge� reverse� and sort are not implemented�� and some changes to the interface
are planned� Once these revisions are made and the implementation is completed� slist
should be independently useful and will be described in a separate report ����

References

��� David R� Musser� Rationale for Adding Hash Tables to the C�� Standard Tem�

plate Library� February ��� ����� available by anonymous ftp from ftp�cs�rpi�edu as
pub�stl�hashrationale�ps�

��� Javier Barreiro� Robert Fraley� and David R� Musser� Hash Tables for the Stan�

dard Template Library� Doc� No� X�J����������� WG���N����� January ��� �����
revised February ��� ����� available by anonymous ftp from ftp�cs�rpi�edu as
pub�stl�hashdoc�ps�

��� Bob Fraley� An STL Hash Table Implementation� February ��� ����� available by
anonymous ftp from butler�hpl�hp�com as stl�bfhash�Z�

��� David R� Musser� Generic Singly�linked Lists Compatible with the C�� Standard

Template Library� in preparation�

��� Alexander A� Stepanov and Meng Lee� The Standard Template Library� Techni�
cal Report� Hewlett�Packard Laboratories� September ��� ����� revised February ��
����� available by anonymous ftp from ftp�cs�rpi�edu as pub�stl�doc�ps�Z or from but�
ler�hpl�hp�com as part of stl�shar
le�Z�

��� Per�Ake Larson� CACM� Vol� ��� Number �� April �����


