An STL Hash Table Implementation
With Gradual Resizing

Javier Barreiro and David R. Musser
Computer Science Department
Rensselaer Polytechnic Institute
Troy, NY 12180

DRAFT
February 20, 1995

Abstract

This paper describes an implementation of hash tables that conforms to the proposed
requirements in Hash Tables for the Standard Template Library, by Barreiro, Fraley,
and Musser. The main characteristics of the implementation are its separate chaining
table organization and its use of gradual resizing to maintain expected constant time
performance.

1 Introduction

In Hash Tables for the Standard Template Library [2], Barreiro, Fraley, and Musser propose
a restructuring and extension of the STL requirements [5] for associative containers to
accommodate hash table implementations. A rationale for the proposal is given in [1]. In
this paper we briefly describe a reference implementation of hash tables that conforms to
the requirements. A separate chaining table organization is used, and gradual resizing of
the table is used to maintain a number of hash buckets proportional to the number of
elements stored. That is, new buckets are added one at a time to the existing table and
some elements in old buckets are rehashed into the new ones, as opposed to resizing by
the more conventional means of allocating an entirely new table and rehashing all elements
into it. Resizing helps ensure that all storage and retrieval operations are performed in
expected constant time, and doing it gradually avoids the significant delays that can occur
if an entire table has to be rehashed. The gradual resizing algorithm is based mainly on a
method of Larson [6], which is described more fully in Section 2.



2 HOW GRADUAL RESIZING IS DONE 2

This implementation has been tested mainly by storing and retrieving words from dic-
tionaries of various sizes, but it is still experimental and subject to change. It still contains
some code whose only purpose is for debugging and which will be removed in a later version.
One operation required by the proposed standard, @resize@, for explicit resizing of the ta-
ble, is not yet implemented (it does nothing). A future version of this paper will describe
the implementation in more detail and will report the results of extensive performance mea-
surements and comparisons to another hash table implementation [3] and to balanced tree
implementations of STL sorted associative containers.

The current code may be obtained by anonymous ftp from ftp.cs.rpi.edu in directory
pub/stl or from butler.hpl.hp.com in directory stl.

2 How gradual resizing is done

The basic idea of Larson’s method of gradual hash table expansion [6] is to add one bucket
at a time at the end of the table, slightly adjusting the hash function accordingly (the actual
hash function in use at a given time is an adaptation of an initially-given hash function).
Some elements (ones whose keys hash to the new bucket using the new hash function) are
moved from an existing bucket to the new one. The existing bucket, the “buddy” of the
new one, can be chosen simply as the middle bucket; this choice simplifies the transition
from the existing hash function to the new one. Similarly, contraction can be handled by
deleting a bucket at the end after moving its contents to its buddy.

Inserting a new position at the end of a random-access sequence is an operation that is
already supported in constant (amortized) time in STL by its vector and deque containers.
(Larson described a representation that is essentially equivalent to that used for deques
in the Hewlett-Packard reference implementation of STL). Although reallocations of the
vector or deque may sometimes be necessary, it is then only necessary to copy the existing
entries to the new space rather than having to rehash all existing entries, which would be
much more time-consuming than just copying. Thus with gradual expansion rehashing does
occur but its cost is distributed over all the insertions instead of being concentrated in a
single insertion or resize operation.

3 Singly-linked lists

This hash table implementation uses a singly-linked list class, @slist@, which is based on
the standard STL @list@ class (which uses double linking). The main reason for using
singly-linked lists in the hash table implementation is to reduce space requirements; some
time is saved also since only one link field has to be maintained for each entry. At present
the implementation of @slist@ is incomplete (member functions @remove@, Qunique@,



REFERENCES 3

@merge@, Qreverse@, and @sort@ are not implemented), and some changes to the interface
are planned. Once these revisions are made and the implementation is completed, @slist@
should be independently useful and will be described in a separate report [4].

References

[1]

[6]

David R. Musser, Rationale for Adding Hash Tables to the C++ Standard Tem-
plate Library, February 20, 1995, available by anonymous ftp from ftp.cs.rpi.edu as
pub/stl/hashrationale.ps.

Javier Barreiro, Robert Fraley, and David R. Musser, Hash Tables for the Stan-
dard Template Library, Doc. No. X3J16/94-0218, WG21/N0605, January 30, 1995,
revised February 20, 1995, available by anonymous ftp from ftp.cs.rpi.edu as
pub/stl/hashdoc.ps.

Bob Fraley, An STL Hash Table Implementation, February 17, 1995, available by
anonymous ftp from butler.hpl.hp.com as stl/bfhash.Z.

David R. Musser, Generic Singly-linked Lists Compatible with the C++ Standard
Template Library, in preparation.

Alexander A. Stepanov and Meng Lee, The Standard Template Library, Techni-
cal Report, Hewlett-Packard Laboratories, September 20, 1994, revised February 7,
1995, available by anonymous ftp from ftp.cs.rpi.edu as pub/stl/doc.ps.Z or from but-
ler.hpl.hp.com as part of stl/sharfile.Z.

Per-Ake Larson, CACM, Vol. 31, Number 4, April 1988.



