Educating Programmers:
A Customer Perspective

Alexander Stepanov
A9.com

Workshop on Quality Software:
A Festschrift for Bjarne Stroustrup

Texas A&M University, April 27-28, 2012



Abstract

Many programmers lack the skills required for
producing quality software. Programming must be
taught as a serious discipline, with an extensive
core curriculum covering such topics as system
decomposition and component design. Developing
a sense of programming aesthetics, including the
study of real world examples of beautiful programs,
is at the heart of this discipline. Grounding in
elementary mathematics (algebra and Euclidean
geometry) provides the necessary intellectual and
aesthetic foundation for the curriculum.



Background

For the last 17 years | have been trying to improve software
quality at several companies:

* Silicon Graphics
* Adobe
e A9.com

All leading-edge companies, employing graduates of leading
universities.

| worked with different teams, studied their code, and taught
advanced classes.



Observation

* Everybody works as a programmer.

* Nobody really knows how to program.

* The idea that there is something more to learn
does not even cross their minds.

— If they want to learn, it is a new language or a new
tool: Java, Hadoop, Squid, etc.



Good code

e Useful interface, efficient implementation,
pleasure to read
— Yes, it should be enjoyable to read code

* |f Xis original development time
— Takes very little time (< 1% X) to learn to use
— Takes little time (< 10% X) to extend and modify

* Good is beautiful, beautiful is good



Beautiful Code is
for Toy Examples Only?

“Real programs are always ugly...”

—a well-known computer scientist
and textbook author



Fundamental Programming Skills

Architect systems from components
Design correct, consistent, extensible APls
Recognize known abstractions

Know how and when to make code efficient



Computer Science for Programmers

Computer Architecture
— characteristics of CPUs, not their design
Compiler

— understanding its limitations
— utilizing its features

OS

— using threads, not writing schedulers

Databases
— how and when to use SQL, not design relational DB



What about Programming?

* Today only introductory programming is
taught.

* No real programs are studied.

* Testing and measurement techniques are not
taught.

What should be done?



A Programming Curriculum

Introductory programming
— Control structures and basic data structures

Intermediate programming

— Using advanced components and tuning them
Advanced programming
— Designing new components

Master class

— Building a system out of components



Writing

* Aclass where programmers are taught to
describe software.

* A programmer must be able to communicate
their design to others.



Programming in Academia

* Programming should be taught by people who
know and love programming and have done it
for a living

* Nemo dat quod non habet

— Music departments



An Internet Journal of Programming

* To publish refereed
— components
— measurements
— validation
— testimonials
— use cases



Grounding in Mathematics

 Mathematics has served every scientific and
engineering discipline for many centuries.

e Mathematics is the science of the abstract.

e Rich mathematical heritage helps to develop
programming aesthetics.



Which Mathematics?

* Elementary Algebra
— Scope of George Chrystal

e e.g., continued fractions, Bernoulli numbers, etc.
* supplemented with a little abstract algebra

— Develops symbol manipulation and abstraction ability

 Euclidean Geometry

— Euclid is still the best
e coherent story from book | to book XIlI

— Develops architectural and reasoning ability



Conclusion: Programming Aesthetics

e Sense of beauty is important for building large
systems and controlling complexity.

* Study of mathematics develops this sense.



