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This  paper describes one  approach to the problem of path plan- 
ning for an au tonomous  vehicle (an automaton) moving in two- 
dimensional space filled with obstacles. T h e  approach is based on  
continuous processing of  incoming local information about the en- 
vironment.  A continuous computational model for the environ- 
ment  and  for the vehicle operation is presented. Information about 
the  environment ( the scene) is assumed to be incomplete except 
that at  any momen t  the vehicle knows the coordinates of  its target 
a s  well as  its own coordinates. T h e  vehicle is presented as  a point; 
obstacles can be of  any shape, with continuous borderline and  
finite size. Algorithms guaranteeing reaching the target (if the tar- 
get  is reachable), and  tests for target reachability are presented. 
T h e  efficiency of  the algorithms is evaluated in terms of  perime- 
ters of  obstacles met by the vehicle. It is shown that with the  ex- 
ception of  some  rathei  unusual  initial positions of  the vehicle rela- 
tive to the  obstacles, o n e  of  the presented algorithms guarantees 
an  optimal path. 

Introduction 

TO "plan a path" for  an  au tonomous  vehicle (called below a 
traveling automaton,  T A )  means to find a continuous trajectory 
leading from the initial position of  T A  to its target position. In this 
work, the  envi ronment  ( the scene) in which TA travels is defined 
in a two-dimensional plane. This does not  mean that the  described 
approach applies only to planar or  near-planar cases. T h e  constraint 
o n  the  dimensionality implies only that TA travels along some  sur-  
face (which may have all kinds of  hills and  valleys) of  the three- 
dimensional space, and  cannot leave this surface. T h e  significance 
o f  introducing a surface is that when T A  encounters an  obstacle it 
can turn only left o r  right to pass it (whereas meeting an  obstacle 
in "real" three-dimensional space - say, a spacecraft meeting a 
planet - would result in a n  infinite number  of  possibilities for 
passing the  obstacle). T h e  scene may be filled with obstacles. Obs- 
tacles can be of any shape and  size, with the  following (rather 
practical) constraints: (1) Each obstacle is a simple closed curve; 
this simply means that the obstacle borderline is a continuous 
curve  with no self-intersections. (2) Obstacles d o  not touch each 
other.  (3) Any circle of  a given radius can intersect with only a 
finite number  of  obstacles. This guarantees a finite number  of  obs- 
tacles in an  area of finite size, and  alleviates some  mathematical 
problems. 

T h e  existing body of work o n  path planning can be classified 
into two categories - works dealing with situations with complete 
infixmation o n  the scene, and  works which assume that the infor- 
mation o n  the scene is incomplete. 

Although the problem considered here relates to situations 
with uncertainty, a brief review of the approaches for pulh plutrtt~tr~q 
wit11 contpkvr it!/imrturiotr is in order.  A popular version of path 
planning with complcte information is the "Piano Movers" prob- 
lem. Given  (in two- or  three-dimensional space. 2D or 3 0 )  a solid 
objcct of  known s i ~ e  and  shape, its initial and target position and 
orientation, and  a set of  obstacles whose shapes, positions, and 
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orientations in space are fully described, the task is to find a con- 
t inuous (2D or  3D, respectively) path for the object from the ini- 
tial position to the target position while avoiding collisions with 
obstacles along the way. 

A number  of  approaches have been suggested (1.21 for the Pi- 
ano  Movers problem, with convex obstacles presented as po- 
lygons. Conceptually, final dimensions o f  the solid object can be 
viewed as  shrinking to a point, while the  obstacles a re  viewed as 
expanding inversely to the shape of  the object. This requires in- 
creasing the dimensionality of  the initial space - one  extra dimen- 
sion per each degree of ro  tational freedom. Resulting obstacles 
have nonplanar walls (even if original obstacles a re  polyhedra). 
Typically, various constraints a re  imposed in order to keep the 
problem manageable. For  example, in 131, the  problem of han- 
dling an  object's orientation is alleviated by considering a circular 
object moving in two-dimensional space. In [4], the  problem of 
two-dimensional path planning with a convex polygon object and 
convex polygon obstacles is solved using a generalized cylinders 
presentation 151 which reduces the  problem to a graph search; a 
generalized cylinder is formed by a volume swept by a cross sec- 
tion (in general, of  varying shape and  size) moving along an  axis 
(in general, a spine curve). T h e  two- and  three-dimensional prob- 
lems of moving a solid polygon or  polyhedron object in polynomial 
time were solved in [61 by direct computation of the "forbidden" 
volumes in spaces of  higher dimensions d (d-3 for the  2D case, 
and  d-6 for the 3D case). 

A version of  the  Piano Movers problem where the moving ob- 
ject is allowed to consist o f  a number  of  free-hinged links is more 
difficult. This version was started by Pieper [7] and  Paul [81 be- 
cause of  its obvious relation to path generation and  coordinate 
transformation problems of  multiple-degrees-of-freedom robot 
arms. Recently, the computational complexity of  this version of 
the  problem was investigated and  new approaches were suggested 
in 161, [91, and 1101. 

Works  o n  patir plarrtrittg with incomplete it!fi)rmarion come mainly 
from studies o n  au tonomous  vehicle navigation. In [ I  11, [121, 
and  [I31 a two-dimensional navigation problem is considered. 
Obstacles are approximated by polygons; produced paths lie along 
edges of a connectivity graph formed by polygon vertices, the start 
point, and  the target point, with an  obvious constraint o n  intersec- 
tion of  the path with obstacles. Path.planning is limited to the 
automaton's  immediate surroundings for which information on 
the scene is available (for example, from a vision module). 
Within these surroundings, the problem is actually treated as one 
with complete information. 

Since often (especially in natural scenes) obstacles can be ap- 
proximated by polygons in difTerent ways, the paths by 
these algorithms tend to strongly depend o n  spec~f ic  approxima- 
tions. With finer approximation of the obstacles, more  nodes are 
introduced, and  resulting paths can change drastically. On  the oth- 
e r  hand, the approximation itself depcntis o n  consderations that 
are actudly secondary to the path planning problem (such as accu- 
racy of presentation o r  - a conflicting criterion - computntionaJ 
costs of  processing connectivity graphs). In this category 



dLt, no[ attention has been paid to the specificity intro- 
)prd by the assumption of uncertainty of the information on the 
rm,,ment, or to the termination properties and path analysis of * voposed strategies. 

fa [his paper, a continuous model of the environment (the 
#) and of the automaton operation is considered. Under this 
d l ,  [he automaton is assumed to be continuously analyzing the 

local information on its surroundings and continuously 
*fling its path. This is very similar to the philosophy of treat- 
-[ of geometrical phenomena based on local information 
i loped in [161. No approximation of obstacles (e.g., by po- 
wnJ is done, and, consequently, no connectivity graphs arise. 

no reduction to a discrete space takes place, all the points of 
(and not only those points that lie along certain subspaces - 

w, along edges of a connectivity graph) are available for path 
(Cnning purposes. 

Because of the continuous model, a new type of path planning 
Jorithm appears. Two algorithms (called Basic Algorithms), both 
v n t e e i n g  convergence and. because of their very different 
duacteristics, applicable to a wide range of scenes, are described. 
Abo, a third algorithm, which combines strong sides of the Basic 
Algorithms, is introduced. The usually applied criteria for evaluat- 
fnl performance (such as, for example, computational complexity . - 

' a  a function of the number of nodes of the connectivity graph) 
'"wt not applicable to these algorithms. Hence, a performance cri- 
'"Yrion based on the length of generated paths as a function of obs- 
:: &CIC perimeters is introduced. 
%%&A" 

ce limitations, proofs are not given for the state- 
below; these will be presented in a forthcoming 
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the traveling automaton. 

Environment 
*f3. 
":-! The scene in which TA travels, and TA's Start 6). Target (TI, 
- md path points, are defined in a plane. A scene can contain obsta- 
cles each of which is a simple closed curve. Obstacles or their parts 
do not touch each other; that is, a point on an obstacle (or on a 
Part of an obstacle) belongs to one and only one obstacle (or part 
of an obstacle). A scene can have a locally finite number of obsta- 
c l e ~  Formally, this means that any circle of a limited radius or 
Y straight line segment in the plane will intersect with a finite set 
obstacles. Any obstacle is homeomorphic to a circle; that is, for 
Y obstacle there is some continuous topological mapping that 

Fansforrns the obstacle into a circle. 

Automaton 

TA is a point; this means that an opening of any size between 
two distinct obstacles is considered to be passable. (In practice 
finite dimensions of the TA must be taken into consideration; in 
this work, TA's size and shape are ignored). The only information 
TA is provided with by its "sensors" is its Current position   COO^- 
d inah) ,  and a fact of hitting an obstacle ("force sensor"). At the 
bqinning, TA is given the position of Target. Therefore, TA can 
a !wa~~ calculate its direction on and its distance from Target. For 
Stm~licity of presentation, assume that the position of Target is 
fixed, although this f i ~ t  is never used in the sequel. 

In terms of its movement, TA is capable of three actions: 
move toward Target on ;t straight line, move along an obstacle, 
and stop. 

A local rlircytio,, is defined as a once-dnd-for-all-decided direc- 
tion of passing around an obstacle. For the two-dimensional prob- 
!em, i t  can he either left or right. Because of incompleteness of 
information, when TA hits an obstacle, there is no informaiion or 
criteria that could help it decide whether it should go around the 

obstacle from the left or from the right. For the sake of clarity and 
without losing generality, assume that the local direction of T h  is 
always Icyi (as in Figure 2) .  

TA is said to clcfitte a Hit point H when, while moving along a 
straight line toward Target, TA hits the point H of an obstacle; i t  
defines (1 Leave point L when i t  starts moving along a straight line 
from the point L toward Target. (See, for example, Figure 2) .  

Throughout, the following notation is used: 

D is the distance from Start to Target 

d (A,B)  is the distance between any points A and B of the 
scene; thus, d (Start,Target)- D 

d(A,,B) signifies the fact that the point A is located on the 
borderline of the iIh obstacle met by TA on its way to Target 

d(A,) is used as a shorthand notation for d (A,,Target) 

P is the total length of the path generated by TA on its way 
from Start to Target 

p, is the perimeter of the ith obstacle 

The performance of the presented algorithms will be evaluated 
using a quantity Zp, , the sum of perimeters of obstacles met by 
the TA on its way to Target. This quantity will allow us to compare 
various path planning procedures in terms of the length of paths 
they produce. 

Lower Bound for Path Planning Problem 

The lower bound determines, within the framework of the en- 
vironment and TA models, what ultimate performance can be ex- 
pected from any path planning algorithm. The lower bound (for- 
mulated in the Theorem 1, [I711 is a powerful means for measur- 
ing performance of path planning procedures. It states that for any 
algorithm of path generation with uncertainty, there is a scene for 
which the length P of the generated path will obey the relationship 

where P, D, and p, have been defined above, and 8 is any con- 
stant. 

This statement suggests that no matter what algorithm some- 
one will come up with, a scene can be designed such that the 
length of the path generated by this yet-unknown algorithm will 
satisfy (I ) .  In the following sections, the performance of each of 
the introduced path planning algorithms (in terms of the generated 
paths) will be compared with this lower bound. 

First Basic Algorithm: Bugl 

The procedure Bugl is executed at any point of a continuous 
path. Figure 1 demonstrates the behavior of TA. When hitting an 
ith obstacle, TA defines a Hit point HI ,  i-1,2, ..., . When leaving 
the ith obstacle (to continue its travel toward the Target), TA 
defines a Leave point L,;  &=Start. The procedure consists of the 
following steps: 

Step 1. Starting at L,- , ,  TA moves toward the Target along a 
straight line until it hits an ith obstacle, thus defining a point HI. 
Or it may reach Target, in which case it stops. 

Step 2. From H I ,  TA starts moving along the , I h  obstacle border- 
line using the accepted local direction, while looking for the point 
of minimum distance to Target. By the time TA makes a full circle 
around the ith obstacle, it knows the point of minimum distance; 
this point is defined as L,. In case the point L, is not unique, only 
such a point is used which corresponds to a shorter path from H, 
to L,. If there is more than one point with this shortcr path from 
I{, ,  any one of' them is defined as L,. A shorter path from f l ,  to L, 
may correspond now to any direction around the obstacle (left or 
right), and not necessarily to the local direction. 

Step 3.  Now TA moves around the lth obstacle, along the shorter 
path, to the point L,. G o  to Step 1. 



Figure 1. Automaton's path (dotted line), algorithm Bugl .  Obstacles: 
ob l ,  ob2; Hit points: H1, HZ; Leave points: L1, L2. 

It can be shown that the procedure never creates cycles and  
that it always converges. Also, the length of the path produced by 
this procedure will never exceed the limit 

This  suggests (compare (2) and  (1)) that even if some  algorithm 
better than Bugl does  (or will) exist, it cannot exceed the perfor- 
mance of Bugl (as measured by the length of the path) by more 
than one-third. 

According to the model, every time T A  leaves an obstacle for 
Target there should be some  distance between it and  the next obs- 
tacle, if any. If either Target or  Start happens to be trapped and, 
therefore, Target is not  reachable, then at some  point TA,  when 
ready to leave for Target, will be facing an  obstacle. This simple 
fact is used in the target reachability rest, which is formulated as fol- 
lows: If, while using the algorithm Bugl,  after having defined a 
point L ,  T A  discovers that the straight line (L,Target) crosses 
s o m e  obstacle at the point L ,  then Target is not  reachable. 

Second Basic Algorithm: Bug2 

T h e  procedure Bug2 is executed at any point of  a continuous 
path. As  will be clear later, the algorithm does not always distin- 
guish between different obstacles. Therefore, in addition to the 
subscript i to indicate the iIh obstacle, the superscript j will be 
used to indicate the j I h  occurrence of the Hit or  Leave points - 
o n  the  same or  a different obstacle; the subscript i will be used 
only when necessary to refer to more than one  obstacle; L1'=Start 
(see an  example in Figure 2). T h e  procedure consists of  the fol- 
lowing steps: 

Step I .  T A  moves from LJ-' along a straight line (Start,Target) 
until i t  hits an  obstacle at some  point HJ, j-1,2, ... (point H I ,  Fig- 
ure 2);  it may also reach Target, in which case it stops. 

Step 2. Then,  TA begins moving along the obstacle borderline, al- 
ways using the accepted local direction. until i t  reaches a Leave 
point. L' ,  (point L I ,  Figure 2)  which satisfies two requirements: 

i L '  is located on  the straight line (Start,Target), ~ t n d  the distance 
from L' to Target IS smaller than the distance from / I 1  to T x g e t ,  
d (  L ' )  < d ( / / ' ) ,  G o  to s t ep  I .  

C Note that unlike the previous algorithm, more than one  point 
ilit and  more than one  point Lcave mily be generated during 
"processing" 01' '1 single ~ b s t ; ~ c I e  (see Figure 3).  Also, the rela- 
tionship hetween perimeters of' obstacles and the Icngth ot' p t h s  
generated by Uugl is not ;IS clear ilS in the case of Bugl. Ni~mely, 
I'or some  scenes. Bug2 may crc;rte shorter paths than 13ugl; often 

Figure 2. Automaton's path (dotted line),  algoritt~tn Bug2. 

Figure 3. Automaton's path in a maze-like obstacle, algoritt~m Bug2. The 
obstacle complt.xity is measured by the number of times, ni, the 
straight line (S,'T) crosses it. Here nim 10. At most, the path 
passes one segment ( I i1 ,L l )  three times; that is, there are at 
most two local cycles in this path. 

the path around an obstacle will be shortcr than the obstaclt: per- 
imetcr (conipurc I'igurcs 1 itnd 2 ) .  I n  sonic urit'ortu~i;itt: cases 
when 3 s t r i g h t  line segment ot' thc path meets an obstacle almost 
tangentially and T;Z goes around the obst;tcle in a "wrong" direc- 
tion, the path xxually may be equal to the full perimeter of the 
obstacle (see Figure 4 ) .  Finally, as Figure 3 dcmonstr;~tes,  the si- 
tuation may get cvcn worse, and TI\ may h ;~ve  to pass along some 
scgnlurits of a niaze-like obstacle more than once. 



T 
/ 

/ 
/ 

/ 
/ 

/ 

/ 
f /  

/ 
H 

/ 
/ 

s ' 
~ ~ r e 4 .  A case when, under the algorithm BugZ, the automaton will 

have to make almost a full circle around a convex obstacle. 

Some new definitions: a local cycle is said to be created when 
TA passes some segment of the same obstacle more tlian otice. In 
tk example in Figure 2, no cycles are created; in Figure 3 there 
re some local cycles. A case of an in-obstacle (Figure 3) refers to 
r mutual position of the pair of points (Start and Target) and a 
&en obstacle where (1) the interval of the corresponding straight 
be (Start,Target) crosses the obstacle borderline at least once, 
md (2) either Start or Target lie inside the minimum convex hull 
d the obstacle. A case of out-obstacle (Figure 2) refers to such a 
mutual position of the pair (Start and Target) and the obstacle in 

-" thich both points Start and Target lie outside the minimum con- 
t tx hull of the-obstacle. Below, n, is the number of intersections 
&tween the straight line (Start, Target) and the ith obstacle; thus, 
4 is a characteristic of the set (scene,Start,Target) and not of a 
~pecific algorithm. Obviously, for any convex obstacle n,-2. 

b1 If an obstacle is not convex, the situation still may be as simple 
8 for convex obstacles; no local cycles appear if 4-2 (Figure 2, 
obstacle ob2). However, in Figure 3 the segment of the borderline 
from H1 to L l ,  (Hl ,L l ) ,  will be passed three times; segments 
@ 1 , ~ 2 )  and (H2,H1), twice each; and segments (L2,L3) and 
@3,~2) ,  once each. 

This procedure can be proven to converge, with the path 
whose length never exceeds the limit 

This limit is constructive, in the sense that simple scenes can 
be designed for which generated paths will be as close to the upper 
bound (3) as one wishes. 

As for the performance of the algorithm Bug& the upper 
bound (3) looks rather depressive; namely, it suggests that, under 

Sometimes T A  must go around an obstacle any (large, but 
number of times. Because of this, an important question is 

!W t~pical "bad" scenes are, and in particular, what characteris- 
'lcs of a scene influence the length of the path. Fortunately, for 
out-obstacle situations that can be expected to prevail in applica- 
t'OW it can be shown that TA will pass the obstacle's perimeter at  
most once. Moreover, if all obstacles met by TA on its way to Tar- 
get can be assumed to be convex (or, even less, if for them n,-2) 
'hen, on the average, the length of the path produced by the pro- 
cedure Bug2 is 

and the length of the path produced for the worst scene is 

Therefore, for ;i wide r;lnge of  scenes the length of p : l t h ~  gen- 
erated by the ;tlgorithm Bug2 will not exceed the universal lower 
bound ( I ) . 

Based on the mechanism of  defining I I i t  and Leave points in 
the Procedure Uug2, a simple rest /*r rorsqcr r~~liobi1if.v can be for- 
mulated: If, on the p'tl local cycle, p-0.1, ..., after having defined a 

point HJ, TA returns to this point before it defines at least the 
first two out of the possible set of points L J , H J f ' , . . . , ~ k ,  it means 
that TA has been trapped and, hence, that Target is not reachable 
(Figure 5). 

Improving Performance of Basic Algorithms 

In the actual implementations, improvements based on com- 
bining features of the Basic Algorithms can be introduced. 
Although the flow of action in such modified versions may be not 
as "clean" as in the Basic Algorithms, the termination properties 
and the estimates on the path length presented above still apply. 
Such a version (called BugM1, for "modified") consists of the fol- 
lowing steps: 

Step 1. TA moves from LJ-' (Leave point), j=1,2, ..., along a 
straight line ( L J - ' , ~ a r ~ e t )  until it hits an obstacle at some point 
HJ (Hit point); or, i t  may reach Target, in which case i t  stops. 
L o  =Start (i.e., the first Leave point coincides with Start). 

Step 2. From HJ, TA begins moving along the obstacle using the 
accepted local direction until it defines a point LJ. Here, one of 
two possible cases occurs: 

(a) While moving from HJ along the obstacle borderline, 
TA crosses the straight line ( L J " , ~ a r ~ e t )  inside the interval 
( ~ ' - ' , ~ a r ~ e t ) ;  in this case TA defines a point L' in such a way 
that it satisfies two requirements: LJ is located on the straight 
line ( L ~ " , ~ a r ~ e t ) ,  and the distance from LJ to Target is 
smaller than the distance from HJ to Target, d (  LJ) < d(HJ) .  
G o  to Step 1. 

(b) While moving from Hj along the obstacle borderline, 
TA crosses the straight line (Lj,Target) outside the interval 
(Lj,Target); in this case TA defines a point LJ according Lo 
Steps 2 and 3 of the algorithm Bugl. G o  to Step 1. 

Notice that if the scene is such that only Step 2a is ever execut- 
ed then the actual flow of the algorithm is that of Bug2, and the 
straight lines (LJ,Target) always coincide with the straight line 
(Start,Target). No local cycles can be created in such situations. If 
(in cases of in-obstacles) local cycles do appear, this creates the 
condition accounted for in Step 2b of BugMl. From the condition 
of Step 2b being satisfied, TA recognizes a danger of multiple local 
cycles, and "decides" to go to the conservative action of Bugl, 
which guarantees an upper bound (2), instead of risking the unc- 
ertain number of local cycles it can now expect under Bug2. It 
does this by executing Steps 2 and 3 of Bugl. After at least one 
execution of Step 2b, the straight line (L1,Target), in general, no 

Figure 5.  Examples of traps. The path (dotted line) is executed under the 
algorithm Uug2. After having detined the point HZ, the auto- 
maton returns to it before defining any new point L. Therefore, 
the target is not reachable. 



longer coincides with the straight line (Start,Target); instead, the 
straight line segments of the path look sini~lar to those created by 
the algorithm Bugl (see Figure 1 ) .  

In general, with such a modification. TX will have the 
efficiency of Bug2 (in the sense that it does not necessarily have to 
cover full perimeters of obstacles as in Bugl) while i t  is 
guaranteed to never pass the same segment of the obstacle border- 
line more than three times. 

t 

Some Remarks on Perforrnance of Basic Algorithms 

Depending on the scene. one Basic Algorithm may produce a 
path significantly shorter than the other. The question of when 
which algorithm should be used goes beyond formal analysis. One 
could say, for example, that the algorithm Bugl probably will ap- 
peal to a conservative (pessimistic) TA, whereas the algorithm 
Bug2 might appeal to a more optimistic TA. 

If TA wants to minimize the effort (path length) for the worst 
scenes (a pessimistic TA), Bug 1 provides a guarantee that the path 
will never exceed the limit ( 2 ) .  Unfortunately, Bugl will never 
produce a path as short as the one shown in Figure 2, but, on the 
other hand, it will never create local cycles. 

However, if TA wants to minimize the effort on simple scenes, 
or if it has some reason to believe that the scene in question will 
not present any unpleasant surprises (an optimistic TA) then it  
will use Bug2, which for any convex or simpler nonconvex obsta- 
cles promises paths as short as given by ( 5 ) .  Another reason for 
the optimistic TA to be optimistic, and thus to use Bug2 instead of 
Bugl, is provided by Theorem 5 which guarantees that even for 
the most complicated scenes, the path will never exceed (6) 

(which is better than ( 2 )  for Bugl) i f  the mutual positions of 
Start, Target, and obstacles correspond to a case of an out- 
obstacle. 

An additional insight into the operation and the "arca of ex- 
pertise" of the Basic Algorithms is gained by trying to usc them in 
maze search problems. The problem of search in an unknown 
maze may be set in rl number of ways. In one version (see, e.g., 
1141) TA. starting at an arbitrary cell of the maze. must eventually 
visit every single cell without passing through any barriers. (This 
means. of course, that any pair of cells in the maze is connected 
via other cells). Notice that in this version there is no notion of a 
Target cell whose coordinates are known; no sense of' direction is 
present. Because of that, neither of the Basic Algorithms can be 
used. 

In another version of the maze search problem. b' vven a start- 
ing cell, TA is to find an exit from the maze; the coordinates of 
the exit are not known. Although no target is presented explicitly, 
TA may choose any point (direction) somewhere in infinity, and 
then use the Basic Algorithms as usual. With such an operation, 
an exit is guaranteed to be found. 

In still another version of the mazc search problem [IS], TA is 
given coordinates of two points (cells), S (Start) and T (Target), 
in a maze and is asked to find a route from S to T. Clearly, this 
version is the closest to the problem considered in this paper. For 
this version of the maze search problem, the behavior of the algo- 
rithm Bug2 is demonstrated in Figure 6 on a randomly designed 
maze with Start and Target points thrown randomly in more or 
less opposite directions of the maze. (Since maze search 
algorithms - see, e.g., [I41 - typically use discrete models, Fig- 
ure 6 presents a discrete version of the continuous path planning 

Figure6. Example of walk in a maze, algorithm Bug2. S-Start, T=Tarpet. Points at which 
the automaton's path (dotted line) crosses the imaginary straight line (Start,'I'arget) 
are indicated by dots. Maze barriers are shown in thick lines. 
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+lcm; TA walks through cells represented by little squares; any 
dlOuehed by the straight line 6 . T )  is considered to be lying on 
Id line). A quick look at the barriers between S and T suggests 
Where TA is operating in an out-obstacle scene and, therefore, 

(5),(6) should apply. Indeed. as Figure 6 demon- 
~nles, no local cycles are created, and the generated path, given 
iL fact that TA knows nothing about the design of the maze, is 
d e r  good. 
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