
Foreword

When Dave Musser asked me to write an extended foreword to the second
edition of this book, I jumped on the opportunity. First, Dave is my closest
professional friend; we have been collaborating for over 20 years, and without
Dave there would be no STL. So honoring his request is by itself a privilege.
It also gives me an opportunity to say a few words about what I had in mind
while designing STL.

To use a tool, it is useful to understand not just the instructions for
using it but also the principles that guided its designers. The main goal of
this foreword is to present you with the principles behind STL. I’ll conclude
with some musings.

STL was designed with four fundamental ideas in mind:

• Abstractness

• Efficiency

• Von Neumann computational model

• Value semantics

Abstractness. Some of you might have heard that STL is an example of
a programming technique called “generic programming.” This is so. Some
of you might have also heard that generic programming is a style of pro-
gramming using C++ templates. This is not so. Generic programming has
nothing to do with C++ or templates. Generic programming is a discipline
that studies systematic organization of abstract software components. Its
objective is to develop a taxonomy of algorithms, data structures, memory

xxi



Foreword

allocation mechanisms, and other software artifacts in a way that allows the
highest level of reuse, modularity, and usability.

To allow the greatest degree of usability, one has to try to analyze all
possible extensions. For example, when a famous computer scientist saw my
version of Euclid’s algorithm for finding the greatest common divisor of two
quantities,

template <typename T> T gcd(T m, T n) {
while (n != 0) {

T t = m % n;
m = n;
n = t;

}
return m;

}

he objected that the algorithm is not correct since it returns −1 when called
with 1 and −1 as its arguments, and therefore the common divisor returned
is not the greatest. He suggested that I fix the problem by changing the last
line to

return m < 0 ? -m : m;

Unfortunately, if you do this the algorithm will not work for many important
extensions: polynomials, Gaussian integers, and so on. It would require the
set of elements on which we operate to be totally ordered. The problem
disappears if we use a more abstract (and algorithmically more meaningful)
definition of greatest common divisor: a divisor that is divisible by any
other divisor. That definition allows for nonunique solutions: in the case of
integers both 6 and −6 are greatest common divisors of 24 and 30. This
actually corresponds to what mathematicians have been doing for the last
several hundred years.

The classification of software components should deal only with useful
components. It would be ridiculous to introduce a concept of semisequence—
a sequence that has multiple beginnings but only one end—since we do not
know any data structures that look like that nor any algorithms that could
operate on them.

After we organize things systematically, we can ensure the consistency of
their interfaces. That is, interfaces to two components should be the same to
the same degree that the behavior of the components is the same. That al-
lows us to implement algorithms that work on multiple components—generic

xxii



Foreword

algorithms. It also makes it possible to use the library. If a programmer
masters STL’s vector, it is not going to be too hard to learn to use STL’s
list and even easier to learn to use deque. It is my belief that the interfaces
that allow the greatest possible degree of abstract programming are also the
interfaces that are easiest to learn. (This presupposes that a person is learn-
ing things from scratch. It is hard to convince a hardened Lisp programmer
that comparing with the past-the-end iterator is a better way than testing
for nil.)

In many respects the ideas of generic programming are very similar to
the ideas of abstract algebra. Those of you who took a course dealing with
groups, rings, and fields should be able to see where classification of iterators
is coming from.1

As mathematics organizes theorems around different abstract theories,
generic programming organizes algorithms around different abstract con-
cepts. So the task of the library designer is to find all interesting algo-
rithms, find the minimal requirements that allow these algorithms to work,
and organize them around these requirements. In general requirements are
described through a set of acceptable expressions and their semantics. For
example, STL does not state that ++ on an iterator must be defined as a
member function of a class. It just states that if i is an iterator and if it
can be dereferenced, then ++i is a valid expression.

Efficiency. While mathematics often deals with objects that cannot be
constructed at all or could be constructed only if given an arbitrarily long
time, computer science makes efficiency an explicit concern. It is not enough
to know that an operation can be done. It is important to know that it will
be done reasonably fast. To assure that, STL does several things.

First, it makes complexity requirements a part of each interface. When
concepts such as iterators are specified, certain complexity requirements are
given. A programmer can be certain that doing ++ on an iterator does not
depend dramatically on where in the sequence it is. Dereferencing should
be equally fast—it is not legal to implement list iterators with a structure

1In general, I believe that mathematical culture is essential for a good software engineer.
Sadly enough, nowadays one goes through college—and through graduate school—without
any exposure to real mathematics. I would urge all of you to keep reading mathematics
throughout your career. There are some remarkable books out there—I highly recom-
mend the following three books by John Stillwell: Numbers and Geometry, Mathematics
and Its History, and Elements of Algebra; after you are done with them, consider Geom-
etry: Euclid and Beyond by Robin Hartshorne and Visual Complex Analysis by Tristan
Needham.

xxiii



Foreword

containing the pointer to the list’s head and the integer index. (It should be
noted that while the operational semantics of the operations can be specified
rigorously by specifying the set of valid expressions and their semantics, the
complexity is specified informally; a totally new insight is needed to find
a way for specifying complexity requirements in a rigorous but practically
useful way.)

Second, STL takes great care not to hide any part of a data structure that
allows efficient access. Instead of providing get and put methods for oper-
ating on a container—the favorite method of textbook writers—the pointer
to the value is exposed so that fields could be modified in place. One can
write

i->second = 5;

instead of

pair<int, int> tmp = my_vector.get(i);
tmp.second = 5;
my_vector.put(i, tmp);

The fact that iterators to elements of a vector do not survive the periodic
reallocations is noted, and it is assumed that STL users can learn to deal
with it by either preallocating enough storage or storing indices and not
iterators.

Great care was taken to see that all the generic algorithms in STL are
state of the art and as efficient as hand-coded ones (being quite precise, that
they are as efficient as hand-coded ones when a good optimizing compiler—
such as Kuck and Associates’ C++ compiler—is used).

Von Neumann Computational Model. Although abstract mathemat-
ics uses simple numeric facts as its basis of abstraction—one should not
forget that mathematics is an experimental science—what should we use as
our basis of abstraction to come up with a generic abstract framework? It is
my firm belief that the only solid basis is the architectures of real comput-
ers. It is important to remember that modern computer architectures are a
result of many years of evolution guided by the need to solve more and more
diverse problems. Byte-addressable memory and pointers are not the arti-
facts we inherited from some archaic hardware designs—archaic hardware
designs did not have bytes and there were no pointers; one wrote loops with
the help of self-modifying code—but the results of architecture catching up

xxiv



Foreword

with the needs of applications.2 If we are interested in designing a generic
framework for numerical types, it is important to understand the working
of built-in numeric types, not just the mathematical theory of integers and
real numbers.

The most important new concept in computer science that was not al-
ready present in mathematics is the concept of address. Making addresses,
not just values, a part of our computational model was the revolutionary
step that enabled all the progress from 72 addresses in the Mark I to mil-
lions of Internet addresses. In many respects, the most controversial part of
STL is the fact that it makes addresses and their conceptual classification
the cornerstone of the whole edifice. (This statement might appear strange
to a practical programmer, but the academic community has spent decades
trying to eliminate addresses altogether in doing what is called “functional
programming.”) In mathematical terms, the idea underlying STL is that
different data structures correspond to different address algebras, different
ways of connecting addresses together. A set of operations that move from
one address in the data structure to the next corresponds to iterators. A set
of operations that add and delete addresses to and from the data structure
corresponds to containers.

While the STL classification of iterators (input, output, forward, bidi-
rectional, random access) is sufficient for all the fundamental sequence al-
gorithms, further categories of iterators need to be defined for STL to be
properly extended to deal with multidimensional structures. (As a matter
of fact, even for many fundamental sequence algorithms, two-dimensional
iterators are needed to speed them up in cases of (1) nonuniform accesses
as, for example, is the case with deque iterators or cache lines and (2) mul-
tiprocessor implementations.)

Value Semantics. STL views containers as a generalization of structures.
As the structure owns its components, so does a container own its compo-
nents. When you copy structures, all their components are copied. When

2It is very important for a good programmer to understand what really goes under the
hood of a high-level programming language. It is important to know at least a couple
of different architectures well. Since I recommended a bunch of mathematical books,
let me also suggest a couple of computer books: John Hennessy and David Patterson’s
Computer Architecture: A Quantitative Approach is, in my opinion, the most important
computer science book; one gets, however, a wonderful additional perspective if it is
supplemented with Computer Architecture: Concepts and Evolution, by Gerrit Blaauw
and Fred Brooks, especially the second part of the book, “The Computer Zoo,” which
covers some remarkable historical designs.

xxv



Foreword

a structure is destroyed, all its components are destroyed. The same hap-
pens with containers. These properties are essential features that allow
structures and containers to model the key attribute of real-life things—the
relationship between whole and part. Of course, the whole-part relation-
ship is not the only kind of relationship in the real world, and the rest of
the relationships need to be modeled with iterators.3 It is my belief that
the confusion between a part and a relation, which is so common in object-
oriented languages and libraries, is a major source of conceptual confusion
in the modeling of the real world as well as the main reason that they ab-
solutely require garbage collection. STL is not object-oriented—not only in
the way it uses global generic algorithms, but more significantly, in the fact
that it separates the notions of having an object as a part and pointing to
an object. It assumes that

T a = b;

creates a copy of an object, with all parts being distinct, not just another
pointer to the same object. Specifications of those algorithms in STL that
use assignment (sort, partition, remove, and so on) require this value
semantics. In the STL universe objects never share parts (unless, of course,
one object is a part of the other).

In general, STL assumes that for any type on which it operates the
semantics of copy constructors, destructors, assignment, and equality and
their relations are the same as for built-in types. In addition, STL assumes
that for those objects for which operators <, >, <=, and >= are defined, their
semantics is the same as for built-in types, or, mathematically speaking,
they define a total ordering. (One of the gripes I have against C++ is
that C++ does not require the semantics of fundamental operations to be
consistent with the semantics of built-in types; one can define an operator =
to do multiplication. Operator overloading is good only if used in a highly
disciplined way; otherwise, it can cause great harm.)

Musings. STL was not designed to be a part of the C++ Standard Li-
brary. It was designed to be the first library of generic algorithms and
data structures. It so happened that C++ was the only language in which
I could implement such a library to my personal satisfaction. In the five

3For example, while my leg is my part, my lawyer is not. If I am destroyed, my leg is
destroyed; if I am copied, my leg is copied. My lawyer is another human being, and while
my death might affect him in various ways—like a lot of pointers to a dead client, known
as dangling pointers—he is not going to be automatically destroyed.

xxvi



Foreword

years since STL has been widely available, many people have made claims
that they can do STL-like things in their favorite language: Ada-95, ML,
Dylan, Eiffel, Java, and so on. Maybe they can. As far as I can see, they
have not. I wish they could. I wish someone would construct a language
more suitable to generic programming than C++. After all, one gets by in
C++ by the skin of one’s teeth. Fundamental concepts of STL, things like
iterators and containers, are not describable in C++ since STL depends on
rigorous sets of requirements that do not have any linguistic representation
in C++. (They are, of course, defined in the standard, but they are defined
in English.)

The whole point of STL is that it is an extensible framework. While STL
is widely used, my hopes for the creation of many libraries of generic compo-
nents have not been fulfilled. As far as I can determine the reason that such
libraries are not created is that there are no financial mechanisms for sup-
porting the work. One cannot make money out of fundamental algorithms.
They have to be designed for the entire industry by small teams of compo-
nent craftsmen. While I have been lucky, on a couple of occasions, to receive
funding from large computer companies to do STL work, it cannot be done
in a serious way until some reliable way of funding the work is found. It is
my hope that the U.S. government or alternatively the EU will fund a small
but effective organization dedicated to producing generic software compo-
nents. And I mean not research but actual production of well-organized,
documented, generic, and efficient components. Please write to your elected
representatives.

STL presupposes a very different way of teaching computer science.
What 99 percent of programmers need to know is not how to build compo-
nents but how to use them. STL presupposes a different way of running soft-
ware organizations. People who write their own code, instead of using stan-
dard components, should be dealt with like people who propose designing
nonstandard, proprietary CPUs. Can we ever move software into the indus-
trial age? I wonder . . .

Alexander Stepanov
January 2001

xxvii





Foreword to the First Edition

What is STL? STL, or the Standard Template Library, is a general-purpose
library of generic algorithms and data structures. It makes a programmer
more productive in two ways: first, it contains a lot of different components
that can be plugged together and used in an application, and more impor-
tantly, it provides a framework into which different programming problems
can be decomposed.

The framework defined by STL is quite simple: two of its most funda-
mental dimensions are algorithms and data structures. The reason that data
structures and algorithms work together seamlessly is, paradoxically enough,
the fact that they do not know anything about each other. Algorithms are
written in terms of iterator categories: abstract data-accessing methods. To
enable different algorithms to work in terms of these conceptual categories,
STL establishes rigid rules that govern the behavior of iterators. For ex-
ample, if any two iterators are equal then the results of dereferencing them
must be equal. It is only because in STL all such rules are stated explic-
itly that it is possible to write code that knows nothing about a particular
implementation of a data structure.

While it is my experience that using STL can dramatically improve pro-
gramming productivity, such an improvement is possible only if a program-
mer is fully cognizant of the structure of the library and is familiar with a
style of programming that it advocates. How can a programmer learn this
style? The only way is to use it and extend it. To do this, however, one
needs a place to start. This book is such a place.

The authors bring special qualifications to the writing of this book. Dave
Musser has been doing research that led to STL for over fifteen years. Quot-
ing from the original STL manual: “Dave Musser . . . contributed to all as-

xxix



Foreword to the First Edition

pects of the STL work: design of the overall structure, semantic require-
ments, algorithm design, complexity analysis, and performance measure-
ments.” Atul Saini was the first person to recognize the commercial poten-
tial of STL and committed his company to selling its production version
even before it was accepted by the C++ standards committee.

I hope that this book’s publication will help programmers enjoy using
STL as much as I do.

Alexander Stepanov
October 1995

xxx


