
Journey Two: 
Heirs of Pythagoras 

How division with remainder led to 
discovery of many fundamental 

abstractions. 
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Heirs of Pythagoras 

Lecture 1 

2 



Mathematics 

• Science of numbers and space. 
 

• Numbers and space are our innate 
abilities. 
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Pythagorean School 

• Square, oblong, triangular numbers 
 

• Discrete structure of space 
 

• Arithmetization of geometry 
 

• A catastrophe 
– the program cannot succeed  
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He discovered “the theory of 
irrationals...” 

                                              Proclus 
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Common Measure 

• A segment V is a measure of a segment A 
iff A can be represented as a finite 
concatenation of copies of V. 

• A segment V is a common measure of 
segments A and B iff it is a measure of 
both. 

• A segment V is the greatest common 
measure of A and B if it is greater than any 
other common measure of A and B. 
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Properties of gcm 
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line_segment gcm(line_segment a,  
                 line_segment b) { 
    if (a == b) return a; 
    if (b < a)  return gcm(a - b, b); 
    if (a < b)  return gcm(a, b - a); 
} 
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Line segment gcm 



gcm(196in, 42in) 
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Well-ordering Principle 

• Greeks found the principle that any set of 
natural numbers has a smallest element a 
very powerful proof technique.  
– It is equivalent to induction axiom. 

• In order to prove that something does not 
exist, prove that if it exists, a smaller one 
also exists. 
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The Assumption 

• Let us assume that there is a segment that 
can measure both the side and the 
diagonal of some square.  Let us take the 
smallest such square for this segment. 
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Q.E.D. 

 
 
We constructed a smaller square that could 
be measured by the segment. Contradiction! 
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Revolutionary Discovery 

 
 
In modern terms,  
Pythagoras discovered that √2 is irrational 
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Number-theoretic proof of 
irrationality of √2  
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Dilemma  

To ground geometry in arithmetic we need a 
unit of measurement. The unit must be small 
enough to measure all the segments 
involved in a given problem. 
 
The proof we just have seen demonstrates 
that such a unit cannot exist. 
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The Perpetual Conflict 

The tension between continuous and 
discrete remains central even today and, in 
my opinion, will remain with mathematics 
forever. 
 
The tension has been the source of 
progress and revolutionary insights for many 
ages. 
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Athens in V century BC 

• Marathon, Salamis, Themistocles, 
Aristides, Pericles, Aspasia, Aeschylus, 
Sophocles, Euripides, Aristophanes, 
Thucydides, Parthenon, Phidias…  
 

• “…we are the school of Hellas…” 
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Plato (427BC - 347BC) 
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Significance of Plato 

The safest general characterization of the 
European philosophical tradition is that it 
consists of a series of footnotes to Plato. 
  
                         Alfred North Whitehead 
                         Process and Reality 
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Ariston, the Poet 

You gaze at stars, my Aster. 
O, that I were heaven 
To look back at you 
With innumerable eyes. 
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Socrates 470BC – 399BC 
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The Gadfly 

• I neither know nor think that I know. 
 
• The life which is unexamined is not worth 

living. 
 

• The hour of departure has arrived, and we 
go our ways - I to die, and you to live. 
Which is better God only knows. 
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Plato’s life after 399 

• Megara, Cyrene, Heliopolis, Tarentum, 
Syracuse (399BC – 387BC) 
– sold into slavery by Dionysius I 

• Starts the Academy near Athens (385BC) 
• Syracuse (366BC) 

– “the palace was filled with sawdust, as they say, 
owing to the multitude of geometricians there.” 

• Syracuse (361BC)  
• Death (347BC) 
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Academy 

• Μηδείς αγεωμέτρητος εισίτω 
 

• Let no one ignorant of geometry enter 
 

• 10 out of 15 years of study were fully 
dedicated to mathematics  
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“The Century of Plato” 

“At the center of scientific life stood the 
personality of Plato. He guided and inspired 
scientific work in his Academia and outside.” 
                            B. L. van der Waerden 
                            Science Awakening 

33 



Platonic Solids 
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Delian Problem 

35 

• Doubling the cube 
 

• Several mechanical solutions by Plato’s 
students 
 

• Fully solved in 1837 by Pierre Wantzel 
 



Popular Reception 

[Athenians] came to Plato’s lecture on the 
Good in the conviction that they would get 
some one or other of the things that the 
world calls good: riches, or health, or 
strength. But when they found that Plato’s 
reasonings were of mathematics their 
disenchantment was complete. 
     Aristoxenus 
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Alexandria 

• Founded in 331BC 
• Mouseion 

– over 1000 scholars  
– free room and board 

• Lasting influence 
– canon 
– texts 
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Bibliotheca 

 
• Patronage by Ptolemy (I, II, III, IV, V, VI, VII) 
• 500000 scrolls 

– manuscript acquisitions 
– copying 
– translating 
– editing 
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Hellenistic Science  
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Euclid (325BC-265BC) 
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What do we gain from Euclid? 

Some one who had begun to read geometry 
with Euclid, when he had learnt the first 
theorem, asked Euclid, “what shall I get by 
learning these things?” Euclid called his 
slave and said, “Give him three pence, 
since he must make gain out of what he 
learns.” 

 
                               Strobaeus, Florilegium  
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Royal Road? 

Ptolemy once asked Euclid whether there 
was any shorter way to a knowledge of 
geometry than by study of the Elements, 
whereupon Euclid answered that there was 
no royal road to geometry. 
                             Proclus 
                             Commentary on Elements 
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Poetic Insight 

O blinding hour, O holy, terrible day,  
When first the shaft into his vision shone  
Of light anatomized! Euclid alone  
Has looked on Beauty bare. Fortunate they  
Who, though once only and then but far away,  
Have heard her massive sandal set on stone. 
                              Edna St Vincent Millay 
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Elements, Book X 

Proposition 2. If, when the less of two 
unequal magnitudes is continually 
subtracted in turn from the greater that 
which is left never measures the one 
before it, then the two magnitudes are 
incommensurable.  
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line_segment gcm0(line_segment a,  
                  line_segment b) { 
  while (a != b) { 
    if (b < a) a = a - b; 
    else       b = b - a; 
  } 
  return a; 
} 
 
a and b are incommensurable iff  gcm0 does not terminate.  
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gcm0 



Problem 46 

gcm0 is inefficient when one segment is 
much longer than the other. Come up with a 
more efficient implementation. 
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Problem 47 

Prove that if a segment measures two other 
segments, then it measures their greatest 
common measure.  
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Heirs of Pythagoras 

Lecture 2 

48 



   

line_segment gcm0(line_segment a,  
                  line_segment b) { 
  while (a != b) { 
    if (b < a) a = a - b; 
    else       b = b - a; 
  } 
  return a; 
} 
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gcm0 (repeat) 



   

line_segment gcm1(line_segment a,  
                  line_segment b) { 
  while (a != b) { 
    while (b < a) a = a – b; 
    std::swap(a, b); 

  } 
  return a; 
} 
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gcm1 



segment_remainder 

line_segment  
segment_remainder(line_segment a,  
                  line_segment b) { 
    while (b < a) a = a - b; 
    return a; 
} 
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Why does this terminate? 

 
 
    while (b < a) a = a - b; 
 
Axiom of Archimedes: 
 
 
 
(For Greeks segments are never 0.) 
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segment_gcm 

line_segment  
segment_gcm(line_segment a,    
            line_segment b) { 
  while (a != b) { 
    a = segment_remainder(a, b); 
    std::swap(a, b); 
  } 
  return a; 
} 
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Recursive Remainder Lemma 

54 



fast_segment_remainder 
line_segment  
fast_segment_remainder(line_segment a,  
                       line_segment b) 
{ 
  if (a <= b) return a; 
  if (a - b <= b) return a - b; 
  a = fast_segment_remainder(a, b + b); 
  if (a <= b) return a; 
  return a - b; 
} 
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fast_segment_gcm 

line_segment  
fast_segment_gcm(line_segment a,    
                 line_segment b) { 
while (a != b) { 
    a = fast_segment_remainder(a, b); 
    std::swap(a, b); 
  } 
  return a; 
} 
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Discovery of 0 

• Babylonian astronomers used 0 with base 
60 positional notation. 
– The rest of their society used decimal non-

positional notation. 
• Greek astronomers used base 60 

positional notation for their trigonometric 
tables. 
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Abacus 

• Known throughout 
from ancient China to 
Rome 

• Positional decimal 
representation  

• Still, no written 
representation of 0 for 
1000 years! 
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Decimal 0 

• Indian mathematicians combined “natural” 
decimal integers with positional notation 
and 0 
– The notation spread through India to Persia 

from  6th  to 9th century AD. 
• Arab scholars adopted it and it was taught 

from Bagdad to Cairo to Cordoba. 
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Pisa 
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Leonardo Pisano (1170-1250) 
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Leonardo’s Journeys 

• “In his boyhood” visits his father in Bugia, 
Algiers where he studies “Hindu digits”. 

• Later, while on business, he studied 
further techniques in Egypt, Syria, Greece, 
Sicily, and Provence. 

• Leonardo and Frederick II (Michael Scott, 
John of Palermo.) 

• Given a salary by Pisa in recognition of his 
accomplishments.  
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Leonardo’s Books 

• Liber Abaci (1st edition, 1203) 
– Book of Computations 

• Practica Geometriae (1223) 
• Flos (1225) 
• Liber Quadratorum (1226) 
• Liber Abaci (2nd edition, 1228) 
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Problem 64 (easy) 

Prove that 
 
 
 
 
Why was it difficult for the Greeks? 
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Problem 65 

For any odd square number x find an even 
square number y, such that x + y is a square 
number. 
                             Liber Quadratorum 
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Problem 66 (hard) 

If x and y are both sums of two squares, 
then so is their product xy. 
                            Liber Quadratorum 
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Zero segments 

• We can view AA as a segment.  
• That forces the re-adjustment in our 

procedures. 
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fast_segment_remainder1 
line_segment  
fast_segment_remainder1(line_segment a,  
                        line_segment b) 
{ 
  // precondition: b != 0 
  if (a < b) return a; 
  if (a - b < b) return a - b; 
  a = fast_segment_remainder1(a, b + b); 
  if (a < b) return a; 
  return a - b; 
} 
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Halving 

• It is possible to divide a segment in two 
equal parts with ruler and compass. 
 

• That allows us to eliminate the recursion 
from the fast remainder algorithm. 
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largest_doubling 

line_segment  
largest_doubling(line_segment a,  
                 line_segment b) { 
  // precondition: b ≠ 0 
  while (b <= a – b) b = b + b; 
  return b; 
} 
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remainder 
line_segment remainder(line_segment a,  
                       line_segment b) { 
  // precondition: b ≠ 0 
  if (a < b) return a; 
  line_segment c = largest_doubling(a, b); 
  a = a – c; 
  while (c != b) { 
    c = half(c); 
    if (c <= a) a = a – c; 
  } 
  return a; 
} 
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Computing quotient 
integer quotient(line_segment a, line_segment b) { 
  // Precondition: b > 0 
  if (a < b) return integer(0); 
  line_segment c = largest_doubling(a, b);  
  integer n(1); 
  a = a – c; 
  while (c != b) { 
      c = half(c); n = n + n; 
      if (c <= a) { a = a – c; n = n + 1; } 
  } 
  return n; 
} 
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Ahmes Knew It 

• A primitive version of quotient algorithm 
appears in the Rhind papyrus. 
 

• It is an “algorithmic inverse” of Egyptian 
multiplication. 
 

• It was known to the Greeks as Egyptian 
division. 
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Computing quotient and 
remainder 

std::pair<integer, line_segment> 
quotient_remainder(line_segment a, line_segment b) { 
  // Precondition: b > 0 
  if (a < b) return std::make_pair(integer(0), a); 
  line_segment c = largest_doubling(a, b);  
  integer n(1); 
  a = a – c; 
  while (c != b) { 
      c = half(c); n = n + n; 
      if (c <= a) { a = a – c; n = n + 1; } 
  } 
  return std::make_pair(n, a); 
}  
Computing both quotient and remainder is not more complex than just quotient. 
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Floyd-Knuth: no halving 
line_segment remainder_fibonacci( 
       line_segment a, line_segment b) {  
  // Precondition: b > 0  
  if (a < b) return a;  
  line_segment c = b;  
  do {  
    line_segment tmp = c; c = b + c; b = tmp;  
  } while (a >= c);  
  do {  
    if (a >= b) a = a - b;  
    line_segment tmp = c – b; c = b; b = tmp;  
  } while (b < c);  
  return a;  
} 
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Problem 76 

Design quotient_fibonacci and 
quotient_remainder_fibonacci. 
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gcm_remainder 

line_segment  
gcm_remainder(line_segment a,    
              line_segment b) { 
  while (b != line_segment(0)) { 
    a = remainder(a, b); 
    std::swap(a, b); 
  } 
  return a; 
} 
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Euclidean algorithm for integers 

integer gcd(integer a, integer b) { 
  while (b != integer(0)) { 
    a = a % b; 
    std::swap(a, b); 
  } 
  return a; 
} 
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General Treatment 

 
• Read EoP, chapter 5 
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Dutch Golden Age (1568–1700) 
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Simon Stevin (1548 – 1620) 
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Stevin’s Contributions 
• Engineering 

– use of sluices for military purposes 
– wind-powered vehicle 

• Physics 
– parallelogram of forces 

• representation of forces by vectors 

– hydrostatics 
• pressure is independent of shape 

– acceleration of falling bodies 

• Music 
–    
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The Tithe (1585) 
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Numbers measure everything 

• “Number is that which expresseth the quantitie 
of each thing.”  

                         Simon Stevin 
                         Disme 
• “with one stroke, the classical restrictions of 

“numbers” to integers or to rational fractions was 
eliminated. His general notion of a real number 
was accepted by all later scientists.” 

                         B. L. van der Waerden 
                         History of Algebra 
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Stevin invented the number line 

• negative 
• irrational 
• inexplicable… 
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Swept under the rug 

• Replacement of finite with infinite 
representation 
– 1/7 vs. 0.142857142857142857142857142857… 
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Rene Descartes (1596 – 1650) 
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Cartesian Geometry 

“Any problem in geometry can easily be 
reduced to such terms that a knowledge of 
lengths of certain strait lines is sufficient for 
its construction.” 
 Renatus Cartesius, La Geometrie 
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Polynomials (Stevin 1585) 
 
 

 

• Till Stevin it was an algorithm 
– take a number; raise it to 4th power; multiply it 

by 4 … 
• Polynomial is a finite sequence of 

numbers: 
 4, 7, -1, 27, -3 
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Intermediate Value Theorem 

• Appendice algébraique contenant règle  
générale de toutes équations (1594) 

• Stevin shows how the successive 
decimals of the root can be obtained. 

• “in some cases the true value cannot be 
reached though one can obtain as many 
decimals of it as one may wish and come 
indefinitely near to it.”  
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Horner’s rule 
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Evaluating polynomials 
template <InputIterator I, Semiring R> 
R polynomial_value(I f, I l, R x) { 
  if (f == l) return R(0); 
  R sum(*f); 
  while (++f != l) { 
    sum = sum * x; 
    sum = sum + *f; 
  } 
  return sum; 
} 
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The value type of iterator 

• The value type of the iterator (the type of 
the coefficients of the polynomial) does not 
have to be equal to the semiring R (the 
argument type of the polynomial and its 
result type). 
– e.g., polynomial with real coefficients can be 

evaluated with a matrix with real coefficients. 
• characteristic polynomial of a matrix can be 

applied to the matrix 
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Problem 96 

What are the requirements on R and the 
value type of iterator? In other words, what 
are the requirements on coefficients of 
polynomials and on their values. 
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Operations on polynomials 

• addition, subtraction 
– element by element 

 
• multiplication: 

97 



Degree of polynomials 

Degree of a polynomial is the index of the 
highest coefficient: 
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Division with remainder 

• Polynomial a is divisible by polynomial b 
with remainder if there are polynomials q 
and r such that 
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Problem 100 

Prove that for any two polynomials p(x) and q(x) 
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    3x2 +2x -2 
x-2 3x3 -4x2 -6x +10 
    3x3 -6x2 

            2x2 -6x 
        2x2 -4x 
            -2x +10 
            -2x +4 
                 6 
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Polynomial Division 



Stevin’s gcd algorithm (1585) 
polynomial<real> gcd(polynomial<real> m,  
                     polynomial<real> n) {         
   while (n != polynomial<real>(0)) { 
     polynomial<real> t = remainder(m, n); 
     m = n; 
     n = t; 
   } 
   return m; 
} 
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Proof of correctness  

103 

gcd is preserved at every step and the 
number of steps is finite: 



Problem 104 (Chrystal, Algebra) 

Find gcd of: 
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Heirs of Pythagoras 

Lecture 3 
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Die heilige deutsche Kunst 

• Music 
– Bach, Händel, Haydn, Mozart, Beethoven, 

Schubert, Schumann, Brahms, Wagner, 
Mahler, Richard Strauss  

• Literature 
– Goethe, Schiller 

• Philosophy 
– Leibniz, Kant, Hegel, Schopenhauer, Marx, 

Nietzsche  
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German Professor 

• Commitment to the truth 
• A scientist as a professional civil servant 
• Collegial spirit 
• Professor-student bond 
• Continuity of research 

 
Wir müssen wissen — wir werden wissen!  
            We must know — we will know! 
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University of Göttingen (1734) 

108 

• Gauss, Riemann, Dirichlet, 
Dedekind, Klein, Hilbert, 
Minkowski, Courant, 
Noether 

• Max Born, Heisenberg, 
Oppenheimer 

 
 



Carl Friedrich Gauss 

109 
Regular heptodecagon 



Princeps mathematicorum 

• Fundamental Theorem of Algebra 
• Number Theory 
• (Non-Euclidean geometry) 
• Normal distribution and method of least 

squares  
• Celestial Mechanics 
• Differential Geometry 
• Electromagnetism  
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Disquisitiones Arithmeticae 
(1801) 

• Fundamental theorem of arithmetic 
• Modular arithmetic 
• Quadratic reciprocity law 
• Theory of integral quadratic forms 
• Cyclotomic equations and construction of 

regular polygons 
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Gauss gcd “algorithm”  

Given many numbers A, B, C, etc. the greatest 
common divisor is found as follows. Let all the 
numbers be resolved into their prime factors, and 
from these extract the ones which are common to 
A, B, C, etc… 
Moreover, we know from elementary consideration 
how to solve these problems when the resolution 
of the numbers A, B, C, etc. into factors is not 
given. 
          Disquisitiones Arithmeticae, art. 18 
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Complex Numbers 

• Imaginary numbers (xi where i2 = -1) were 
used since XVI century, but never 
acquired legitimacy. 

• In 1831 Gauss introduced complex 
numbers z = a + bi as points (a,b) on 
Cartesian plane. 

• In the same paper he introduced complex 
integers (Gaussian integers) which 
became a major tool in number theory. 
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Gaussian Integers 

• Complex numbers of the form a + bi where 
a and b are integers. 
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Gaussian remainder z1 % z2 

 
• Construct a grid on complex plane 

generated by z2, iz2, -iz2 and –z2 
• Find a square in the grid containing z1 
• Find a vertex w of the square closest to z1 
• z1 – w is the remainder 
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Gaussian integer gcd 
complex<integer> gcd(complex<integer> m,  
                     complex<integer> n) {         
   while (real(n) != 0 || imag(n) != 0) { 
     complex<integer> t = m % n; 
     m = n; 
     n = t; 
   } 
   return m; 
} 
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Use of Gaussian Integers 

The introduction of Gaussian integers lead 
to extraordinary simplification of several 
difficult proofs in number theory. 
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Johann Peter Gustav  
Lejeune Dirichlet (1805-1859) 
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Dirichlet Life 

• Proof of Last Fermat Theorem for n = 5 
• Slept with Disquisitionae Arithmeticae 

under his pillow 
• In 1855 succeeded Gauss in Gottingen 
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Primes in arithmetic progressions 

 
If gcd(a, b) = 1 then there are infinitely many 
primes of the form an + b  
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Vorlesungen über Zahlentheorie 
(Lectures on Number Theory) 

…the whole structure of number theory rests on a 
single foundation, namely the algorithm for finding 
the greatest common divisor of two numbers.  
All the subsequent theorems … are still only 
simple consequences of the result of this initial 
investigation… 
…any analogous theory, for which there is a 
similar algorithm for the greatest common divisor, 
must also have consequences analogous to those 
in our theory. In fact, such theories exist. 
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Lectures on Number Theory 

If one considers all numbers of the form: 
 
 
…it is only for certain values of  , e.g.      , that 
the greatest common divisor of two numbers could 
be found by an algorithm like the one for … 
integers… 
However, it is otherwise when       : 
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Richard Dedekind (1831 – 1916) 
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Dedekind’s Life 

• Last student of Gauss 
• Collaborator of Dirichlet 
• TU Braunschweig 
• Ring Theory 
• Algebraic Integers 
• Foundations of real numbers 

– also integers and rationals 
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Algebraic integers 

Algebraic integers are linear integral 
combinations of roots of a monic polynomial 
with integer coefficients: 
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The Promise of  
Algebraic Integers 

• If Euclidean algorithm can be used with 
certain kind of algebraic integers 
(cyclotomic integers) that would lead to the 
proof of the Last Fermat Theorem. 

• Unfortunately, it is not so. Algebraic 
integers generated by the polynomial 
 

   do not work with the Euclidean algorithm. 
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An (almost) abstract algebra 

• Dedekind work on algebraic integers 
contained all the fundamental concepts of 
modern abstract algebra. 

• Es steht alles schon bei Dedekind! 
– It is all already in Dedekind – Emmy Noether 
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Emmy Noether (1882 -1935) 130 



Life of Noether 

• Gottingen 
– Invariant Theory 
– Noether’s theorem 
– Algebra 

• Moscow 
• Bryn Mawr  

– not Princeton "men's university, where nothing female 
is admitted" 
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It was she who taught us to think in terms of 
simple and general algebraic concepts – 
homomorphic mappings, groups and rings with 
operators, ideals… 
    P.S. Alexandrov 
For Emmy Noether, relationships among 
numbers, functions, and operations became 
transparent, amenable to generalisation, and 
productive only after they have been 
dissociated from any particular objects and 
have been reduced to general conceptual 
relationships… 
    B.L. van der Waerden 
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Bartel Leendert van der Waerden 
(1903 - 1996) 133 
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Noether gcd algorithm 
template <EuclideanDomain R>  
R gcd(R m, R n) {         
   while (n != R(0)) { 
     R t = m % n; 
     m = n; 
     n = t; 
   } 
   return m; 
}  
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Nicolas Bourbaki 

136 
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Euclid and Göttingen  
• Gauss: Non-Euclidean geometry 
• Dirichlet:  Infinity of primes in arithmetic progression 
• Riemann: Non-Euclidean geometry 
• Dedekind: Real numbers  
• Klein: Erlanger program 
• Hilbert: Foundations of Geometry, Mechanization of 

mathematics 
• Minkowski: Space-time 
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Group 
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Notation for group operation 

• Mathematicians use circle or star or dot 
formally. 
– They often replace x*y with xy. 

• They use + for Abelian (commutative) 
groups. 
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All groups are  
transformation groups 

• Every element a of the group G defines a 
transformation of G onto itself: 
      x ⟶ ax 

• This transformation is one-to-one because 
of invertibility: 
      y ⟶ a-1x 
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Group transformations are 
one-to-one 

For any finite set S of elements of group G 
and any element a of G, a set of elements 
aS has the same number of elements as S: 
Proof:  
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Examples of groups 

• Additive group of integers  
– there is no multiplicative group of integers 

• Multiplicative group of remainders modulo 7 
• Permutation group of 52 cards 
• Multiplicative group of invertible matrices with 

real coefficients  
• Group of rotations of the plane 
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Kinds of group 

• Abelian groups 
• Finite groups 
• Finite cyclic group 
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Problem 148 (very easy) 

Prove that any group has at least one 
element. 
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Order of a group 

If a group has n > 0 elements, n is is called 
the group’s order. 
 
If n has infinitely many elements, it is of 
infinite order. 
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Order of an element 

An element a has an order n > 0 if an = e 
and for any 0 < k < n,  ak ≠ e.  
 
If such n does not exist, a has an infinite 
order. 
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Problem 151 (very easy) 

• What is the order of e? 
 

• Prove that e is the only element of such 
order. 
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Every element of a finite group 
has finite order 

If n is an order of the group, then for any 
element a, {a, a2, a3, …, an+1} has at least 
one repetition ai and aj. Let us assume that i 
< j and ai is the first repeated element. Then  
 
 
 
 
And j – i > 0 is the order of a. 
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Problem 153 

Prove that if a is an element of order n, then  
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Subgroups 

• A subgroup is a group that is a subset of 
another group. 

• Examples 
– the additive group of even numbers are a 

subgroup of the additive group of integers. 
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Multiplication modulo 7 with 
inverses 
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Problem 157 (easy) 

• Find orders of every element of 
multiplicative group of remainders mod 7. 
 

• Find orders of every element of 
multiplicative group of remainders mod 11. 
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Cyclic group 

A finite group is called cyclic if it has an 
element a such that for any element b there 
is an integer n where 
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Cyclic group of an element 

Powers of a given element in a finite group 
form a subgroup. 
• Powers contain e. 
• Powers contain inverse. 

159 



Example of a cyclic group 

Additive group of remainders modulo n. 
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Problem 161  

Prove that any subgroup of a cyclic group is 
cyclic. 
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Problem 162 (easy) 

Prove that a cyclic group is Abelian.  
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Cosets 
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Examples of cosets 

Consider additive group of integers Z and its 
subgroup, integers divisible by 4, 4Z. It has 
4 distinct cosets 
• 4n 
• 4n + 1 
• 4n + 2 
• 4n + 3 
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Size of cosets 

The number of elements in a coset aH is the 
same as the number of elements in the 
subgroup H. 
Proof:  
Follows from one-to-one property of the 
transformation ax. 
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Complete coverage by cosets 

Every element a of group G belongs to 
some coset of subgroup H. 
 
Proof: 
 
 

166 



Cosets are  
either disjoint or identical 

If two cosets aH and bH in a group G have a 
common element c, then aH = bH. 
Proof: 
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Lagrange’s Theorem 

The order of a subgroup H of a finite group 
G divides the order of the group. 
Proof: 
1. The group G is covered by cosets of H.  
2. Different cosets are disjoint. 
3. They are of the same size n. 
The order of G is nm where m is the number 
of distinct cosets. 
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Corollary of Lagrange’s theorem 

The order of any element in the finite group 
divides the order of the group. 
Proof: 
An order of an element is equal to the order 
of the cyclic group of its powers. 
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Second Corollary 

G is a group of order n. If a is an element of 
G then an = e. 
Proof: 
If a has an order m, than m divides n, 
and n = qm.  
am = e, therefore (am)q = e and an = e.  
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New Proof of Little Fermat 
Theorem 

Let us take a multiplicative group of 
remainders modulo p. Since p - 1 is the 
order of the group it follows immediately 
from the second corollary of Lagrange’s 
Theorem that: 
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New Proof of Euler Theorem 

Let us take a multiplicative group of coprime 
remainders modulo n. Since φ(n) is by 
definition the order of the group it follows 
immediately from the second corollary of 
Lagrange’s Theorem that: 
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Problem 173 (very easy) 

What are subgroups of a group of order 
101? 
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Problem 174 

Prove that every group of prime order is 
cyclic. 
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Heirs of Pythagoras 

Lecture 4 
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Rings 
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Examples of Rings 

• Integers 
•  n × n matrices with real coefficients 
• Gaussian integers 
• Univariate polynomials with integer 

coefficients 
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Commutative Rings 

A ring is commutative if xy = yx. 
• non-commutative rings usually come from 

linear algebra 
• rings of algebraic integers and polynomial 

rings commute 
• Two “branches” of abstract algebra 

– Commutative algebra 
– Non-commutative algebra 

We are dealing with commutative algebra. 178 



Invertible Elements 

An element x of a ring is called invertible if 
there is an element  x-1 such that 
 
 
 
An invertible element of a ring is called a 
unit of this ring. 
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Problem 180 (very easy) 
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A product of units 

A product of units is a unit. 
 
Proof: 
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Multiplicative group of units 

• Units are closed under multiplication. 
• 1 is a unit. 
• Inverse of a unit is a unit. 
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Integral Domain 

An element x of a ring is called a zero 
divisor if  
 
 
 
A commutative ring is an integral domain if it 
has no zero divisors. 
 
 183 



Examples of Integral Domain 

• Integers 
• Gaussian integers 
• Polynomials over integers 
• Rational functions over integers 
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Problem 185 (very easy) 

Prove that a zero divisor is not a unit. 
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Euclidean domain  
(Euclidean ring) 

E is a Euclidean domain if: 
– E is an integral domain 
– E has operations quot and rem 
– E has a non-negative norm: 
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Euclidean Domain gcd 
template <EuclideanDomain R>  
R gcd(R m, R n) {         
   while (n != R(0)) { 
     R t = m % n;  // ‖t‖ < ‖n‖ 
     m = n; 
     n = t; 
   } 
   return m; 
}  
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Fields 

188 

An integral domain where every non-zero 
element is invertible is called a field. 



Examples of fields 
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Kinds of fields 

• Finite fields 
• Algebraically closed fields 
• Non-commutative field of quaternions  
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Josef (“Yossi”) Stein (1961) 

“I was in the beginning of my PhD thesis, which 
included using the Racah Algebra. Using "Racah 
Algebra" meant doing calculations with numbers of 
the form a/b*sqrt(c), where, a, b, c were integers. I 
wrote a program for the only available computer in 
Israel at that time - The WEIZAC at the Weizmann 
institute. Addition time was 57 microseconds, 
division took about 900 microseconds. Shift took 
less than addition. …I had the right conditions for 
finding that algorithm. Fast GCD meant survival.” 
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Delayed publication 
“Yes, 1961 is the correct year…The reason why I did not 
publish the algorithm earlier was, that when I told my 
advisor (G. Racah himself) about my idea, he said: "Yesss” 
(in Hebrew) in his Italian accent. Somehow this did not 
sound like an encouragement for publication. In 1966, 
when I was looking for a post-doc I met another great 
physicist: John Blatt. He encouraged me to publish it.” 
 
Josef Stein, Computational problems associated with 
Racah algebra, J. Comput. Phys., (1967) 1, 397-405 
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 Stein’s Mathematics 

193 



 196        42   
   98        21       2 
   49        21       2 
   28        21       2 
   14        21       2 
     7        21       2 
   14          7       2 
     7          7       2  
 
GCD: 7×2 = 14                              
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Stein’s algorithm  
(prologue) 

template <BinaryInteger I> 
I stein_gcd(I m, I n) { 
  if (m < I(0)) m = -m; 
  if (n < I(0)) n = -n; 
  if (m == I(0)) return n; 
  if (n == I(0)) return m; 
 
  //  
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Stein’s algorithm  
(factoring out power of 2) 

int d_m = 0;  
while (even(m)) { m >>= 1; ++d_m;} 
 
int d_n = 0; 
while (even(n)) { n >>= 1; ++d_n;} 
 
//  
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Stein’s algorithm  
(the main loop) 

 
while (m != n) { 
  if (n > m) swap(n, m); 
  m -= n; 
  do m >>= 1; while (even(m)); 
} 
 
//  
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Stein’s algorithm  
(epilogue) 

 
 
  return m << min(d_m, d_n); 
} 
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Is it just a hack? 

• Is Stein’s algorithm only interesting 
because of slow hardware? 
 

• Is it only useful for binary integers? 
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Every useful algorithm is based on some 
fundamental mathematical truth. 

• The discoverer of the algorithm might not 
see this truth. 

• There might be a long time between the 
first discovery of the algorithm and its 
understanding. 

• Every useful program is a worthy object of 
study. 
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Generalization of Euclid’s gcd 
• Integers  

– Greeks (V BC)   
• Polynomials  

– Stevin (ca. 1600) 
• Gaussian Integers  

– Gauss (ca. 1830) 
• Algebraic Integers  

– Dirichlet, Dedekind (ca. 1860) 
• Generic Version 

– Noether, van der Waerden (ca. 1930) 
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Stein for polynomials        (1969)  

Use x as 2 ! 
 
• x2 + x is “even” 

 
• x2 + x + 1 is “odd”  

 
• x2 + x “shifts to” x + 1 
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Stein for polynomials over a field 
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     n                         m             operation 
x3 − 3x − 2          x2 − 4       n − (0.5x2 − 2) 
x3 − 0.5x2 − 3x    x2 − 4       shift(n) 
x2 − 0.5x − 3       x2 − 4       n − (0.75x2 − 3) 
0.25x2 − 0.5x      x2 − 4       normalize(n) 
x2 − 2x                x2 − 4       shift(n) 
x − 2                   x2 − 4       m − (2x − 4) 
x − 2                   x2 − 2x     shift(m) 
x − 2                   x − 2        GCD: x − 2 
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Andre Weilert algorithm for Gaussian 
Integers (2000) 

Use 1+i as 2 ! 
 
Andre Weilert, (1+i)-ary GCD Computation 

in Z[i] as an Analogue of the Binary GCD 
Algorithm, J. Symbolic Computation 
(2000) 30, 605-617 
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Division by 1+i 

 
 
 
A Gaussian integer a+bi is divisible by 1+i if 

and only if a=b (mod 2) 
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Remainder Cancellation  

If two Gaussian integers z1 and z2 are not 
divisible by 1+i then z1+z2 is divisible by 1+i. 
Then z1−z2, z1+iz2 and z1−iz2 are also 
divisible by 1+i. 
 

And, 
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Further extension of Stein (2003) 

Ivan Bjerre Damgård and Gudmund 
Skovbjerg Frandsen, Efficient algorithms for 
GCD and cubic residuosity in the ring of 
Eisenstein integers, Proceedings of the 14th 
International Symposium on Fundamentals 
of Computation Theory, Lecture Notes in 
Computer Science 2751, Springer-Verlag 
(2003), 109-117 
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Damgård and Frandsen Algorithm 

• Stein algorithm works for Eisenstein 
integers          , i.e. the integers extended 
with a complex primitive cubic root of 1 

 
    
 
• In Stein, we use           instead of 2. 
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Stein works where Euclid does not! 

In 2004 Agarwal and Frandsen 
demonstrated that there is a ring that is not 
a Euclidean domain (ring of integers in                  
) where Stein algorithm works. 
 

Saurabh Agarwal, Gudmund Skovbjerg 
Frandsen: Binary GCD Like Algorithms for 
Some Complex Quadratic Rings. ANTS 
2004: 57-71 
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    What is Stein domain? 
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Fundamental operations on Stein 

• is_unit(u)  
          there is a v such that vu = 1 

• are_associates(m,n)  
            m = un where u is a unit  

• is_smallest_prime(p)  
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Three lemmas for Stein 

• If a Euclidean ring is not a field it has a smallest 
prime. 
 

•   
 

•   
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Conjecture 

 
 
 
Every Euclidean domain is a Stein domain  
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Generalized Stein’s algorithm  
(prologue) 

template <SteinDomain R> 
R stein_gcd(R m, R n) { 
 
  if (m == R(0)) return n; 
  if (n == R(0)) return m; 
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Generalized Stein’s algorithm  
(factoring out power of smallest prime) 

int d_m = 0; 
while (divisible_by_smallest_prime(m)) {  
   m = divide_by_smallest_prime(m); 
   ++d_m; 
} 
int d_n = 0;  
while (divisible_by_smallest_prime(n)) {  
   n = divide_by_smallest_prime(n); 
   ++d_n; 
} 
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Generalized Stein’s algorithm  
(the main loop) 

 
while (!is_associate(m, n)) { 
  if (norm(n) > norm(m)) swap(n, m); 
  m = reduce_associate_remainders(n, m); 
  do { 
    m = divide_by_smallest_prime(m); 
  } while (divisible_by_smallest_prime(m));  
} 
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Generalized Stein’s algorithm  
(epilogue) 

 
  R p = smallest_prime<R>(); 
  return m * power(p, min(d_m, d_n)); 
} 
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Lessons of Stein  

• Even a classical problem studied by great 
mathematicians may have a new solution. 

• Performance constraints are good for 
creativity. 

• Behind every optimization there is solid 
mathematics. 
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Project 

Compare the performance of the Stein and 
Euclid algorithms on random integers from 
ranges [0, 216), [0, 232), and  [0, 264). 
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Heirs of Pythagoras 

Lecture 5 
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Bézout's identity 

222 



Claude Gaspard Bachet de Méziriac 
(1581 – 1638) 
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Bachet’s work 

• Diophantus, Arithmetic (1621)  
– Bachet’s Diophantus immortalized by Fermat  

 
• Problèmes Plaisants (1612, 1624) 

– first book on recreational mathematics 
• the modern equivalent is Mathematical 

Recreations and Essays by W. W. Rouse Ball 
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Ideals 

An ideal I is a non-empty subset of a ring R 
such that 
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Examples of Ideals 

• Even numbers 
 

• Univariate polynomials with root 5 
 
• Polynomials with x and y with free 

coefficient 0 
   x2 + 3y2 + xy + x 
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Subrings that are not ideals 
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Problem 228 

1. Prove that an ideal I is closed under 
subtraction: 
 
 
2. Prove that I contains 0. 
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Linear combination ideal 

In a ring, for any two elements a and b, the 
set of all elements {xa + yb} forms an ideal. 
Proof: 
closed under addition: 
       (x1a + y1b) + (x2a + y2b) = (x1 + x2)a + (y1 + 
y2)b 
closed under multiplication by an arbitrary element: 
       z(xa + yb) = (zx)a + (zy)b 
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Problem 230 

Prove that all the elements of a linear 
combination ideal are divisible by any of the 
common divisors of a and b. 
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Ideals in Euclidean Domains 

Any ideal in an Euclidean domain is closed 
under remainder operation and under 
Euclidean gcd. 
Proof: 
1. Closed under remainder: 

rem(a, b) = a – quot(a, b)⋅b  
2.  Closed under gcd : 

Immediately follows from 1.  
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Principal Ideals 
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Examples of Principal Ideals 

• Even numbers 
 

• Polynomials with root 5 
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An ideal that is not principal 

 
• Polynomials with x and y with free 

coefficient 0 
   x2 + 3y2 + xy + x 
 
  Couldn’t be generated by x – would not 
contain y; and vice versa. 
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Problem 235 

Prove that any element in a principal ideal is 
divisible by the principal element. 
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Principal Ideal Domain 

An integral domain is called a principal ideal 
domain (PID) if every ideal in it is a principal 
ideal. 
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Bachet theorem 

A linear combination ideal I = {хa + yb} of a 
Euclidean domain contains gcd(a, b).  
Proof: 
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Invertibility lemma 
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Problem 240 

Using Bachet’s theorem prove that if p is 
prime, then any 0 < a < p has a 
multiplicative inverse modulo p. 

240 



Non-constructive proofs 

• We know that inverses exist, but have no 
idea how to find them. 

• This situation is unsatisfactory. 
• The philosophy of mathematics that 

rejects non-constructive proofs is called 
constructivism.  
– Intuitionism is historically most important 

variety of constructivism. 
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Henri Poincaré 
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Poincaré’s Contributions 

• Almost every branch of mathematics  
– originating several (algebraic topology…) 

• Special relativity theory 
• Criticism of set theory and the formalist 

(Hilbert) agenda 
A major tragedy of XX century science was 
the rejection of Poincare’s legacy by 
Bourbaki and Bourbaki’s epigones. 

243 



Poincaré’s Books 

Poincaré was a brilliant writer. In 1909 he 
was elected a member of Académie 
française. His books on philosophy of 
science are very important 

– Science and Hypothesis 
– Value of Science 
– Science and Method  
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Poincaré on Science 

“Science has had marvelous applications, 
but a science that would only have 
applications in mind would not be science 
anymore, it would be only cookery.” 

245 



Bachet’s algorithm 

There is a constructive way to find x and y 
such that 

            xa + yb = gcd(a, b) 
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Trace of Euclidean Algorithm 
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Remainder trace 
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First steps of Bachet’s algorithm 
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Iterative recurrence for Bachet 
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We do not need y! 

If b ≠ 0 we can compute x and gcd and get y 
using the formula 
        y = quot(gcd(a, b) – ax, b) 
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Problem 252 

What are x and y if b = 0? 
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Extended gcd 
template <EuclideanDomain R>  
pair<R, R> extended_gcd(R a, R b) { 
  R x0(1);  
  R x1(0);  
  while (b != R(0)) {  
    // compute new r and x 
    pair<R, R> p = quotient_remainder(a, b);  
    R x2 = x1 – p.first * x0; 
    // shift r and x 
    x0 = x1; x1 = x2;  
    a = b; b = p.second; 
  }  
  return make_pair(x0, a);  
}  253 



Project 254 

Develop a version of extended gcd based on 
Stein’s algorithm. 
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Applications of gcd 

•  Cryptography 
•  Rational arithmetic 
•  Symbolic integration 
•  std::rotate 
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Permutations 

Permutation is a function from a sequence 
of n objects onto itself.  
Notation: 
 
 
Shorthand: 
                 
Example:  (2 4 1 3): {a, b, c, d} = {c, a, d, b} 
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Symmetric Groups 

• A set of all permutations on n elements 
constitutes a group called the symmetric 
group Sn. 
– group operation: composition 

• function composition is associative 
– identity element: identity permutation 
– inverse: inverse permutation 
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Problem 258 

What is the order of Sn? 
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Transpositions 

A transposition (i j) is a permutation that 
exchanges the ith and jth elements (i ≠ j) 
leaving the rest in place. 
 
(2 3): {a, b, c, d} = {a, c, b, d} 
 
(In C++, we call it swap.)  
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Transposition Lemma 

Any permutation is a product of 
transpositions. 
 
Proof: 
One transposition can put one element into 
its final destination. Therefore, n − 1 
transpositions will put all elements into their 
final destinations. 
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Problem 261 

Prove that if n > 2, Sn is not Abelian. 
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Cycles in the permutations 

Every permutation can be decomposed into 
cycles. For example, (2 3 5 6 1 4) contains 
two cycles: 
 
 
 
 
It is written (2 3 5 6 1 4) = (1 2 3 5)(4 6) 
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Cycles are disjoint 

If you are at a position in a cycle, you can 
get to all other positions in that cycle. 
Therefore, if two cycles share a position, 
they share all the positions. 
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Trivial cycle 

A cycle containing one element is called a 
trivial cycle. 
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Problem 265 

How many non-trivial cycles could a 
permutation of n elements contain? 
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Number of assignments 

The number of assignments needed to perform a 
permutation in place is n – u + v, where n is the 
number of elements, u is the number of trivial 
cycles and v is the number of non-trivial cycles.  
Proof: 
Every non-trivial cycle of length k requires  
k + 1 assignments. The number of elements in 
non-trivial cycles is equal n – u and v is added for 
all non-trivial cycles. 
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Problem 267 

Design an in-place reverse algorithm for 
forward iterators; that is, it should work for 
singly-linked lists without modifying the links. 
  
An algorithm is in-place if for an input of length n it uses 
O(p(log n)) additional space where p is a polynomial. (Such 
algorithms are also called polylog space algorithms.) 
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Heirs of Pythagoras 

Lecture 6 
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Lessons from Mathematics 

• Abstracting from specific types to 
generalized theories 
 

• Breaking the reasoning discourse into a 
sequence of small self-contained lemmas  
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Swapping ranges 

  
 
 while (condition) swap(*f0++, *f1++); 
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Ranges 

 
                                             semi-open     closed 
Bounded: two iterators              [i, j)              [i, j]    
 
Counted: iterator and integer   [i, n)             [i, n] 
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Swapping an explicit range  
with an implicit range 

 
template <ForwardIterator I0, 
          ForwardIterator I1> 
I1 swap_ranges(I0 f0, I0 l0, I1 f1) { 
  while (f0 != l0) swap(*f0++, *f1++); 
  return f1; 
} 
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The Law of Useful Return  

A procedure should return all the potentially 
useful information it computed.  

– this does not imply doing unneeded extra 
computations. 

– this does not imply returning useless 
information. 
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The Law of Separating Types 

Do not assume that two types are the same 
when they may be different. 
   template <ForwardIterator I0, 
             ForwardIterator I1> 
   I1 swap_ranges(I0 f0, I0 l0, I1 f1); 

not 
   template <ForwardIterator I> 
   I swap_ranges(I f0, I l0, I f1); 
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Swapping explicit ranges 
 
template <ForwardIterator I0, 
          ForwardIterator I1> 
pair<I0, I1> swap_ranges(I0 f0, I0 l0,  
                         I1 f1, I1 l1) { 
  while (f0 != l0 && f1 != l1) { 
    swap(*f0++, *f1++); 
  } 
  return pair<I0, I1>(f0, f1); 
} 
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The Law of Completeness  

When designing an interface, consider all 
the related procedures. 
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Swapping counted ranges 
template <ForwardIterator I0,  
          ForwardIterator I1,  
          Integer N> 
pair<I0, I1> swap_ranges_n(I0 f0,  
                           I1 f1,  
                           N n) { 
  while (n != N(0)) { 
    swap(*f0++, *f1++); 
    --n; 
  } 
  return pair<I0, I1>(f0, f1); 
} 
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Problem 278 

Why don’t we provide 
pair<I0, I1> swap_ranges_n(I0 f0,  
                           I1 f1,  
                           N0 n0,  
                           N1 n1)  
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Indexing 

While mathematical texts index sequences 
from 1, the computer science convention of 
indexing from 0 is more natural. 

– For a sequence with n elements the indices 
are in the range [0, n) and any iteration is 
bounded by the length. 

– rotating n elements to the right by k 
transforms an index i to the index i + k mod n. 
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Rotation 

A permutation of n elements by k  
where k ≥ 0: 
 
(k mod n, k + 1 mod n, …, k + n – 2 mod n, k + n – 1 mod 
n) 

 
is called an n by k rotation.  
 
(We index permutations from 0.) 
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rotate  

rotate is the most important algorithmic 
primitive of which you never heard. 
 
We are going to see its uses throughout the 
next Journey. 
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Designing Interfaces 

• We can design a useful interface only after 
we figure out its multiple future uses. 
 

• The design is a multi-pass activity. 
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Interface to rotate 

Experience shows that it is convenient to 
define rotation with three iterators: f, m and l 
where [f, m) and [m, l) are valid ranges. 
Rotation then interchanges ranges [f, m) and 
[m, l).   
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An example of rotate 

   0 1 2 3 4 5 6   
   f   m         l 
 
Produces: 
 
   2 3 4 5 6 0 1 
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Problem 285 

Prove that if we do rotate(f, m, l) then it 
performs distance(f, l) by distance(m, l) 
rotation. 
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Gries-Mills algorithm 
template <ForwardIterator I> 
void gries_mills_rotate(I f, I m, I l) { 
  // u = distance(f, m) && v = distance(m, l) 
  if (f == m || m == l) return; // u == 0 || v == 0 
  pair<I, I> p = swap_ranges(f, m, m, l); 
  while(p.first != m || p.second != l) { 
    if (p.first == m) {         // u < v 
      f = m; m = p.second;      // v = v - u      
    } else {                    // v < u 
      f = p.first;              // u = u - v 
    } 
    p = swap_ranges(f, m, m, l); 
  } 
  return;                       // u == v 
} 
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Problem 287 

If you inline swap_ranges you see that the 
algorithm does unnecessary iterator 
comparisons. Re-write the algorithm so that 
no unnecessary iterator comparisons are 
done.  
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The number of swaps during the 
last swap_range 

The number of swaps during the last 
swap_range is gcd(n, k) where  
n = distance(f, l) 
k = distance(m, l) 
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Number of cycles in the rotate 

• Every swap_range moves elements along 
their cycles. 

• The number of cycles is gcd(n, k) 
 

• For a formal proof see EoP pages 178-179 
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Complexity of Gries-Mills 

• During the call to all the swap_range except the 
last one, every swap puts one element into the 
final destination. 

• During the last swap_range every swap puts two 
elements into the final destination. 

• The total number of swaps n – gcd(n, k) 
• The total number of assignments 3(n – gcd(n, k)) 
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Trace of Gries-Mills 
0 1 2 3 4 5 6 
f   m         l 
2 3 0 1 4 5 6 
    f   m     l 
2 3 4 5 0 1 6 
        f   m l 
2 3 4 5 6 1 0 
          f m l 
2 3 4 5 6 0 1 
            f m 
              l 
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The return value of rotate 

• Many applications benefit if rotate returns 
a new middle: a position where the first 
element moved. 

• Observe, that  
rotate(f, rotate(f, m, l), l) 
is an identity permutation. 

• The task is to find a way to return the 
desired value without doing any extra 
work. 
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An auxiliary rotate 
template <ForwardIterator I> 
I rotate_unguarded(I f, I m, I l, I m1) { 
  // assert(f != m && m != l) 
  pair<I, I> p = swap_ranges(f, m, m, l); 
  while (p.first != m || p.second != l) {  
    f = p.first;       
    if (m == f) m = p.second; 
    p = swap_ranges(f, m, m, l); 
  } 
  return m1; 
} 
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Final rotate for forward iterators 
template <ForwardIterator I> 
I rotate(I f, I m, I l, forward_iterator_tag) { 
  if (f == m) return l; 
  if (m == l) return f; 
  pair<I, I> p = swap_ranges(f, m, m, l); 
  while (p.first != m || p.second != l) { 
    if (p.second == l)  
      return rotate_unguarded(p.first, m, l, p.first); 
    f = m; 
    m = p.second; 
    p = swap_ranges(f, m, m, l); 
  } 
  return m; 
} 
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In search of faster algorithm 

• We know that we can do a permutation 
without trivial cycles with n + c 
assignments where n is the size of 
permutation and c is the number of cycles. 

• Such an algorithm requires stronger 
requirements on the iterators. 

• And we need to go through cycles in 
reverse order! 
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cycle_from 
template <ForwardIterator I,  
          Transformation F> 
void cycle_from(I i, F from) { 
  typedef typename iterator_traits<I>::value_type V; 

  V tmp = *i;     
  I start = i; 
  for (I j = from(i); j != start; j = from(j)) { 
    *i = *j; 
    i = j; 
  } 
  *i = tmp; 
} 
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transformation for rotate 

template <RandomAccessIterator I> 
struct rotate_transform { 
  typedef typename iterator_traits<I>::difference_type N; 
  N plus; 
  N minus; 
  I m1; 
 
  rotate_transform(I f, I m, I l) : 
    plus(m – f), minus(m – l), m1(f + (l – m)){} 
 
  I operator()(I i) const { 
    return i + ((i < m1) ?  plus : minus); 
  } 
}; 
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Modified Fletcher-Silver algorithm 

template <RandomAccessIterator I> 
I rotate(I f, I m, I l,  
         random_access_iterator_tag) { 
  if (f == m) return l; 
  if (m == l) return f; 
  typedef iterator_traits<I>::difference_type N; 
  N d = gcd(m - f, l - m); 
  rotate_transform<I> rotator(f, m, l); 
  while (d-- > 0) cycle_from(f + d, rotator); 
  return rotator.m1; 
}  
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3-reverse rotate 
template <BidirectionalIterator I> 
void three_reverse_rotate(I f, I m, I l) { 
     reverse(f, m); 
     reverse(m, l); 
     reverse(f, l); 
} 
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Problem 300 

• How many assignments does 3-reverse 
rotate perform? 
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reverse_until 
 
 
template <BidirectionalIterator I> 
pair<I, I> reverse_until(I f, I m, I l) { 
  while (f != m && m != l) swap(*f++, *--l); 
  return pair<I, I>(f, l); 
} 
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Bidirectional rotate 
template <BidirectionalIterator I> 
I rotate(I f, I m, I l,  
         bidirectional_iterator_tag) { 
     reverse(f, m); 
     reverse(m, l); 
     pair<I, I> p = reverse_until(f, m, l); 
     reverse(p.first, p.second); 
     if (m == p.first) return p.second; 
     return p.first; 
} 
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Iterator category dispatch 
template <ForwardIterator I> 
inline 
I rotate(I f, I m, I l) { 
  typename iterator_traits<I>::iterator_category c;  

  return rotate(f, m, l, c); 
} 
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Bidirectional reverse 
 
template <BidirectionalIterator I> 
void reverse(I f, I l,  
             bidirectional_iterator_tag) { 
  while (f != l && f != --l) swap(*f++, *l); 
} 
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Returning from reverse 

It might appear that according to the law of 
useful return we should return 
 
             pair<I, I>(f, l) 
 
However, there is no evidence that it is 
useful; therefore the law does not apply. 
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reverse_n 

template <BidirectionalIterator I,  
          Integer N> 
void reverse_n(I f, I l, N n) { 
  n >>= 1; 
  while (n-- > N(0)) { 
    swap(*f++, *--l); 
  } 
} 
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Problem 307 

Unroll the loop of reverse_n 4 times. 
(Read about Duff’s device.) 

307 



Random Access reverse 

 
template <RandomAccessIterator I> 
void reverse(I f, I l,  
               random_access_iterator_tag) { 
  reverse_n(f, l, l - f); 
} 
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Recursive reverse 
template <ForwardIterator I,  
          BinaryInteger N> 
I reverse_recursive(I f, N n) { 
  if (n == 0) return f; 
  if (n == 1) return ++f; 
  N h = n >> 1; 
  I m = reverse_recursive(f, h); 
  advance(m, n & 1); 
  I l = reverse_recursive(m, h); 
  swap_ranges_n(f, m, h); 
  return l; 
} 
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Forward Iterator reverse 

 
template <ForwardIterator I> 
void reverse(I f, I l,  
             forward_iterator_tag) { 
  reverse_recursive(f, distance(f, l)); 
} 
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Generic reverse 

 
template <ForwardIterator I> 
inline 
void reverse(I f, I l) { 
  typename iterator_traits<I>::iterator_category c; 

  reverse(f, l, c); 
} 
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Complexity of computation 

• Time complexity 
– Hartmanis and Stearns 
– time hierarchy theorem 

• Space complexity 
– Lewis, Stearns and Hartmanis 
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Space complexity in concrete 
algorithmics 

• In-place  
– An algorithm is in-place if for an input of 

length n it uses O(p(log n)) additional space 
where p is a polynomial. (Such algorithms are 
also called polylog space algorithms.) 

• Not in-place 
– usually means that you can create a copy of 

your data 
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reverse with buffer 
template <ForwardIterator I,  
          Integer n,  
          BidirectionalIterator B> 
I reverse_n_with_buffer(I f, N n, B buffer) { 
  return reverse_copy(buffer,  
                      copy_n(f, n, buffer),  
                      f); 
} 
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reverse_copy 

template <BidirectionalIterator I,  
          OutputIterator O> 
O reverse_copy(I f, I l, O r) { 
  while (f ! = l) *r++ = *--l; 
  return r; 
} 
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Memory-adaptive algorithms 

• In practice, the dichotomy of in-place and 
not in-place algorithms is not very useful. 

• While the assumption of unlimited memory 
is not realistic, neither is the assumption of 
only polylog extra memory. 

• Usually 25%, 10%, 5% or at least 1%  of 
extra memory is available. 

• Algorithms need to adapt to however 
much is available.  
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Adaptive reverse 
template <ForwardIterator I, Integer n,  
          BidirectionalIterator B> 
I reverse_n_adaptive(I f, N n,  
                     B b, N b_n) { 
  if (n == N(0)) return f; 
  if (n == N(1)) return ++f; 
  if (n <= b_n) return reverse_n_with_buffer(f, n, b); 
  N h = n >> 1; 
  I m = reverse_n_adaptive(f, h, b, b_n); 
  advance(m, n & 1); 
  I l = reverse_n_adaptive(m, h, b, b_n); 
  swap_ranges_n(f, m, h); 
  return l; 
} 
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The sad story of 
get_temporary_buffer 

• get_temporary_buffer takes a size and 
should return the largest available buffer 
not greater than the size that fits into 
physical memory. 

• There is a bogus implementation – using 
malloc till it returns something. 

• No vendor provides the correct 
implementation. 
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Words of wisdom 

Whose heirs are we? 
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