
Journey Two:
Heirs of Pythagoras

How division with remainder led to
discovery of many fundamental

abstractions.

1

Heirs of Pythagoras

Lecture 1

2

Mathematics

• Science of numbers and space.

• Numbers and space are our innate
abilities.

3

Pythagorean School

• Square, oblong, triangular numbers

• Discrete structure of space

• Arithmetization of geometry

• A catastrophe
– the program cannot succeed

4

He discovered “the theory of
irrationals...”

 Proclus

5

Common Measure

• A segment V is a measure of a segment A
iff A can be represented as a finite
concatenation of copies of V.

• A segment V is a common measure of
segments A and B iff it is a measure of
both.

• A segment V is the greatest common
measure of A and B if it is greater than any
other common measure of A and B.

6

Properties of gcm

7

line_segment gcm(line_segment a,
 line_segment b) {
 if (a == b) return a;
 if (b < a) return gcm(a - b, b);
 if (a < b) return gcm(a, b - a);
}

8

Line segment gcm

gcm(196in, 42in)

9

Well-ordering Principle

• Greeks found the principle that any set of
natural numbers has a smallest element a
very powerful proof technique.
– It is equivalent to induction axiom.

• In order to prove that something does not
exist, prove that if it exists, a smaller one
also exists.

10

The Assumption

• Let us assume that there is a segment that
can measure both the side and the
diagonal of some square. Let us take the
smallest such square for this segment.

11

A B

C D
12

A B

C D

F

E

13

F

E

A B

C D

G

14

F

E

A B

C D

G

15

E

A B

C D

G F

16

E

A B

C D

G F

17

E

A B

C D

G F

18

E

A B

C D

G F

19

Q.E.D.

We constructed a smaller square that could
be measured by the segment. Contradiction!

20

Revolutionary Discovery

In modern terms,
Pythagoras discovered that √2 is irrational

21

Number-theoretic proof of
irrationality of √2

22

Dilemma

To ground geometry in arithmetic we need a
unit of measurement. The unit must be small
enough to measure all the segments
involved in a given problem.

The proof we just have seen demonstrates
that such a unit cannot exist.

23

The Perpetual Conflict

The tension between continuous and
discrete remains central even today and, in
my opinion, will remain with mathematics
forever.

The tension has been the source of
progress and revolutionary insights for many
ages.

24

Athens in V century BC

• Marathon, Salamis, Themistocles,
Aristides, Pericles, Aspasia, Aeschylus,
Sophocles, Euripides, Aristophanes,
Thucydides, Parthenon, Phidias…

• “…we are the school of Hellas…”

25

Plato (427BC - 347BC)

26

Significance of Plato

The safest general characterization of the
European philosophical tradition is that it
consists of a series of footnotes to Plato.

 Alfred North Whitehead
 Process and Reality

27

Ariston, the Poet

You gaze at stars, my Aster.
O, that I were heaven
To look back at you
With innumerable eyes.

28

Socrates 470BC – 399BC

29

The Gadfly

• I neither know nor think that I know.

• The life which is unexamined is not worth

living.

• The hour of departure has arrived, and we
go our ways - I to die, and you to live.
Which is better God only knows.

30

Plato’s life after 399

• Megara, Cyrene, Heliopolis, Tarentum,
Syracuse (399BC – 387BC)
– sold into slavery by Dionysius I

• Starts the Academy near Athens (385BC)
• Syracuse (366BC)

– “the palace was filled with sawdust, as they say,
owing to the multitude of geometricians there.”

• Syracuse (361BC)
• Death (347BC)

31

Academy

• Μηδείς αγεωμέτρητος εισίτω

• Let no one ignorant of geometry enter

• 10 out of 15 years of study were fully
dedicated to mathematics

32

“The Century of Plato”

“At the center of scientific life stood the
personality of Plato. He guided and inspired
scientific work in his Academia and outside.”
 B. L. van der Waerden
 Science Awakening

33

Platonic Solids

34

Delian Problem

35

• Doubling the cube

• Several mechanical solutions by Plato’s
students

• Fully solved in 1837 by Pierre Wantzel

Popular Reception

[Athenians] came to Plato’s lecture on the
Good in the conviction that they would get
some one or other of the things that the
world calls good: riches, or health, or
strength. But when they found that Plato’s
reasonings were of mathematics their
disenchantment was complete.
 Aristoxenus

36

Alexandria

• Founded in 331BC
• Mouseion

– over 1000 scholars
– free room and board

• Lasting influence
– canon
– texts

37

Bibliotheca

• Patronage by Ptolemy (I, II, III, IV, V, VI, VII)
• 500000 scrolls

– manuscript acquisitions
– copying
– translating
– editing

38

Hellenistic Science

39

Euclid (325BC-265BC)

40

What do we gain from Euclid?

Some one who had begun to read geometry
with Euclid, when he had learnt the first
theorem, asked Euclid, “what shall I get by
learning these things?” Euclid called his
slave and said, “Give him three pence,
since he must make gain out of what he
learns.”

 Strobaeus, Florilegium

41

Royal Road?

Ptolemy once asked Euclid whether there
was any shorter way to a knowledge of
geometry than by study of the Elements,
whereupon Euclid answered that there was
no royal road to geometry.
 Proclus
 Commentary on Elements

42

Poetic Insight

O blinding hour, O holy, terrible day,
When first the shaft into his vision shone
Of light anatomized! Euclid alone
Has looked on Beauty bare. Fortunate they
Who, though once only and then but far away,
Have heard her massive sandal set on stone.
 Edna St Vincent Millay

43

Elements, Book X

Proposition 2. If, when the less of two
unequal magnitudes is continually
subtracted in turn from the greater that
which is left never measures the one
before it, then the two magnitudes are
incommensurable.

44

line_segment gcm0(line_segment a,
 line_segment b) {
 while (a != b) {
 if (b < a) a = a - b;
 else b = b - a;
 }
 return a;
}

a and b are incommensurable iff gcm0 does not terminate.

45

gcm0

Problem 46

gcm0 is inefficient when one segment is
much longer than the other. Come up with a
more efficient implementation.

46

Problem 47

Prove that if a segment measures two other
segments, then it measures their greatest
common measure.

47

Heirs of Pythagoras

Lecture 2

48

line_segment gcm0(line_segment a,
 line_segment b) {
 while (a != b) {
 if (b < a) a = a - b;
 else b = b - a;
 }
 return a;
}

49

gcm0 (repeat)

line_segment gcm1(line_segment a,
 line_segment b) {
 while (a != b) {
 while (b < a) a = a – b;
 std::swap(a, b);

 }
 return a;
}

50

gcm1

segment_remainder

line_segment
segment_remainder(line_segment a,
 line_segment b) {
 while (b < a) a = a - b;
 return a;
}

51

Why does this terminate?

 while (b < a) a = a - b;

Axiom of Archimedes:

(For Greeks segments are never 0.)

52

segment_gcm

line_segment
segment_gcm(line_segment a,
 line_segment b) {
 while (a != b) {
 a = segment_remainder(a, b);
 std::swap(a, b);
 }
 return a;
}

53

Recursive Remainder Lemma

54

fast_segment_remainder
line_segment
fast_segment_remainder(line_segment a,
 line_segment b)
{
 if (a <= b) return a;
 if (a - b <= b) return a - b;
 a = fast_segment_remainder(a, b + b);
 if (a <= b) return a;
 return a - b;
}

55

fast_segment_gcm

line_segment
fast_segment_gcm(line_segment a,
 line_segment b) {
while (a != b) {
 a = fast_segment_remainder(a, b);
 std::swap(a, b);
 }
 return a;
}

56

Discovery of 0

• Babylonian astronomers used 0 with base
60 positional notation.
– The rest of their society used decimal non-

positional notation.
• Greek astronomers used base 60

positional notation for their trigonometric
tables.

57

Abacus

• Known throughout
from ancient China to
Rome

• Positional decimal
representation

• Still, no written
representation of 0 for
1000 years!

58

Decimal 0

• Indian mathematicians combined “natural”
decimal integers with positional notation
and 0
– The notation spread through India to Persia

from 6th to 9th century AD.
• Arab scholars adopted it and it was taught

from Bagdad to Cairo to Cordoba.

59

Pisa

60

Leonardo Pisano (1170-1250)
61

Leonardo’s Journeys

• “In his boyhood” visits his father in Bugia,
Algiers where he studies “Hindu digits”.

• Later, while on business, he studied
further techniques in Egypt, Syria, Greece,
Sicily, and Provence.

• Leonardo and Frederick II (Michael Scott,
John of Palermo.)

• Given a salary by Pisa in recognition of his
accomplishments.

62

Leonardo’s Books

• Liber Abaci (1st edition, 1203)
– Book of Computations

• Practica Geometriae (1223)
• Flos (1225)
• Liber Quadratorum (1226)
• Liber Abaci (2nd edition, 1228)

63

Problem 64 (easy)

Prove that

Why was it difficult for the Greeks?

64

Problem 65

For any odd square number x find an even
square number y, such that x + y is a square
number.
 Liber Quadratorum

65

Problem 66 (hard)

If x and y are both sums of two squares,
then so is their product xy.
 Liber Quadratorum

66

Zero segments

• We can view AA as a segment.
• That forces the re-adjustment in our

procedures.

67

fast_segment_remainder1
line_segment
fast_segment_remainder1(line_segment a,
 line_segment b)
{
 // precondition: b != 0
 if (a < b) return a;
 if (a - b < b) return a - b;
 a = fast_segment_remainder1(a, b + b);
 if (a < b) return a;
 return a - b;
}

68

Halving

• It is possible to divide a segment in two
equal parts with ruler and compass.

• That allows us to eliminate the recursion
from the fast remainder algorithm.

69

largest_doubling

line_segment
largest_doubling(line_segment a,
 line_segment b) {
 // precondition: b ≠ 0
 while (b <= a – b) b = b + b;
 return b;
}

70

remainder
line_segment remainder(line_segment a,
 line_segment b) {
 // precondition: b ≠ 0
 if (a < b) return a;
 line_segment c = largest_doubling(a, b);
 a = a – c;
 while (c != b) {
 c = half(c);
 if (c <= a) a = a – c;
 }
 return a;
}

71

Computing quotient
integer quotient(line_segment a, line_segment b) {
 // Precondition: b > 0
 if (a < b) return integer(0);
 line_segment c = largest_doubling(a, b);
 integer n(1);
 a = a – c;
 while (c != b) {
 c = half(c); n = n + n;
 if (c <= a) { a = a – c; n = n + 1; }
 }
 return n;
}

72

Ahmes Knew It

• A primitive version of quotient algorithm
appears in the Rhind papyrus.

• It is an “algorithmic inverse” of Egyptian
multiplication.

• It was known to the Greeks as Egyptian
division.

73

Computing quotient and
remainder

std::pair<integer, line_segment>
quotient_remainder(line_segment a, line_segment b) {
 // Precondition: b > 0
 if (a < b) return std::make_pair(integer(0), a);
 line_segment c = largest_doubling(a, b);
 integer n(1);
 a = a – c;
 while (c != b) {
 c = half(c); n = n + n;
 if (c <= a) { a = a – c; n = n + 1; }
 }
 return std::make_pair(n, a);
}
Computing both quotient and remainder is not more complex than just quotient.

74

Floyd-Knuth: no halving
line_segment remainder_fibonacci(
 line_segment a, line_segment b) {
 // Precondition: b > 0
 if (a < b) return a;
 line_segment c = b;
 do {
 line_segment tmp = c; c = b + c; b = tmp;
 } while (a >= c);
 do {
 if (a >= b) a = a - b;
 line_segment tmp = c – b; c = b; b = tmp;
 } while (b < c);
 return a;
}

75

Problem 76

Design quotient_fibonacci and
quotient_remainder_fibonacci.

76

gcm_remainder

line_segment
gcm_remainder(line_segment a,
 line_segment b) {
 while (b != line_segment(0)) {
 a = remainder(a, b);
 std::swap(a, b);
 }
 return a;
}

77

Euclidean algorithm for integers

integer gcd(integer a, integer b) {
 while (b != integer(0)) {
 a = a % b;
 std::swap(a, b);
 }
 return a;
}

78

General Treatment

• Read EoP, chapter 5

79

Dutch Golden Age (1568–1700)

80

Simon Stevin (1548 – 1620)

81

82

Stevin’s Contributions
• Engineering

– use of sluices for military purposes
– wind-powered vehicle

• Physics
– parallelogram of forces

• representation of forces by vectors

– hydrostatics
• pressure is independent of shape

– acceleration of falling bodies

• Music
–

83

The Tithe (1585)

84

85

Numbers measure everything

• “Number is that which expresseth the quantitie
of each thing.”

 Simon Stevin
 Disme
• “with one stroke, the classical restrictions of

“numbers” to integers or to rational fractions was
eliminated. His general notion of a real number
was accepted by all later scientists.”

 B. L. van der Waerden
 History of Algebra

86

Stevin invented the number line

• negative
• irrational
• inexplicable…

87

2 0.5 -0.5 0 -1 1 1.5

√2

Swept under the rug

• Replacement of finite with infinite
representation
– 1/7 vs. 0.142857142857142857142857142857…

88

Rene Descartes (1596 – 1650)

89

Cartesian Geometry

“Any problem in geometry can easily be
reduced to such terms that a knowledge of
lengths of certain strait lines is sufficient for
its construction.”
 Renatus Cartesius, La Geometrie

90

Polynomials (Stevin 1585)

• Till Stevin it was an algorithm
– take a number; raise it to 4th power; multiply it

by 4 …
• Polynomial is a finite sequence of

numbers:
 4, 7, -1, 27, -3

 91

Intermediate Value Theorem

• Appendice algébraique contenant règle
générale de toutes équations (1594)

• Stevin shows how the successive
decimals of the root can be obtained.

• “in some cases the true value cannot be
reached though one can obtain as many
decimals of it as one may wish and come
indefinitely near to it.”

92

Horner’s rule

93

Evaluating polynomials
template <InputIterator I, Semiring R>
R polynomial_value(I f, I l, R x) {
 if (f == l) return R(0);
 R sum(*f);
 while (++f != l) {
 sum = sum * x;
 sum = sum + *f;
 }
 return sum;
}
 94

The value type of iterator

• The value type of the iterator (the type of
the coefficients of the polynomial) does not
have to be equal to the semiring R (the
argument type of the polynomial and its
result type).
– e.g., polynomial with real coefficients can be

evaluated with a matrix with real coefficients.
• characteristic polynomial of a matrix can be

applied to the matrix

95

Problem 96

What are the requirements on R and the
value type of iterator? In other words, what
are the requirements on coefficients of
polynomials and on their values.

96

Operations on polynomials

• addition, subtraction
– element by element

• multiplication:

97

Degree of polynomials

Degree of a polynomial is the index of the
highest coefficient:

98

Division with remainder

• Polynomial a is divisible by polynomial b
with remainder if there are polynomials q
and r such that

99

Problem 100

Prove that for any two polynomials p(x) and q(x)

100

 3x2 +2x -2
x-2 3x3 -4x2 -6x +10
 3x3 -6x2

 2x2 -6x
 2x2 -4x
 -2x +10
 -2x +4
 6

101

Polynomial Division

Stevin’s gcd algorithm (1585)
polynomial<real> gcd(polynomial<real> m,
 polynomial<real> n) {
 while (n != polynomial<real>(0)) {
 polynomial<real> t = remainder(m, n);
 m = n;
 n = t;
 }
 return m;
}

102

Proof of correctness

103

gcd is preserved at every step and the
number of steps is finite:

Problem 104 (Chrystal, Algebra)

Find gcd of:

104

Heirs of Pythagoras

Lecture 3

105

Die heilige deutsche Kunst

• Music
– Bach, Händel, Haydn, Mozart, Beethoven,

Schubert, Schumann, Brahms, Wagner,
Mahler, Richard Strauss

• Literature
– Goethe, Schiller

• Philosophy
– Leibniz, Kant, Hegel, Schopenhauer, Marx,

Nietzsche
106

German Professor

• Commitment to the truth
• A scientist as a professional civil servant
• Collegial spirit
• Professor-student bond
• Continuity of research

Wir müssen wissen — wir werden wissen!
 We must know — we will know!

107

University of Göttingen (1734)

108

• Gauss, Riemann, Dirichlet,
Dedekind, Klein, Hilbert,
Minkowski, Courant,
Noether

• Max Born, Heisenberg,
Oppenheimer

Carl Friedrich Gauss

109
Regular heptodecagon

Princeps mathematicorum

• Fundamental Theorem of Algebra
• Number Theory
• (Non-Euclidean geometry)
• Normal distribution and method of least

squares
• Celestial Mechanics
• Differential Geometry
• Electromagnetism

110

Disquisitiones Arithmeticae
(1801)

• Fundamental theorem of arithmetic
• Modular arithmetic
• Quadratic reciprocity law
• Theory of integral quadratic forms
• Cyclotomic equations and construction of

regular polygons

111

Gauss gcd “algorithm”

Given many numbers A, B, C, etc. the greatest
common divisor is found as follows. Let all the
numbers be resolved into their prime factors, and
from these extract the ones which are common to
A, B, C, etc…
Moreover, we know from elementary consideration
how to solve these problems when the resolution
of the numbers A, B, C, etc. into factors is not
given.
 Disquisitiones Arithmeticae, art. 18
 112

Complex Numbers

• Imaginary numbers (xi where i2 = -1) were
used since XVI century, but never
acquired legitimacy.

• In 1831 Gauss introduced complex
numbers z = a + bi as points (a,b) on
Cartesian plane.

• In the same paper he introduced complex
integers (Gaussian integers) which
became a major tool in number theory.

113

114

Gaussian Integers

• Complex numbers of the form a + bi where
a and b are integers.

115

Gaussian remainder z1 % z2

• Construct a grid on complex plane

generated by z2, iz2, -iz2 and –z2
• Find a square in the grid containing z1
• Find a vertex w of the square closest to z1
• z1 – w is the remainder

116

117

z2

z1

w

-iz2

iz
2

-z2

Gaussian integer gcd
complex<integer> gcd(complex<integer> m,
 complex<integer> n) {
 while (real(n) != 0 || imag(n) != 0) {
 complex<integer> t = m % n;
 m = n;
 n = t;
 }
 return m;
}

118

Use of Gaussian Integers

The introduction of Gaussian integers lead
to extraordinary simplification of several
difficult proofs in number theory.

119

Johann Peter Gustav
Lejeune Dirichlet (1805-1859)

120

Dirichlet Life

• Proof of Last Fermat Theorem for n = 5
• Slept with Disquisitionae Arithmeticae

under his pillow
• In 1855 succeeded Gauss in Gottingen

121

Primes in arithmetic progressions

If gcd(a, b) = 1 then there are infinitely many
primes of the form an + b

122

Vorlesungen über Zahlentheorie
(Lectures on Number Theory)

…the whole structure of number theory rests on a
single foundation, namely the algorithm for finding
the greatest common divisor of two numbers.
All the subsequent theorems … are still only
simple consequences of the result of this initial
investigation…
…any analogous theory, for which there is a
similar algorithm for the greatest common divisor,
must also have consequences analogous to those
in our theory. In fact, such theories exist.

123

Lectures on Number Theory

If one considers all numbers of the form:

…it is only for certain values of , e.g. , that
the greatest common divisor of two numbers could
be found by an algorithm like the one for …
integers…
However, it is otherwise when :

 124

Richard Dedekind (1831 – 1916)

125

Dedekind’s Life

• Last student of Gauss
• Collaborator of Dirichlet
• TU Braunschweig
• Ring Theory
• Algebraic Integers
• Foundations of real numbers

– also integers and rationals

126

Algebraic integers

Algebraic integers are linear integral
combinations of roots of a monic polynomial
with integer coefficients:

 127

The Promise of
Algebraic Integers

• If Euclidean algorithm can be used with
certain kind of algebraic integers
(cyclotomic integers) that would lead to the
proof of the Last Fermat Theorem.

• Unfortunately, it is not so. Algebraic
integers generated by the polynomial

 do not work with the Euclidean algorithm.

128

An (almost) abstract algebra

• Dedekind work on algebraic integers
contained all the fundamental concepts of
modern abstract algebra.

• Es steht alles schon bei Dedekind!
– It is all already in Dedekind – Emmy Noether

 129

Emmy Noether (1882 -1935) 130

Life of Noether

• Gottingen
– Invariant Theory
– Noether’s theorem
– Algebra

• Moscow
• Bryn Mawr

– not Princeton "men's university, where nothing female
is admitted"

131

It was she who taught us to think in terms of
simple and general algebraic concepts –
homomorphic mappings, groups and rings with
operators, ideals…
 P.S. Alexandrov
For Emmy Noether, relationships among
numbers, functions, and operations became
transparent, amenable to generalisation, and
productive only after they have been
dissociated from any particular objects and
have been reduced to general conceptual
relationships…
 B.L. van der Waerden
 132

Bartel Leendert van der Waerden
(1903 - 1996) 133

134

Noether gcd algorithm
template <EuclideanDomain R>
R gcd(R m, R n) {
 while (n != R(0)) {
 R t = m % n;
 m = n;
 n = t;
 }
 return m;
}

135

Nicolas Bourbaki

136

137

Euclid and Göttingen
• Gauss: Non-Euclidean geometry
• Dirichlet: Infinity of primes in arithmetic progression
• Riemann: Non-Euclidean geometry
• Dedekind: Real numbers
• Klein: Erlanger program
• Hilbert: Foundations of Geometry, Mechanization of

mathematics
• Minkowski: Space-time

138

Group

139

Notation for group operation

• Mathematicians use circle or star or dot
formally.
– They often replace x*y with xy.

• They use + for Abelian (commutative)
groups.

140

All groups are
transformation groups

• Every element a of the group G defines a
transformation of G onto itself:
 x ⟶ ax

• This transformation is one-to-one because
of invertibility:
 y ⟶ a-1x

141

Group transformations are
one-to-one

For any finite set S of elements of group G
and any element a of G, a set of elements
aS has the same number of elements as S:
Proof:

142

Examples of groups

• Additive group of integers
– there is no multiplicative group of integers

• Multiplicative group of remainders modulo 7
• Permutation group of 52 cards
• Multiplicative group of invertible matrices with

real coefficients
• Group of rotations of the plane

143

Kinds of group

• Abelian groups
• Finite groups
• Finite cyclic group

144

145

146

147

Problem 148 (very easy)

Prove that any group has at least one
element.

148

Order of a group

If a group has n > 0 elements, n is is called
the group’s order.

If n has infinitely many elements, it is of
infinite order.

149

Order of an element

An element a has an order n > 0 if an = e
and for any 0 < k < n, ak ≠ e.

If such n does not exist, a has an infinite
order.

150

Problem 151 (very easy)

• What is the order of e?

• Prove that e is the only element of such
order.

151

Every element of a finite group
has finite order

If n is an order of the group, then for any
element a, {a, a2, a3, …, an+1} has at least
one repetition ai and aj. Let us assume that i
< j and ai is the first repeated element. Then

And j – i > 0 is the order of a.

152

Problem 153

Prove that if a is an element of order n, then

153

Subgroups

• A subgroup is a group that is a subset of
another group.

• Examples
– the additive group of even numbers are a

subgroup of the additive group of integers.

154

Multiplication modulo 7 with
inverses

155

156

Problem 157 (easy)

• Find orders of every element of
multiplicative group of remainders mod 7.

• Find orders of every element of
multiplicative group of remainders mod 11.

157

Cyclic group

A finite group is called cyclic if it has an
element a such that for any element b there
is an integer n where

158

Cyclic group of an element

Powers of a given element in a finite group
form a subgroup.
• Powers contain e.
• Powers contain inverse.

159

Example of a cyclic group

Additive group of remainders modulo n.

160

Problem 161

Prove that any subgroup of a cyclic group is
cyclic.

161

Problem 162 (easy)

Prove that a cyclic group is Abelian.

162

Cosets

163

Examples of cosets

Consider additive group of integers Z and its
subgroup, integers divisible by 4, 4Z. It has
4 distinct cosets
• 4n
• 4n + 1
• 4n + 2
• 4n + 3

164

Size of cosets

The number of elements in a coset aH is the
same as the number of elements in the
subgroup H.
Proof:
Follows from one-to-one property of the
transformation ax.

165

Complete coverage by cosets

Every element a of group G belongs to
some coset of subgroup H.

Proof:

166

Cosets are
either disjoint or identical

If two cosets aH and bH in a group G have a
common element c, then aH = bH.
Proof:

167

Lagrange’s Theorem

The order of a subgroup H of a finite group
G divides the order of the group.
Proof:
1. The group G is covered by cosets of H.
2. Different cosets are disjoint.
3. They are of the same size n.
The order of G is nm where m is the number
of distinct cosets.
 168

Corollary of Lagrange’s theorem

The order of any element in the finite group
divides the order of the group.
Proof:
An order of an element is equal to the order
of the cyclic group of its powers.

169

Second Corollary

G is a group of order n. If a is an element of
G then an = e.
Proof:
If a has an order m, than m divides n,
and n = qm.
am = e, therefore (am)q = e and an = e.

170

New Proof of Little Fermat
Theorem

Let us take a multiplicative group of
remainders modulo p. Since p - 1 is the
order of the group it follows immediately
from the second corollary of Lagrange’s
Theorem that:

171

New Proof of Euler Theorem

Let us take a multiplicative group of coprime
remainders modulo n. Since φ(n) is by
definition the order of the group it follows
immediately from the second corollary of
Lagrange’s Theorem that:

172

Problem 173 (very easy)

What are subgroups of a group of order
101?

173

Problem 174

Prove that every group of prime order is
cyclic.

174

Heirs of Pythagoras

Lecture 4

175

Rings

176

Examples of Rings

• Integers
• n × n matrices with real coefficients
• Gaussian integers
• Univariate polynomials with integer

coefficients

177

Commutative Rings

A ring is commutative if xy = yx.
• non-commutative rings usually come from

linear algebra
• rings of algebraic integers and polynomial

rings commute
• Two “branches” of abstract algebra

– Commutative algebra
– Non-commutative algebra

We are dealing with commutative algebra. 178

Invertible Elements

An element x of a ring is called invertible if
there is an element x-1 such that

An invertible element of a ring is called a
unit of this ring.

179

Problem 180 (very easy)

180

A product of units

A product of units is a unit.

Proof:

181

Multiplicative group of units

• Units are closed under multiplication.
• 1 is a unit.
• Inverse of a unit is a unit.

182

Integral Domain

An element x of a ring is called a zero
divisor if

A commutative ring is an integral domain if it
has no zero divisors.

 183

Examples of Integral Domain

• Integers
• Gaussian integers
• Polynomials over integers
• Rational functions over integers

184

Problem 185 (very easy)

Prove that a zero divisor is not a unit.

185

Euclidean domain
(Euclidean ring)

E is a Euclidean domain if:
– E is an integral domain
– E has operations quot and rem
– E has a non-negative norm:

186

Euclidean Domain gcd
template <EuclideanDomain R>
R gcd(R m, R n) {
 while (n != R(0)) {
 R t = m % n; // ‖t‖ < ‖n‖
 m = n;
 n = t;
 }
 return m;
}

187

Fields

188

An integral domain where every non-zero
element is invertible is called a field.

Examples of fields

189

Kinds of fields

• Finite fields
• Algebraically closed fields
• Non-commutative field of quaternions

190

Josef (“Yossi”) Stein (1961)

“I was in the beginning of my PhD thesis, which
included using the Racah Algebra. Using "Racah
Algebra" meant doing calculations with numbers of
the form a/b*sqrt(c), where, a, b, c were integers. I
wrote a program for the only available computer in
Israel at that time - The WEIZAC at the Weizmann
institute. Addition time was 57 microseconds,
division took about 900 microseconds. Shift took
less than addition. …I had the right conditions for
finding that algorithm. Fast GCD meant survival.”

191

Delayed publication
“Yes, 1961 is the correct year…The reason why I did not
publish the algorithm earlier was, that when I told my
advisor (G. Racah himself) about my idea, he said: "Yesss”
(in Hebrew) in his Italian accent. Somehow this did not
sound like an encouragement for publication. In 1966,
when I was looking for a post-doc I met another great
physicist: John Blatt. He encouraged me to publish it.”

Josef Stein, Computational problems associated with
Racah algebra, J. Comput. Phys., (1967) 1, 397-405

192

 Stein’s Mathematics

193

 196 42
 98 21 2
 49 21 2
 28 21 2
 14 21 2
 7 21 2
 14 7 2
 7 7 2

GCD: 7×2 = 14
 194

Stein’s algorithm
(prologue)

template <BinaryInteger I>
I stein_gcd(I m, I n) {
 if (m < I(0)) m = -m;
 if (n < I(0)) n = -n;
 if (m == I(0)) return n;
 if (n == I(0)) return m;

 //
 195

Stein’s algorithm
(factoring out power of 2)

int d_m = 0;
while (even(m)) { m >>= 1; ++d_m;}

int d_n = 0;
while (even(n)) { n >>= 1; ++d_n;}

//

196

Stein’s algorithm
(the main loop)

while (m != n) {
 if (n > m) swap(n, m);
 m -= n;
 do m >>= 1; while (even(m));
}

//

197

Stein’s algorithm
(epilogue)

 return m << min(d_m, d_n);
}

198

Is it just a hack?

• Is Stein’s algorithm only interesting
because of slow hardware?

• Is it only useful for binary integers?

199

Every useful algorithm is based on some
fundamental mathematical truth.

• The discoverer of the algorithm might not
see this truth.

• There might be a long time between the
first discovery of the algorithm and its
understanding.

• Every useful program is a worthy object of
study.

200

Generalization of Euclid’s gcd
• Integers

– Greeks (V BC)
• Polynomials

– Stevin (ca. 1600)
• Gaussian Integers

– Gauss (ca. 1830)
• Algebraic Integers

– Dirichlet, Dedekind (ca. 1860)
• Generic Version

– Noether, van der Waerden (ca. 1930)
 201

Stein for polynomials (1969)

Use x as 2 !

• x2 + x is “even”

• x2 + x + 1 is “odd”

• x2 + x “shifts to” x + 1

202

Stein for polynomials over a field

203

 n m operation
x3 − 3x − 2 x2 − 4 n − (0.5x2 − 2)
x3 − 0.5x2 − 3x x2 − 4 shift(n)
x2 − 0.5x − 3 x2 − 4 n − (0.75x2 − 3)
0.25x2 − 0.5x x2 − 4 normalize(n)
x2 − 2x x2 − 4 shift(n)
x − 2 x2 − 4 m − (2x − 4)
x − 2 x2 − 2x shift(m)
x − 2 x − 2 GCD: x − 2

204

Andre Weilert algorithm for Gaussian
Integers (2000)

Use 1+i as 2 !

Andre Weilert, (1+i)-ary GCD Computation

in Z[i] as an Analogue of the Binary GCD
Algorithm, J. Symbolic Computation
(2000) 30, 605-617

205

Division by 1+i

A Gaussian integer a+bi is divisible by 1+i if

and only if a=b (mod 2)

206

Remainder Cancellation

If two Gaussian integers z1 and z2 are not
divisible by 1+i then z1+z2 is divisible by 1+i.
Then z1−z2, z1+iz2 and z1−iz2 are also
divisible by 1+i.

And,

207

Further extension of Stein (2003)

Ivan Bjerre Damgård and Gudmund
Skovbjerg Frandsen, Efficient algorithms for
GCD and cubic residuosity in the ring of
Eisenstein integers, Proceedings of the 14th
International Symposium on Fundamentals
of Computation Theory, Lecture Notes in
Computer Science 2751, Springer-Verlag
(2003), 109-117

208

Damgård and Frandsen Algorithm

• Stein algorithm works for Eisenstein
integers , i.e. the integers extended
with a complex primitive cubic root of 1

• In Stein, we use instead of 2.

209

Stein works where Euclid does not!

In 2004 Agarwal and Frandsen
demonstrated that there is a ring that is not
a Euclidean domain (ring of integers in
) where Stein algorithm works.

Saurabh Agarwal, Gudmund Skovbjerg
Frandsen: Binary GCD Like Algorithms for
Some Complex Quadratic Rings. ANTS
2004: 57-71

210

 What is Stein domain?

211

Fundamental operations on Stein

• is_unit(u)
 there is a v such that vu = 1

• are_associates(m,n)
 m = un where u is a unit

• is_smallest_prime(p)

212

Three lemmas for Stein

• If a Euclidean ring is not a field it has a smallest
prime.

•

•

213

Conjecture

Every Euclidean domain is a Stein domain

214

Generalized Stein’s algorithm
(prologue)

template <SteinDomain R>
R stein_gcd(R m, R n) {

 if (m == R(0)) return n;
 if (n == R(0)) return m;

215

Generalized Stein’s algorithm
(factoring out power of smallest prime)

int d_m = 0;
while (divisible_by_smallest_prime(m)) {
 m = divide_by_smallest_prime(m);
 ++d_m;
}
int d_n = 0;
while (divisible_by_smallest_prime(n)) {
 n = divide_by_smallest_prime(n);
 ++d_n;
}

216

Generalized Stein’s algorithm
(the main loop)

while (!is_associate(m, n)) {
 if (norm(n) > norm(m)) swap(n, m);
 m = reduce_associate_remainders(n, m);
 do {
 m = divide_by_smallest_prime(m);
 } while (divisible_by_smallest_prime(m));
}

217

Generalized Stein’s algorithm
(epilogue)

 R p = smallest_prime<R>();
 return m * power(p, min(d_m, d_n));
}

218

Lessons of Stein

• Even a classical problem studied by great
mathematicians may have a new solution.

• Performance constraints are good for
creativity.

• Behind every optimization there is solid
mathematics.

219

Project

Compare the performance of the Stein and
Euclid algorithms on random integers from
ranges [0, 216), [0, 232), and [0, 264).

220

Heirs of Pythagoras

Lecture 5

221

Bézout's identity

222

Claude Gaspard Bachet de Méziriac
(1581 – 1638)

223

Bachet’s work

• Diophantus, Arithmetic (1621)
– Bachet’s Diophantus immortalized by Fermat

• Problèmes Plaisants (1612, 1624)

– first book on recreational mathematics
• the modern equivalent is Mathematical

Recreations and Essays by W. W. Rouse Ball

224

Ideals

An ideal I is a non-empty subset of a ring R
such that

225

Examples of Ideals

• Even numbers

• Univariate polynomials with root 5

• Polynomials with x and y with free

coefficient 0
 x2 + 3y2 + xy + x

 226

Subrings that are not ideals

227

Problem 228

1. Prove that an ideal I is closed under
subtraction:

2. Prove that I contains 0.

228

Linear combination ideal

In a ring, for any two elements a and b, the
set of all elements {xa + yb} forms an ideal.
Proof:
closed under addition:
 (x1a + y1b) + (x2a + y2b) = (x1 + x2)a + (y1 +
y2)b
closed under multiplication by an arbitrary element:
 z(xa + yb) = (zx)a + (zy)b

229

Problem 230

Prove that all the elements of a linear
combination ideal are divisible by any of the
common divisors of a and b.

230

Ideals in Euclidean Domains

Any ideal in an Euclidean domain is closed
under remainder operation and under
Euclidean gcd.
Proof:
1. Closed under remainder:

rem(a, b) = a – quot(a, b)⋅b
2. Closed under gcd :

Immediately follows from 1.

231

Principal Ideals

232

Examples of Principal Ideals

• Even numbers

• Polynomials with root 5

233

An ideal that is not principal

• Polynomials with x and y with free

coefficient 0
 x2 + 3y2 + xy + x

 Couldn’t be generated by x – would not
contain y; and vice versa.

234

Problem 235

Prove that any element in a principal ideal is
divisible by the principal element.

235

Principal Ideal Domain

An integral domain is called a principal ideal
domain (PID) if every ideal in it is a principal
ideal.

236

237

Bachet theorem

A linear combination ideal I = {хa + yb} of a
Euclidean domain contains gcd(a, b).
Proof:

238

Invertibility lemma

239

Problem 240

Using Bachet’s theorem prove that if p is
prime, then any 0 < a < p has a
multiplicative inverse modulo p.

240

Non-constructive proofs

• We know that inverses exist, but have no
idea how to find them.

• This situation is unsatisfactory.
• The philosophy of mathematics that

rejects non-constructive proofs is called
constructivism.
– Intuitionism is historically most important

variety of constructivism.

241

Henri Poincaré

242

Poincaré’s Contributions

• Almost every branch of mathematics
– originating several (algebraic topology…)

• Special relativity theory
• Criticism of set theory and the formalist

(Hilbert) agenda
A major tragedy of XX century science was
the rejection of Poincare’s legacy by
Bourbaki and Bourbaki’s epigones.

243

Poincaré’s Books

Poincaré was a brilliant writer. In 1909 he
was elected a member of Académie
française. His books on philosophy of
science are very important

– Science and Hypothesis
– Value of Science
– Science and Method

244

Poincaré on Science

“Science has had marvelous applications,
but a science that would only have
applications in mind would not be science
anymore, it would be only cookery.”

245

Bachet’s algorithm

There is a constructive way to find x and y
such that

 xa + yb = gcd(a, b)

246

Trace of Euclidean Algorithm

247

Remainder trace

248

First steps of Bachet’s algorithm

249

Iterative recurrence for Bachet

250

We do not need y!

If b ≠ 0 we can compute x and gcd and get y
using the formula
 y = quot(gcd(a, b) – ax, b)

251

Problem 252

What are x and y if b = 0?

252

Extended gcd
template <EuclideanDomain R>
pair<R, R> extended_gcd(R a, R b) {
 R x0(1);
 R x1(0);
 while (b != R(0)) {
 // compute new r and x
 pair<R, R> p = quotient_remainder(a, b);
 R x2 = x1 – p.first * x0;
 // shift r and x
 x0 = x1; x1 = x2;
 a = b; b = p.second;
 }
 return make_pair(x0, a);
} 253

Project 254

Develop a version of extended gcd based on
Stein’s algorithm.

254

Applications of gcd

• Cryptography
• Rational arithmetic
• Symbolic integration
• std::rotate

255

Permutations

Permutation is a function from a sequence
of n objects onto itself.
Notation:

Shorthand:

Example: (2 4 1 3): {a, b, c, d} = {c, a, d, b}

256

Symmetric Groups

• A set of all permutations on n elements
constitutes a group called the symmetric
group Sn.
– group operation: composition

• function composition is associative
– identity element: identity permutation
– inverse: inverse permutation

257

Problem 258

What is the order of Sn?

258

Transpositions

A transposition (i j) is a permutation that
exchanges the ith and jth elements (i ≠ j)
leaving the rest in place.

(2 3): {a, b, c, d} = {a, c, b, d}

(In C++, we call it swap.)

259

Transposition Lemma

Any permutation is a product of
transpositions.

Proof:
One transposition can put one element into
its final destination. Therefore, n − 1
transpositions will put all elements into their
final destinations.

260

Problem 261

Prove that if n > 2, Sn is not Abelian.

261

Cycles in the permutations

Every permutation can be decomposed into
cycles. For example, (2 3 5 6 1 4) contains
two cycles:

It is written (2 3 5 6 1 4) = (1 2 3 5)(4 6)

262

1

2

3

5 4 6

Cycles are disjoint

If you are at a position in a cycle, you can
get to all other positions in that cycle.
Therefore, if two cycles share a position,
they share all the positions.

263

Trivial cycle

A cycle containing one element is called a
trivial cycle.

264

Problem 265

How many non-trivial cycles could a
permutation of n elements contain?

265

Number of assignments

The number of assignments needed to perform a
permutation in place is n – u + v, where n is the
number of elements, u is the number of trivial
cycles and v is the number of non-trivial cycles.
Proof:
Every non-trivial cycle of length k requires
k + 1 assignments. The number of elements in
non-trivial cycles is equal n – u and v is added for
all non-trivial cycles.

266

Problem 267

Design an in-place reverse algorithm for
forward iterators; that is, it should work for
singly-linked lists without modifying the links.

An algorithm is in-place if for an input of length n it uses
O(p(log n)) additional space where p is a polynomial. (Such
algorithms are also called polylog space algorithms.)

267

Heirs of Pythagoras

Lecture 6

268

Lessons from Mathematics

• Abstracting from specific types to
generalized theories

• Breaking the reasoning discourse into a
sequence of small self-contained lemmas

269

Swapping ranges

 while (condition) swap(*f0++, *f1++);

270

Ranges

 semi-open closed
Bounded: two iterators [i, j) [i, j]

Counted: iterator and integer [i, n) [i, n]

271

Swapping an explicit range
with an implicit range

template <ForwardIterator I0,
 ForwardIterator I1>
I1 swap_ranges(I0 f0, I0 l0, I1 f1) {
 while (f0 != l0) swap(*f0++, *f1++);
 return f1;
}

272

The Law of Useful Return

A procedure should return all the potentially
useful information it computed.

– this does not imply doing unneeded extra
computations.

– this does not imply returning useless
information.

273

The Law of Separating Types

Do not assume that two types are the same
when they may be different.
 template <ForwardIterator I0,
 ForwardIterator I1>
 I1 swap_ranges(I0 f0, I0 l0, I1 f1);

not
 template <ForwardIterator I>
 I swap_ranges(I f0, I l0, I f1);

274

Swapping explicit ranges

template <ForwardIterator I0,
 ForwardIterator I1>
pair<I0, I1> swap_ranges(I0 f0, I0 l0,
 I1 f1, I1 l1) {
 while (f0 != l0 && f1 != l1) {
 swap(*f0++, *f1++);
 }
 return pair<I0, I1>(f0, f1);
}

275

The Law of Completeness

When designing an interface, consider all
the related procedures.

276

Swapping counted ranges
template <ForwardIterator I0,
 ForwardIterator I1,
 Integer N>
pair<I0, I1> swap_ranges_n(I0 f0,
 I1 f1,
 N n) {
 while (n != N(0)) {
 swap(*f0++, *f1++);
 --n;
 }
 return pair<I0, I1>(f0, f1);
}

277

Problem 278

Why don’t we provide
pair<I0, I1> swap_ranges_n(I0 f0,
 I1 f1,
 N0 n0,
 N1 n1)

278

Indexing

While mathematical texts index sequences
from 1, the computer science convention of
indexing from 0 is more natural.

– For a sequence with n elements the indices
are in the range [0, n) and any iteration is
bounded by the length.

– rotating n elements to the right by k
transforms an index i to the index i + k mod n.

279

Rotation

A permutation of n elements by k
where k ≥ 0:

(k mod n, k + 1 mod n, …, k + n – 2 mod n, k + n – 1 mod
n)

is called an n by k rotation.

(We index permutations from 0.)

280

rotate

rotate is the most important algorithmic
primitive of which you never heard.

We are going to see its uses throughout the
next Journey.

281

Designing Interfaces

• We can design a useful interface only after
we figure out its multiple future uses.

• The design is a multi-pass activity.

282

Interface to rotate

Experience shows that it is convenient to
define rotation with three iterators: f, m and l
where [f, m) and [m, l) are valid ranges.
Rotation then interchanges ranges [f, m) and
[m, l).

283

An example of rotate

 0 1 2 3 4 5 6
 f m l

Produces:

 2 3 4 5 6 0 1

284

Problem 285

Prove that if we do rotate(f, m, l) then it
performs distance(f, l) by distance(m, l)
rotation.

285

Gries-Mills algorithm
template <ForwardIterator I>
void gries_mills_rotate(I f, I m, I l) {
 // u = distance(f, m) && v = distance(m, l)
 if (f == m || m == l) return; // u == 0 || v == 0
 pair<I, I> p = swap_ranges(f, m, m, l);
 while(p.first != m || p.second != l) {
 if (p.first == m) { // u < v
 f = m; m = p.second; // v = v - u
 } else { // v < u
 f = p.first; // u = u - v
 }
 p = swap_ranges(f, m, m, l);
 }
 return; // u == v
}

286

Problem 287

If you inline swap_ranges you see that the
algorithm does unnecessary iterator
comparisons. Re-write the algorithm so that
no unnecessary iterator comparisons are
done.

287

The number of swaps during the
last swap_range

The number of swaps during the last
swap_range is gcd(n, k) where
n = distance(f, l)
k = distance(m, l)

288

Number of cycles in the rotate

• Every swap_range moves elements along
their cycles.

• The number of cycles is gcd(n, k)

• For a formal proof see EoP pages 178-179

289

Complexity of Gries-Mills

• During the call to all the swap_range except the
last one, every swap puts one element into the
final destination.

• During the last swap_range every swap puts two
elements into the final destination.

• The total number of swaps n – gcd(n, k)
• The total number of assignments 3(n – gcd(n, k))

290

Trace of Gries-Mills
0 1 2 3 4 5 6
f m l
2 3 0 1 4 5 6
 f m l
2 3 4 5 0 1 6
 f m l
2 3 4 5 6 1 0
 f m l
2 3 4 5 6 0 1
 f m
 l

291

The return value of rotate

• Many applications benefit if rotate returns
a new middle: a position where the first
element moved.

• Observe, that
rotate(f, rotate(f, m, l), l)
is an identity permutation.

• The task is to find a way to return the
desired value without doing any extra
work.

292

An auxiliary rotate
template <ForwardIterator I>
I rotate_unguarded(I f, I m, I l, I m1) {
 // assert(f != m && m != l)
 pair<I, I> p = swap_ranges(f, m, m, l);
 while (p.first != m || p.second != l) {
 f = p.first;
 if (m == f) m = p.second;
 p = swap_ranges(f, m, m, l);
 }
 return m1;
}

293

Final rotate for forward iterators
template <ForwardIterator I>
I rotate(I f, I m, I l, forward_iterator_tag) {
 if (f == m) return l;
 if (m == l) return f;
 pair<I, I> p = swap_ranges(f, m, m, l);
 while (p.first != m || p.second != l) {
 if (p.second == l)
 return rotate_unguarded(p.first, m, l, p.first);
 f = m;
 m = p.second;
 p = swap_ranges(f, m, m, l);
 }
 return m;
}

294

In search of faster algorithm

• We know that we can do a permutation
without trivial cycles with n + c
assignments where n is the size of
permutation and c is the number of cycles.

• Such an algorithm requires stronger
requirements on the iterators.

• And we need to go through cycles in
reverse order!

295

cycle_from
template <ForwardIterator I,
 Transformation F>
void cycle_from(I i, F from) {
 typedef typename iterator_traits<I>::value_type V;

 V tmp = *i;
 I start = i;
 for (I j = from(i); j != start; j = from(j)) {
 *i = *j;
 i = j;
 }
 *i = tmp;
}

296

transformation for rotate

template <RandomAccessIterator I>
struct rotate_transform {
 typedef typename iterator_traits<I>::difference_type N;
 N plus;
 N minus;
 I m1;

 rotate_transform(I f, I m, I l) :
 plus(m – f), minus(m – l), m1(f + (l – m)){}

 I operator()(I i) const {
 return i + ((i < m1) ? plus : minus);
 }
};

297

Modified Fletcher-Silver algorithm

template <RandomAccessIterator I>
I rotate(I f, I m, I l,
 random_access_iterator_tag) {
 if (f == m) return l;
 if (m == l) return f;
 typedef iterator_traits<I>::difference_type N;
 N d = gcd(m - f, l - m);
 rotate_transform<I> rotator(f, m, l);
 while (d-- > 0) cycle_from(f + d, rotator);
 return rotator.m1;
}

298

3-reverse rotate
template <BidirectionalIterator I>
void three_reverse_rotate(I f, I m, I l) {
 reverse(f, m);
 reverse(m, l);
 reverse(f, l);
}

299

Problem 300

• How many assignments does 3-reverse
rotate perform?

300

reverse_until

template <BidirectionalIterator I>
pair<I, I> reverse_until(I f, I m, I l) {
 while (f != m && m != l) swap(*f++, *--l);
 return pair<I, I>(f, l);
}

301

Bidirectional rotate
template <BidirectionalIterator I>
I rotate(I f, I m, I l,
 bidirectional_iterator_tag) {
 reverse(f, m);
 reverse(m, l);
 pair<I, I> p = reverse_until(f, m, l);
 reverse(p.first, p.second);
 if (m == p.first) return p.second;
 return p.first;
}

302

Iterator category dispatch
template <ForwardIterator I>
inline
I rotate(I f, I m, I l) {
 typename iterator_traits<I>::iterator_category c;

 return rotate(f, m, l, c);
}

303

Bidirectional reverse

template <BidirectionalIterator I>
void reverse(I f, I l,
 bidirectional_iterator_tag) {
 while (f != l && f != --l) swap(*f++, *l);
}

304

Returning from reverse

It might appear that according to the law of
useful return we should return

 pair<I, I>(f, l)

However, there is no evidence that it is
useful; therefore the law does not apply.

305

reverse_n

template <BidirectionalIterator I,
 Integer N>
void reverse_n(I f, I l, N n) {
 n >>= 1;
 while (n-- > N(0)) {
 swap(*f++, *--l);
 }
}

306

Problem 307

Unroll the loop of reverse_n 4 times.
(Read about Duff’s device.)

307

Random Access reverse

template <RandomAccessIterator I>
void reverse(I f, I l,
 random_access_iterator_tag) {
 reverse_n(f, l, l - f);
}

308

Recursive reverse
template <ForwardIterator I,
 BinaryInteger N>
I reverse_recursive(I f, N n) {
 if (n == 0) return f;
 if (n == 1) return ++f;
 N h = n >> 1;
 I m = reverse_recursive(f, h);
 advance(m, n & 1);
 I l = reverse_recursive(m, h);
 swap_ranges_n(f, m, h);
 return l;
}

309

Forward Iterator reverse

template <ForwardIterator I>
void reverse(I f, I l,
 forward_iterator_tag) {
 reverse_recursive(f, distance(f, l));
}

310

Generic reverse

template <ForwardIterator I>
inline
void reverse(I f, I l) {
 typename iterator_traits<I>::iterator_category c;

 reverse(f, l, c);
}

311

Complexity of computation

• Time complexity
– Hartmanis and Stearns
– time hierarchy theorem

• Space complexity
– Lewis, Stearns and Hartmanis

312

Space complexity in concrete
algorithmics

• In-place
– An algorithm is in-place if for an input of

length n it uses O(p(log n)) additional space
where p is a polynomial. (Such algorithms are
also called polylog space algorithms.)

• Not in-place
– usually means that you can create a copy of

your data

313

reverse with buffer
template <ForwardIterator I,
 Integer n,
 BidirectionalIterator B>
I reverse_n_with_buffer(I f, N n, B buffer) {
 return reverse_copy(buffer,
 copy_n(f, n, buffer),
 f);
}

314

reverse_copy

template <BidirectionalIterator I,
 OutputIterator O>
O reverse_copy(I f, I l, O r) {
 while (f ! = l) *r++ = *--l;
 return r;
}

315

Memory-adaptive algorithms

• In practice, the dichotomy of in-place and
not in-place algorithms is not very useful.

• While the assumption of unlimited memory
is not realistic, neither is the assumption of
only polylog extra memory.

• Usually 25%, 10%, 5% or at least 1% of
extra memory is available.

• Algorithms need to adapt to however
much is available.

316

Adaptive reverse
template <ForwardIterator I, Integer n,
 BidirectionalIterator B>
I reverse_n_adaptive(I f, N n,
 B b, N b_n) {
 if (n == N(0)) return f;
 if (n == N(1)) return ++f;
 if (n <= b_n) return reverse_n_with_buffer(f, n, b);
 N h = n >> 1;
 I m = reverse_n_adaptive(f, h, b, b_n);
 advance(m, n & 1);
 I l = reverse_n_adaptive(m, h, b, b_n);
 swap_ranges_n(f, m, h);
 return l;
}

317

The sad story of
get_temporary_buffer

• get_temporary_buffer takes a size and
should return the largest available buffer
not greater than the size that fits into
physical memory.

• There is a bogus implementation – using
malloc till it returns something.

• No vendor provides the correct
implementation.

318

Words of wisdom

Whose heirs are we?

319

	Lecture 1
	Lecture 2
	Lecture 3
	Lecture 4
	Lecture 5
	Lecture 6

