
Four Journeys 

Alexander Stepanov 
 

1 



Four Journeys: Journey One 

Lecture 1 
 

Alexander Stepanov 

2 



Ἀεὶ ὁ θεὸς γεωμετρεῖ. 
                        Πλάτων 
ἀλλὰ πάντα μέτρῳ καὶ ἀριθμῷ καὶ σταθμῷ 
διέταξας. 
                       Σοφία Σολομώντος 
...impossibile est res huius mundi sciri nisi 
sciatur mathematica. 
                       Rogerius Baco 

3 



Objectives 
• To show deep connections between Programming and 

Mathematics.  
• To recognize well-known mathematical abstractions in 

regular programming tasks.  
• To write reusable, efficient algorithms defined on these 

abstractions. 
• To use a small number of algorithms in a variety of 

applications.  
 

4 



Approach 

The course traces four fundamental 
algorithmic ideas and shows how they led to 
discoveries in both computing and 
mathematics and how they can be applied to 
a variety of problems.  

5 



Historical Approach 

• To understand something we need to 
know its history. 
 

• “Great Men, taken up in any way, are 
profitable company.” 
                                 Thomas Carlyle 

 

6 



Programming Aesthetics 

 
• Sense of beauty is important for building 

large systems and controlling complexity. 
 

• Study of mathematics develops this sense. 

7 



Lincoln and Jefferson 

• Lincoln 
– “He studied and nearly mastered the Six-books of 

Euclid, since he was a member of Congress.” 
– “…to improve his logic and language.” 
– Use of Euclid in Lincoln-Douglas debates. 

• Jefferson 
– “I have given up newspapers in exchange for Tacitus 

and Thucydides, for Newton and Euclid; and I find 
myself much the happier.” 

– A thorough knowledge of Euclid should be the 
admission requirement to the University of Virginia.  
 8 



The Auxiliary Text: EoP 

9 



Deductive vs. Historical 
Approach 

• EoP presents facts. 
• Four Journeys presents the intuition 

behind the facts. 
• They complement each other. 

– It is not necessary to read EoP. 
– But it might be really helpful for some. 

10 



First Journey: 
The Spoils of the Egyptians 

How elementary properties of 
commutativity and associativity of 
addition and multiplication led to 

fundamental algorithmic and 
mathematical discoveries 

11 



Self-evident propositions 

12 



Are proofs important? 

13 



Geometric Proofs 

• For millennia mathematicians relied on 
geometric proofs 

• They appeal to our innate intuition of 
space 
– Innate?  

14 



a 

b 

a 

b 

15 



Commutativity of addition 

16 



Associativity of addition 

17 



Commutativity of multiplication 

18 



A 

C 

B 

Associativity of multiplication 

19 



20 



Problem 21 
Design geometric proofs  

21 



Problem 22 

• Using geometry find formulas for 
– Sum of the first     positive integers 
– Sum of the first     positive odd integers 

• Find geometric upper bound for π. 

22 



What is a proof? 

A proof of a proposition is  
• an argument  
• accepted by the mathematical community  
• to establish the proposition as valid 

 
What is a valid proof today, might not be a 
valid proof three hundred years from now. 

23 



Reading 24 

 
• Richard A. De Millo, Richard J. Lipton, 

Alan J. Perlis (1979), “Social processes 
and proofs of theorems and programs”, 
Communications of the ACM, Volume 22, 
Issue 5  

24 



Number systems 

• All civilizations developed number systems 
• Fundamental requirement for  

– Collecting taxes 
– Calendar computation to determine cultivation 

dates 

25 



Common Source? 

• How could they all discover Pythogorean triples? 
• Van der Waerden conjecture 

– Common Neolithic source (3000 BC) 
– Spreads through  

• Babylonia: Plimpton 322 
• China: Nine Chapters  

–(九章算術 Jiǔzhāng Suànshù) 
• India: Baudha-yana’s Sulvasutra 

26 



Parallel Evolution 

• Many similar mathematical concepts have 
been (re-)discovered independently 

• That shows their fundamental nature 

27 



Geographical origins 

• India and China had early mathematical 
traditions 
– Liu Hui (劉徽) 

• on inability to find volume of the sphere. 
– Aryabhata (आयर् भ) 

• European mathematical tradition (which 
included Arabs) is the one from which 
Computer Science came 
  

 
 

28 



“Egyptians we take to be the 
most ancient of men”  

 
• …the mathematical arts were founded in Egypt... 
                              Aristotle, Metaphysics, A 981b23-2 

• [Moses] speedily learned arithmetic, and 
geometry...  This knowledge he derived from the 
Egyptians, who study mathematics above all 
things... 
                             Philo, De Vita Mosis, I, 23-24 

 

29 



Thales of Miletus (635BC – 545BC) 

30 



Thales Theorem: 
AC is diameter => ∠ABC = 90˚ 

A C 

B 

31 



The Proof of Thales Theorem 

A D C 

B 

32 



Surviving Egyptian Mathematics 

• Rhind papyrus  
– Written by the scribe Ahmes 
– 1650BC (copy of a much older text ≈1850BC) 
– Fast multiplication algorithm 

• Greeks knew it as Egyptian multiplication 
• Russian Peasant Algorithm 

– Fast division algorithm 
• We will meet it during the next journey 

33 



Distributivity 

• Every multiplication algorithm depends on: 
 

 
 
 

• It allows us to reduce the problem 

34 



 
 

 
 

• Could we prove it? 

The Inductive Base 

35 



Inductive Step 

 
 
 
 
 

• Depends on distributivity? 
 

36 



int multiply0(int n, int a) { 
  if (n == 1) return a; 
  return multiply0(n – 1, a) + a; 
} 
 
• Both a and n are positive 
 

Slow Multiply Algorithm 

37 



The Algorithmic Insight 

38 



Ahmes Algorithm: 41 × 59 

1 ✓ 59 

2 118 

4 236 

8 ✓ 472 

16 944 

32 ✓ 1888 

39 



Halving   

40 



Fast Multiply Algorithm 
int multiply1(int n, int a) { 
  if (n == 1) return a; 
  int result = multiply1(half(n), a + a); 
  if (odd(n)) result = result + a; 
  return result; 
} 
 
requirement for half:  

 

41 



Problem 42  

Implement an iterative version of fast 
multiply. 

42 



Number of additions 

 
 
 
 
 

43 



Is it optimal? 

44 



multiply_by_15 

int multiply_by_15(int a) { 
   int b = (a + a) + a; // b == 3*a 
   int c = b + b;       // c == 6*a 
   return (c + c) + b;  // 12*a + 3*a 
} 
 
5 additions! 
 
We discovered an optimal addition chain for 15. 

45 



Problem 46 
Optimal Addition Chains 

 
 

Find optimal addition chains for n < 100. 

46 



Further Reading 47 

Donald Knuth, The Art of Computer 
Programming, Volume 2: Seminumerical 
Algorithms, pages 465-481. 

47 



Four Journeys: Journey One 

Lecture 2 
 

Alexander Stepanov 

48 



Dover Treasures 

49 



Fast Multiply Algorithm 
int multiply1(int n, int a) { 
  if (n == 1) return a; 
  int result = multiply1(half(n), a + a); 
  if (odd(n)) result = result + a; 
  return result; 
} 
 
requirement for half:  

 

50 



Program transformations 

• The code of multiply1 is a good 
implementation of Egyptian Multiplication 
as far as the number of additions 

• It also does            recursive calls 
– function call is much more expensive than plus      

 

51 



multiply-accumulate 

 
• It is often easier to do more than less 

 
 

52 



mult_acc0 
int mult_acc0(int r, int n, int a) { 
  if (n == 1) return r + a; 
  if (odd(n)) { 
    return mult_acc0(r + a, half(n), a + a); 
  } else { 
    return mult_acc0(r, half(n), a + a); 
    } 
} 

Invariant:  
 

53 



mult_acc1 

int mult_acc1(int r, int n, int a) { 
  if (n == 1) return r + a; 
  if (odd(n)) r = r + a; 
  return mult_acc1(r, half(n), a + a); 
} 
 
• n is usually not 1. 
• if n is even, it is not 1. 
• We can reduce the number of comparisons with 1 by a 

factor of 2. 

 54 



mult_acc2 
int mult_acc2(int r, int n, int a) { 
  if (odd(n)) {  
    r = r + a; 
    if (n == 1) return r; 
  } 
  return mult_acc2(r, half(n), a + a); 
} 
 
A strict tail-recursive procedure is one in which all the tail-
recursive calls are done with the formal parameters of the 
procedure being the corresponding arguments. 

55 



mult_acc3 
int mult_acc3(int r, int n, int a) { 
  if (odd(n)) {  
    r = r + a; 
    if (n == 1) return r; 
  } 
  n = half(n); 
  a = a + a;  
  return mult_acc3(r, n, a); 
} 
Now it is easy to make it iterative. 

56 



mult_acc4 
int mult_acc4(int r, int n, int a) { 
  while (true) { 
    if (odd(n)) {  
      r = r + a; 
      if (n == 1) return r; 
    } 
    n = half(n); 
    a = a + a; 
  } 
} 

 57 



multiply2 
int multiply2(int n, int a) { 
  if (n == 1) return a; 
  return mult_acc4(a, n - 1, a); 
} 
 
When n is 16, it does 7 addition instead of 4. 
 
We do not want to subtract 1 from an even number. 
Let us make it odd!  

58 



multiply3 
int multiply3(int n, int a) { 
  while (!odd(n)) { 
    a = a + a; 
    n = half(n); 
  } 
  if (n == 1) return a; 
  return mult_acc4(a, n - 1, a); 
} 
mult_acc4 does an unnecessary test for 1. 
 

59 



multiply4 
int multiply4(int n, int a) { 
  while (!odd(n)) { 
    a = a + a; 
    n = half(n); 
  } 
  if (n == 1) return a; 
  // even(n - 1) => n - 1 != 1 
  return mult_acc4(a, half(n), a + a); 
} 

60 



Coloring mult_acc4 

int mult_acc4(int r, int n, int a) { 
  while (true) { 
    if (odd(n)) {  
      r = r + a; 
      if (n == 1) return r; 
    } 
    n = half(n); 
    a = a + a; 
  } 
} 

 61 



Syntactically generalized  
multiply_accumulate 

template <typename A, typename N> 
A multiply_accumulate(A r, N n, A a) { 
  while (true) { 
    if (odd(n)) {  
      r = r + a; 
      if (n == 1) return r; 
    } 
    n = half(n); 
    a = a + a; 
  } 
} 

 
62 



Syntactic Requirements on A 

• a + b 
–  operator+ 

• can be passed by value 
– copy constructor 

• assignment 
– operator= 

 

63 



A semantic requirement on A: 
Associativity of + 

64 



In computer + may be partial 

• We often deal with operations that are 
partially defined. 

• We require axioms to hold inside the 
domain of definition. 

• Much research work is needed to extend 
axioms to computer models of real 
numbers. 
– approximate associativity 

65 



Implicit syntactic requirements 
induced by intended semantics 

• Equality 
– operator== 

• Inequality 
– operator!= 

 
 

66 



Equational Reasoning 

• Equality on type T should satisfy our 
expectations. 
– inequality is negation of equality 
– equality is reflexive, symmetric and transitive 

 
 
 

– Substitutability 

67 



Regular types: 

Connection between construction, 
assignment and equality: 
• T a = b; assert(a == b); 
• a = b; assert(a == b); 
• T a = b; <=> T a; a = b; 
• “normal” destructor 

68 



Regularity is the default 

 

All the types in this course will be 
regular unless stated otherwise. 

69 



Problem 70 
It seems that all of the C/C++ built-in types are regular. 
Unfortunately, one of the most important logical axioms is 
sometimes violated: the law of excluded middle. 
Sometimes the following is false: 
 
 
Find the case; analyze it and propose a solution. 

70 



Problem 71 
There is a sizable body of work on constructive real 
numbers: the real numbers that can be computed with 
arbitrary precision. Apparently, the classes that implement 
them are not regular. Why?   
 
 
If you are interested to learn more 
• Hans-Juergen Boehm: Constructive real interpretation of 

numerical programs. PLDI 1987: 214-221  
• or use his calculator 

– http://www.hpl.hp.com/personal/Hans_Boehm/crcalc/ 

 71 

http://www.informatik.uni-trier.de/~ley/db/conf/pldi/pldi1987.html�


Requirements on A 

• Regular type 
• Associative + 

 
• A is an additive semigroup:  

– semigroup: a set with an associative binary 
operation 

– additive: binary operation is + 
• but by convention, + commutes 

72 



Rules for overloading +  

• If a set has one binary operation and it is 
associative and commutative, call it     . 

• If a set has one binary operation and it is 
associative and not commutative, call it   . 

• Kleene uses       to denote string 
concatenation (in mathematics    is elided). 

73 



Overloading Dilemma  

• We can drop commutativity requirement 
– Allows people to use  multiply with strings  

• The algorithm is used by Hans Boehm in his 
implementation of  ropes 

– http://www.sgi.com/tech/stl/Rope.html 

• We can try to enforce an established 
mathematical terminology 

 

74 

http://www.sgi.com/tech/stl/Rope.html�


Language as a tool of thought 

1. If there is an established term, use it. 
 

2. Do not use an established term 
inconsistently with its accepted meaning. 

75 



Problem 76 

What would be a better name for 
std::vector? 

76 



Solution: Explicit Weakening  

• We do not want to change the meaning of 
an established mathematical concept 
Additive Semigroup. 

• We want our algorithm to work with 
strings. 

• We weaken Additive Semigroup into 
Noncommutative Additive Semigroup.  

• We require commutativity of + unless 
otherwise specified. 

77 



Examples of Additive 
Semigroups 

• Positive even numbers 
• Negative integers 
• Planar vectors 
• Boolean functions 

– what is +? 
• Line segments 

– what is +? 

78 



Non-requirement is not a 
requirement 

• If an algorithm requires Noncommutative 
Semigroup, it will work on Commutative 
Semigroup. 

• Noncommutative only means that it is not 
required to be Commutative. 

79 



Syntactically generalized  
multiply_accumulate 

template <NonCommutativeAdditiveSemigroup A, 
          typename N> 
A multiply_accumulate(A r, N n, A a) { 
  while (true) { 
    if (odd(n)) {  
      r = r + a; 
      if (n == 1) return r; 
    } 
    n = half(n); 
    a = a + a; 
  } 
} 

 

80 



Syntactic Requirements on N 

• Regular type with 
– half 
– odd 
– == 1 
– copy constructor 
– assignment 

81 



Semantic Requirements on N 

even(n) => half(n) + half(n) == n 
odd(n) => even(n – 1) 
odd(n) => half(n – 1) == half(n) 
axiom: 
     n == 1 || half(n) == 1 ||  
        half(half(n)) == 1 || ... 
What kind of a mathematical concept is N? 

82 



Disjunctive Requirements   

• Sometimes we define requirements not 
through axioms but by defining a set of 
intended models – types on which we 
want our algorithm to work. 

• N = {uint8_t, int8_t, ..., uint64_t, int64_t, 
...} 

• We will call N Integer. 
• At the end of the course we will be able to 

define it axiomatically. 
83 



Auxiliary procedures 

// poor man’s concepts: 
#define Integer typename 
 
template <Integer N> 
N half(N n) { return n >> 1; } 
 
template <Integer N> 
bool odd(N n) { return n & 1; } 
 84 



multiply_accumulate 
for Additive Semigroup 

template  
<NoncommutativeAdditiveSemigroup A, Integer N> 
A multiply_accumulate_semigroup(A r, N n, A a) { 
  precondition(n >= 0); 
  if (n == 0) return r; 
  while (true) { 
    if (odd(n)) {  
      r = r + a; 
      if (n == 1) return r; 
    } 
    n = half(n); 
    a = a + a; 
  } 
} 

 

85 



multiply  
for Additive Semigroup 

template  
<NoncommutativeAdditiveSemigroup A, Integer N> 
A multiply_semigroup(N n, A a) { 
  precondition(n > 0); 
  while (!odd(n)) { 
    a = a + a; 
    n = half(n); 
  } 
  if (n == 1) return a; 
  return multiply_accumulate_semigroup(a, half(n), 
                                       a + a); 
} 

86 



Why n > 0 not n >= 0? 

•           is  the  right additive identity 

•            is  the left additive identity 
 

•         is the additive identity, a zero 
 

• A semigroup might not have an identity 87 



Monoids 

• Monoid is a semigroup that contains an 
identity element id: 

 
 

• Additive monoid is an additive semigroup 
where the identity element is 0: 

88 



Monoid multiply 
template <NoncommutativeAdditiveMonoid A, Integer N> 
A multiply_monoid(N n, A a) { 
  precondition(n >= 0); 
  if (n == 0) return A(0); 
  return multiply_semigroup(n, a); 
} 

 

89 



Groups 

• Group is a monoid with inverse operation 
 

 
• Additive group is an additive monoid with 

unary – (minus) such that 

90 



“А new star of unimaginable brightness in 
the heavens of pure mathematics” 

91 



Group multiply 
template <AdditiveGroup A, SignedInteger N> 
A multiply_group(N n, A a) { 
  if (n < 0) { 
    n = -n; 
    a = -a; 
  } 
  return multiply_monoid(n, a); 
} 

 

92 



From multiply to power 

If we replace + with * we compute 
instead of       . 

– replace doubling with squaring 

93 



power_accumulate  
for Multiplicative Semigroup 

template <MultiplicativeSemigroup A, Integer N> 
A power_accumulate_semigroup(A r, A a, N n) { 
  precondition(n >= 0); 
  if (n == 0) return r; 
  while (true) { 
    if (odd(n)) {  
      r = r * a; 
      if (n == 1) return r;  
    } 
    n = half(n); 
    a = a * a; 
  } 

} we compute  
 

94 



power 
for Multiplicative Semigroup 

template <MultiplicativeSemigroup A, Integer N> 
A power_semigroup(A a, N n) { 
  precondition(n > 0); 
  while (!odd(n)) { 
    a = a * a; 
    n = half(n); 
  } 
  if (n == 1) return a; 
  return power_accumulate_semigroup(a, a * a,   
                                    half(n)); 
} 

95 



power 
for Multiplicative Monoid 

template <MultiplicativeMonoid A, Integer N> 
A power_monoid(A a, N n) { 
  precondition(n >= 0); 
  if (n == 0) return A(1); 
  return power_semigroup(a, n); 
} 

 

96 



power 
for Multiplicative Group 

template <MultiplicativeGroup A> 
A multiplicative_inverse(A a) { 
  return A(1) / a; 
} 
 
template <MultiplicativeGroup A, Integer N> 
A power_group(A a, N n) { 
  if (n < 0) { 
    n = -n; 
    a = multiplicative_inverse(a); 
  } 
  return power_monoid(a, n); 
} 

97 



Multiple semigroups on T 

• There could be multiple associative 
operations on the same type T 
– additive 
– multiplicative 
– … 

• We often need to pass an operation to an 
algorithm 

98 



accumulate for an arbitrary 
semigroup 

template <Regular A, Integer N, SemigroupOperation Op> 
requires (Domain<Op, A>) // parens will go away 
A power_accumulate_semigroup(A r, A a, N n, Op op) { 
  precondition(n >= 0); 
  if (n == 0) return r; 
  while (true) { 
    if (odd(n)) {  
      r = op(r, a); 
      if (n == 1) return r;  
    } 
    n = half(n); 
    a = op(a, a); 
  } 
}  

 

99 



power for an arbitrary 
semigroup 

template <Regular A, Integer N, SemigroupOperation Op> 
requires(Domain<Op, A>)  
A power_semigroup(A a, N n, Op op) { 
  precondition(n > 0); 
  while (!odd(n)) { 
    a = op(a, a); 
    n = half(n); 
  } 
  if (n == 1) return a; 
  return power_accumulate_semigroup(a, op(a, a),  
                                    half(n), op); 
} 
 

100 



power for an arbitrary monoid 
template <Regular A, Integer N, MonoidOperation Op> 
requires(Domain<Op, A>)  
A power_monoid(A a, N n, Op op) { 
  precondition(n >= 0); 
  if (n == 0) return identity_element(op); 
  return power_semigroup(a, n, op); 
} 

101 



identity_element examples 
template <NoncommutativeAdditiveMonoid T> 
T identity_element(std::plus<T>) { 
  return T(0); 
} 
 
template <MultiplicativeMonoid T> 
T identity_element(std::multiplies<T>) { 
  return T(1); 
} 

 
102 



power for an arbitrary group 
template <Regular A, Integer N, GroupOperation Op> 
requires(Domain<Op, A>)  
A power_group(A a, N n, Op op) { 
  if (n < 0) { 
    n = -n; 
    a = inverse_operation(op)(a); 
  } 
  return power_monoid(a, n, op); 
} 
 

103 



examples of inverse_operation 
 
template <AdditiveGroup T> 
std::negate<T> inverse_operation(std::plus<T>) { 
  return std::negate<T>(); 
} 
 
template <MultiplicativeGroup T> 
reciprocal<T> inverse_operation(std::multiplies<T>) { 
  return reciprocal<T>(); 
} 
 

104 



reciprocal 
template <MultiplicativeGroup T> 
struct reciprocal  
  : public std::unary_function<T, T> { 
  T operator()(const T& x) const {  
    return T(1) / x;  
  } 
}; 
 

105 



Algorithms defined on abstract 
concepts 

 
An ancient algorithm can be used on an 
abstract mathematical concept and then 
applied to a myriad of different situations.  

106 



Even more important algorithm 
on semigroups 

• Additive semigroup 
 
 

• Multiplicative semigroup 
 
 

• Arbitrary semigroup 
– reduction 

 107 



Reduction 

• APL (Ken Iverson – 1962) (reduce) 
    + / 1 2 3 

• FP (John Backus – 1973) (insert) 
    (/ +): <1, 2, 3> 

• Tecton (Kapur et al – 1981) 
– semigroups, monoids, parallel reduction 

• MapReduce (Dean et al – 2004) 
– commutativity 

 108 



Problem 109 

Using our work on multiply and power 
design a library version of reduction 
algorithm. 

109 



Reading 110 

• Kenneth Iverson, Notation as a Tool of Thought, 
CACM, Vol. 23(8), Aug. 1980  

• John Backus, Can programming be liberated 
from the von Neumann style?, CACM, Vol. 
21(8), Aug. 1978 

• Deepak Kapur et al, Operators and Algebraic 
Structures, Proceedings FPCA 1981 

• Jeffrey Dean et al, MapReduce: simplified data 
processing on large clusters, Proceedings OSDI 
2004 
 

 
110 



Four Journeys: Journey One 

Lecture 3 
 

Alexander Stepanov 

111 



Fibonacci Numbers 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 
233, 377, 610, 987, 1597, 2584, 4181, 6765, 
10946, 17711, 28657, 46368, 75025, 
121393, 196418, 317811, 514229, 832040, 
1346269, 2178309, 3524578, 5702887, 
9227465, 14930352, 24157817, 
39088169,… 

112 



Computation of Fibonacci 
numbers  

113 



“Obvious” Implementation 

int fib0(int n) { 
  if (n == 0) return 0; 
  if (n == 1) return 1; 
  return fib0(n – 1) + fib0(n – 2); 
} 

114 



fib0(5) 

115 



Problem 116 

How many additions are needed to compute 
fib0(n)? 

116 



Iterative Fibonacci 
int fibonacci_iterative(int n) { 
  if (n == 0) return 0; 
  std::pair<int, int> v(0, 1); 
  for (int i = 1; i < n; ++i)  
    v = std::make_pair(v.second,  
                       v.first + v.second); 
  return v.second; 
} 

117 



Fibonacci transformation 

118 



nth Fibonacci vector 

119 



Matrix multiplication is 
associative 

We use power algorithm to get nth Fibonacci 
number. 

120 



Problem 121 

Implement computing Fibonacci numbers 
using power. 

121 



Reading 122 

EoP (pages 45 – 46) shows how to reduce 
the number of operations needed to multiply 
two Fibonacci matrices. 

122 



Linear Recurrences 

A linear recurrence function of order k is a 
function f such that 
 
 
 
 
A linear recurrence sequence is a sequence 
generated by such function from initial k 
values.  123 



Linear Recurrence via power 

124 



Further Reading 125 
Reducing number of operations 

 
 

• Charles M. Fiduccia: An Efficient Formula 
for Linear Recurrences. SIAM J. Comput. 
14(1): 106-112 (1985) 

125 

http://www.informatik.uni-trier.de/~ley/db/journals/siamcomp/siamcomp14.html�
http://www.informatik.uni-trier.de/~ley/db/journals/siamcomp/siamcomp14.html�


Matrices  

• We combine power with matrix 
multiplication to compute linear 
recurrences. 

• It is possible to use this technique for 
many other algorithms if we use more 
general notion of matrix multiplication. 

126 



Inner Product 

127 



Matrix-vector Product 

128 



Matrix-matrix Product 

129 



General setting for matrix 
multiplication 

• Where do coefficients come from? 
• Semiring 

– two operations 
 ⊕ - associative and commutative 
 ⊗ - associative 

– distributivity 

130 



Transitive closure of a relation 

• Take an n×n matrix with Boolean values. 
• Use matrix multiplication generated by 

Boolean or {∨, ∧}-semiring. 
• Raise it to n-1 power. 

 

131 



Shortest path 

• Take an n×n matrix with edge length 
values. 
– aij is the distance from node i to node j 

• Use matrix multiplication generated by 
Tropical or {min, +} semiring 
 
 

•  Raise the matrix to n-1 power. 
 

132 



Problem 133 

1. Implement power-based shortest path 
algorithm. 

2. Modify it to return not just the shortest 
distance but the shortest path (a 
sequence of edges). 

133 



Pythagoras (570BC - 490BC) 

134 



Life of Pythagoras 

• Samos 
– Polycrates, his tunnel and his ring. 

• Travels 
– Miletus, Egypt, Babylon, (India?), Croton 

• Pythagorean brotherhood  
– Discipline 
– Program of study (μάθημα) 
– Political influence 

135 



He maintained that “the principles of 
mathematics are principles of all 
existing things.” 

                                              Aristotle 

136 



ASTRONOMY 

 

GEOMETRY 

                

NUMBER THEORY 

 

MUSIC 137 

Pythagorean Quadrivium 



“He attached supreme importance to 
the study of arithmetic, which he 
advanced and took out of the region of 
commercial utility.” 

                                              
Aristoxenus 

Pythagorean Arithmetic 

138 



Nicomachus of Gerasa 

139 

Introduction to Arithmetic  
 Ἀριθμητικὴ εἰσαγωγή 
 
 



Triangular numbers 
 
 
 
 
 
 
 
 

   α 
 

   α 
  αα 
 

   α 
  αα 
 ααα 
 

   α 
  αα 
 ααα 
αααα 
 

    α 
   αα 
  ααα 
 αααα 
ααααα 
 

     α 
    αα 
   ααα 
  αααα 
 ααααα 
ααααα
α 
 

 1 3 6 10 15 21 

140 



Triangular numbers 
 
 
 
 
 
 
 
 

   α 
 

   α 
  αα 
 

   α 
  αα 
 ααα 
 

   α 
  αα 
 ααα 
αααα 
 

    α 
   αα 
  ααα 
 αααα 
ααααα 
 

     α 
    αα 
   ααα 
  αααα 
 ααααα 
ααααα
α 
 

 1 3 6 10 15 21 

141 



Oblong numbers 
 
 
 
 
 
 
 
 

   α 
   α 
 

  αα 
  αα 
  αα 
 

 ααα 
 ααα 
 ααα 
 ααα 
 

αααα 
αααα 
αααα 
αααα 
αααα 
 

ααααα 
ααααα 
ααααα 
ααααα 
ααααα 
ααααα 
 

ααααα
α 
ααααα
α 
ααααα
α 
ααααα
α 
ααααα
α 
ααααα
α 
ααααα
α 
 

 2 6 12 20 30 42 
142 



Gnomons 
 
 
 
 
 
 
 
 

   
   α 
 

  αα 
   α 
 

 ααα 
   α 
   α 
 

αααα 
   α 
   α 
   α 
 

ααααα 
    α 
    α 
    α 
    α 
 

ααααα
α 
     α 
     α 
     α 
     α 
     α 
 

 1 3 5 7 9 11 

143 



Square numbers 
 
 
 
 
 
 
 
 

   
   α 
 

  αα 
  αα 
 

 ααα 
 ααα 
 ααα 
 

αααα 
αααα 
αααα 
αααα 
 

ααααα 
ααααα 
ααααα 
ααααα 
ααααα 
 

ααααα
α 
ααααα
α 
ααααα
α 
ααααα
α 
ααααα
α 
ααααα
α 
 

 1 4 9 16 25 36 

144 



Problem 145 

Find a geometric proof of the following: 
 
Take any triangular number, multiply it by 8 
and add 1. The result is a square number. 
 
                     Plutarch, Platonic Questions 

145 



Prime numbers 

Numbers that are not products of smaller 
numbers. 
 
2, 3, 5, 7, 11, 13 … 
 
 

146 



Euclid VII, 32 

Any number is either prime or divisible by 
some prime. 
 
If not, “an infinite sequence of numbers will 
divide the number, each of which is less 
than the other; and this is impossible.” 

147 



Euclid, IX, 20 

For any sequence of primes 
there is a prime     not in the sequence. 
 
Consider the number                          . 
 
It is not divisible by any    .  Its smallest 
prime factor is the desired   . 
Therefore, there are infinitely many primes. 

148 



Eratosthenes (284BC – 195BC) 

149 



Life of Eratosthenes 

• Born in Cyrene (Κυρήνη), Libya 
• Studied in Athens (with Zeno?) 
• Around 244BC Ptolemy Euergetes invites 

him to Alexandria as a tutor. 
– Duplication of the cube, column and poem 

• Measuring the Earth (within 2%!). 
• A friend of Archimedes. 
• Still just a beta… 

 150 



Sieve (κόσκινον) of Eratosthenes 
0 1 2 3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
 
3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53  
     step 3 
 
3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53  
                                step 5 
 
3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 
                                                                       step 7      
 
3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53  
  
 
     

151 



mark_sieve 
template <RandomAccessIterator I, 
          Integer N> 
void mark_sieve(I first, I last, N step) { 
  *first = false; 
  while (last - first > step) { 
    first = first + step; 
    *first = false; 
  }  
}  
 

152 



Sifting lemmas 

• The square of the smallest prime factor of 
a composite number n is less or equal 
than n. 

• Any composite number less than p2 is 
sifted by a prime less than p. 

• When sifting by p, start marking at p2. 
• If the table is of size m, stop sifting when 

p2 ≥ m. 
 
 

153 



Sifting formulas 

154 



sift0 
template <RandomAccessIterator I, Integer N> 
void sift0(I first, N n) { 
   std::fill(first, first + n, true); 
   N i(0); 
   N square(3);  
   while (square < n) { 
     // invariant: square = 2i2 + 6i + 3 
     if (first[i]) { 
       mark_sieve(first + square,  
                  first + n,  // last 
                  i + i + 3); // step 
     } 
     ++i; 
     square =  3 + 2*i*(i + 3);  
   } 
} 
 155 



sift1 
template <RandomAccessIterator I, Integer N> 
void sift1(I first, N n) { 
   I last = first + n; 
   std::fill(first, last, true); 
   N i(0); 
   N square(3);  
   N step(3);  
   while (square < n) { 
     // invariant: square = 2i2 + 6i + 3, step = 2i + 3 
     if (first[i]) mark_sieve(first + square, last, step);  
     ++i; 
     step   = i + i + 3;  
     square =  3 + 2*i*(i + 3);  
   } 
} 
 

156 



Strength reduction 
From Wikipedia, the free encyclopedia 

Strength reduction is a compiler optimization where 
expensive operations are replaced with equivalent 
but less expensive operations. The classic example 
of strength reduction converts "strong" 
multiplications inside a loop into "weaker" additions – 
something that frequently occurs in array 
addressing. 
Examples of strength reduction include: 
• replacing a multiplication within a loop with an 

addition 
• replacing an exponentiation within a loop with a 

multiplication 
 

157 



Increment computation 

Replace 
  
step = i + i + 3; 
square =  3 + 2*i*(i + 3); 

 
with 
 
step += δstep; 
square += δsquare; 

 
 

158 



δ computations 

159 



sift 
template <RandomAccessIterator I, Integer N> 
void sift(I first, N n) { 
   I last = first + n; 
   std::fill(first, last, true); 
   N i(0); 
   N square(3);  
   N step(3);  
   while (square < n) { 
     // invariant: square = 2i2 + 6i + 3, step = 2i + 3 
     if (first[i]) mark_sieve(first + square, last, step);  
     ++i; 
     square += step; 
     step   += N(2);  
     square += step;  
   } 
} 
 

160 



Problem 161 

Time the sieve using different data sizes: 
– bool (use std::vector<bool>) 
– uint8_t 
– uint16_t 
– uint32_t 
– uint64_t 

161 



Problem 162 

Using the sieve, graph the function 
   π(n) = the number of primes < n  
for n up to 107 and find its analytic 
approximation.  
 

162 



Palindromic Primes 
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 
73 79 83 89 97 101 103 107 109 113 127 131 137 139 
149 151 157 163 167 173 179 181 191 193 197 199 211 
223 227 229 233 239 241 251 257 263 269 271 277 281 
283 293 307 311 313 317 331 337 347 349 353 359 367 
373 379 383 389 397 401 409 419 421 431 433 439 443 
449 457 461 463 467 479 487 491 499 503 509 521 523 
541 547 557 563 569 571 577 587 593 599 601 607 613 
617 619 631 641 643 647 653 659 661 673 677 683 691 
701 709 719 727 733 739 743 751 757 761 769 773 787 
797 809 811 821 823 827 829 839 853 857 859 863 877 
881 883 887 907 911 919 929 937 941 947 953 967 971 
977 983 991 997 

163 



No Palindromic Primes ?! 
1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 
1063 1069 1087 1091 1093 1097 1103 1109 1117 1123 
1129 1151 1153 1163 1171 1181 1187 1193 1201 1213 
1217 1223 1229 1231 1237 1249 1259 1277 1279 1283 
1289 1291 1297 1301 1303 1307 1319 1321 1327 1361 
1367 1373 1381 1399 1409 1423 1427 1429 1433 1439 
1447 1451 1453 1459 1471 1481 1483 1487 1489 1493 
1499 1511 1523 1531 1543 1549 1553 1559 1567 1571 
1579 1583 1597 1601 1607 1609 1613 1619 1621 1627 
1637 1657 1663 1667 1669 1693 1697 1699 1709 1721 
1723 1733 1741 1747 1753 1759 1777 1783 1787 1789 
1801 1811 1823 1831 1847 1861 1867 1871 1873 1877 
1879 1889 1901 1907 1913 1931 1933 1949 1951 1973 
1979 1987 1993 1997 1999  

164 



Problem 165 

• Are there palindromic primes > 1000? 
 

• What is the reason for the lack of them in 
the interval [1000, 2000]? 
 

• What happens if we change our base to 
16? To an arbitrary n? 

165 



Four Journeys: Journey One 

Lecture 4 
 

Alexander Stepanov 

166 



Perfect numbers 

• An aliquot part of a positive integer is a 
proper divisor of the integer. 

• The aliquot sum of a positive integer is the 
sum of its aliquot parts. 

• A positive integer is perfect if it is equal to 
its aliquot sum. 

167 



Perfect numbers known to the 
Greeks 

168 



Their prime factorization 

169 



Further decomposition 

170 



Other powers of 2 

171 



Euclid, Elements,  
Book IX, Proposition 36 

 
  If             is prime then                 is perfect.  

172 



Difference of powers 

173 



Sum of odd powers 

174 



Restatement of Euclid’s 
theorem 

If              is prime then                     is perfect.  

175 



σ(n) - sum of the divisors 

176 



Problem 177 

Prove that if n and m are co-prime (have no 
common prime factors) then 
 
              σ(nm) =  σ(n)σ(m) 

177 



α(n) - aliquot sum  

α(n) =  σ(n) - n 

178 



Proof of Euclid, IX, 36 

179 



The inverse of IX, 36 

• In XVIII century Leonard Euler proved that 
every even perfect number is of the form 
 
 

• Odd perfect numbers? 
 

 
 

180 



Problem 181 

Prove that every even perfect number is a 
triangular number. 

181 



Problem 182 

Prove that the sum of the reciprocals of the 
divisors of a perfect number is always 2. 
 
 

182 



Practical years 

• In 212 BC the study of Mathematics in the 
Latin West takes a long break. 
 

• In the third journey we will see how it 
comes back around 1200 AD. 

183 



Noli turbare circulos meos! 

184 



An admission of a practical fellow 

In summo apud illos honore geometria fuit, itaque nihil 
mathematicis inlustrius; at nos metiendi ratiocinandique 
utilitate huius artis terminavimus modum.  

 
Among the Greeks geometry was held in highest honor; 

nothing could outshine mathematics. But we have limited 
the usefulness of this art to measuring and calculating.  

 
                       Marcus Tullius Cicero,Tusculan Disputations 
 
The tomb of Archimedes. 

185 



Marin Mersenne (1588 – 1648) 
“walking scientific journal” 

186 



Wikipedia on Mersenne 

His most important contribution to the 
advance of learning was his extensive 
correspondence with mathematicians and 
other scientists in many countries. At a time 
when the scientific journal had not yet come 
into being, Mersenne was the center of a 
network for exchange of information. 

187 



A few of Mersenne’s friends 

 
• Galileo Galilei  
• René Descartes 
• Pierre de Fermat 
• Blaise Pascal 
 

188 



189 



When is 2n − 1 prime? 

• Greeks: true for n = 2, 3, 5, 7, 13 
• Hudalricus Regius (1536): false for n = 11  

      211 − 1 = 2047 = 23×89 
• Pietro Cataldi (1603): true for n = 17, 19 
•                                    true for n = 23, 29, 31, 37 
• Fermat discovered that 

190 



Mersenne primes 

In 1644 in his book Cogitata Physico 
Mathematica, Mersenne states that if n ≤ 
257 then 2n-1 is prime if and only if n = 
2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257 
 
67 might be a misprint for 61. 
 
Mersenne missed: 89, 107 

191 



Letter from Fermat to Mersenne 

In June 1640 Fermat states that his 
factorization of 237 − 1 depends on the 
following three discoveries: 
1. If n is not a prime, 2n − 1 is not a prime. 
2. If n is a prime, 2n − 2 is a multiple of 2n. 
3. If n is a prime, and p is a prime divisor of 

2n − 1, then p − 1 is a multiple of n. 

192 



Factoring 237 − 1   

• It has a prime factor p.  
• p − 1 is divisible by 37. 
• p = 37n + 1 
• p is odd 
• p = 74m + 1 
• m = 1, but 75 is not a prime 
• m = 2, 149 is prime, but does not divide 
• m = 3, 223 is prime and does divide! 

193 



If           is prime then    is prime 

194 



Fermat’s discoveries 2 and 3 

“… he would send [the proof] if he did not 
fear being too long.” 
 
  Fermat to Frenicle 

195 



Little Fermat Theorem 

If p is prime, ap−1 − 1 is divisible by p for any 
0 < a < p.  

196 



Delayed proof 

• Fermat claimed to have the proof in 1640. 
 

• Leibnitz discovered the proof some time 
between 1676 an 1680, but did not 
publish. 
 

• Euler published two different proofs in 
1742 and 1750. 

197 



Another Conjecture by Fermat 

198 



  

199 



  

• Fermat states that 3, 5, 17, 257, 65537,  
4294967297  and 18446744073709551617 
are primes. 

• Fermat conjectured that so are they all. 
• In 1732 Euler shows that  
       232 +1   = 4294967297 = 641 × 6700417 
• For 5 ≤ i ≤ 32 they are composite. 
• Are there any more Fermat primes? 

200 



Leonhard Euler,  
c'est notre maître à tous 

201 



Euclid, VII, 30 

The product of two integers smaller than a 
prime p is not divisible by p. 

202 



The proof of VII, 30 

203 



Notational convention 

For the rest of the journey, p is always 
assumed to be prime. 

204 



Permutation of Remainders 
Lemma 

205 



Cancellation Law 

206 



Self-cancelling elements 

1 and p−1 cancel themselves. 

207 



Self-cancelling Lemma 

208 



Wilson Theorem 

• Was introduced by Waring who 
(incorrectly) attributes it to Wilson. 

• Waring stated that he cannot prove it since 
he did not have the right notation. 

• Gauss remarks: ”One needs notion, not 
notation.” 
– At nostro quidem iudicio huiusmodi veritates 

ex notionibus potius quam ex notationibus 
hauriri debebant. 
 209 



 
 
 
Proof: 
 
Every number except 1 and p−1 is cancelled 
by its inverse. 

210 

Wilson’s Theorem 



Problem 211 

211 



The proof of Little Fermat 

212 



Multiplicative inverse modulo n 

213 



ap−2 is an inverse of a 

Trivial. 

214 



Non-invertibility Lemma  

215 



Converse of Little Fermat 

216 



“Useful” mathematics 

The search for (so far) useless perfect 
numbers led to the discovery of one of the 
most practically useful theorems in all of 
mathematics. 
 
In particular, this theorem helps us to find 
large primes used daily in e-commerce. 

217 



Four Journeys: Journey One 

Lecture 5 
 

Alexander Stepanov 

218 



Multiplication Table modulo 7 

219 



Multiplication modulo 7 with 
inverses 

220 



Wilson’s Theorem modulo 7 

221 



Wilson modulo 7 

222 



Fermat modulo 7 

223 



Multiplication modulo 10 with 
inverses 

224 



Reducing the Multiplication 
Table 

225 



Euler Totient function 

226 



Totient of prime 

227 



Euler’s Theorem 

228 



Problem 229 

• Prove Euler’s theorem by modifying the proof of 
the Little Fermat Theorem  

• Steps 
– Replace Permutation of Remainders Lemma with 

Permutation of Coprime Remainders Lemma 
– Prove that every coprime remainder has a 

multiplicative inverse 
– Use the product of all coprime remainders where that 

proof of Little Fermat uses the product of all non-zero 
remainders. 
 

229 



Abstraction 

Generalizing code is like generalizing 
theorems and their proofs. 

230 



Totient of power of prime 

231 



Totient of n = puqv 

232 



General case totient formula 

233 



Primality Testing 

The problem of distinguishing prime numbers 
from composite and of resolving the latter into 
their prime factors is known to be one of the 
most important and useful in arithmetic.  
 C.F. Gauss  
        Disquisitiones Arithmeticae, article 329  
 

234 



Divides 

template <Integer I> 
bool divides(const I& i, const I& n) { 
  return n % i == I(0); 
} 
 

235 



smallest_divisor 

template <Integer I> 
I smallest_divisor(I n) { 
  // precondition: n > 0 
  if (even(n)) return I(2);  
  for (I i(3); n >= i * i; i += I(2)) { 
    if (divides(i, n)) return i; 
  } 
  return n; 
} 

236 



is_prime 

template <Integer I> 
I is_prime(const I& n) { 
  return n > I(1) &&  
         smallest_divisor(n) == n; 
} 
 
Complexity:  
Exponential in number of digits. 

237 



Modulo Multiplication  
template <Integer I> 
struct modulo_multiply { 
  I modulus; 
  modulo_multiply(const I& i) : modulus(i) {} 
  I operator() const (const I& n, 
                      const I& m) { 
    return (n * m) % modulus; 
  } 
}; 

          
238 



Modulo Multiplication Identity  
template <Integer I> 
I identity_element(const modulo_multiply<I>&) { 
  return I(1); 
} 

          

239 



Multiplicative inverse - Fermat 
template <Integer I> 
I multiplicative_inverse_fermat(I a, I p) { 
  // precondition: p is prime & a > 0 
  modulo_multiply<I> op; 
  return power_monoid(a, p – 2, op); 
} 
             

240 



fermat_test 
template <Integer I> 
bool fermat_test(I n, I witness) { 
  // precondition: 0 < witness < n 
  modulo_multiply<I> op(n); 
  I exp(power_semigroup(witness,  
                        n - I(1),  
                        op); 
  return exp == I(1); 
} 
Why don’t I use power_monoid? 

241 



Co-prime 

Two integers are co-prime if and only if they 
do not share a prime divisor. 

242 



Carmichael Numbers 

A composite number n > 1 is a Carmichael 
number iff 
 
 

243 



Problem 244 

1. Implement a function  
 
          bool is_carmichael(n) 

 
1. Find the first seven Carmichael numbers. 
 

244 



template <Integer I> 
bool miller_rabin_test(I n, I q, I k, I w) { 
 
  modulo_multiply<I> op(n); 
  I x = power_semigroup(w, q, op); 
  I i(1); 
  while (x != I(1) && x != n - I(1)) { 
 
    if (i >= k) return false; 
    ++i; 
    x = op(x, x); 
  } 
  return x != I(1) || i == I(1); 
} 
 

245 



template <Integer I> 
bool miller_rabin_test(I n, I q, I k, I w) { 
 
  modulo_multiply<I> op(n); 
  I x = power_semigroup(w, q, op); 
  if (x == I(1) || x == n - I(1)) return true; 
  for (I i(1); i < k; ++i) { 
  
     x = op(x, x);    
     if (x == n – I(1)) return true; 
     if (x == I(1))     return false; 
  } 
  return false; 
} 
 

246 



Miller-Rabin Guarantee 

• miller_rabin_test is wrong with probability 
at most 25% for a random w. 

• Randomly choosing, say, 100 witnesses 
makes the probability of error less than 2-
200 

• “It is much more likely that our computer 
has dropped a bit, due […] to cosmic 
radiations.”  

                           Donald E. Knuth 
247 



Primes is in P (2002) 

248 
Manindra Agrawal,  Neeraj Kayal, and Nitin Saxena 



Full treatment of AKS 

There is a pdf of Andrew Granville’s 
expository paper on the wiki. It is very well 
written, but still quite difficult for a non-
specialist.  

249 



Cryptology 

• Cryptography develops ciphers.  
• Cryptanalysis breaks ciphers. 

 
• For a brief history of Cryptology, read my 

notes on the wiki. 

250 



Cryptosystem 

• plaintext => encryption(key0) => ciphertext 
 

• ciphertext => decryption(key1) => plaintext 
 

• the system is symmetric if key0 = key1 
 

• the system is asymmetric otherwise 

251 



Public Key Cryptosystem 

• An encryption scheme in which users 
would have a pair of keys, a public key 
pub for encrypting, and a private key prv 
for decrypting.  

• When Alice wants to send a message to 
Bob she encrypts with Bob’s public key. 
Bob uses his private key to decipher her 
message.  
 

 
 

252 



Requirements for a Public Key 
Cryptosystem 

• The encryption function needs to be a one-way 
function: easy to compute with an inverse that is 
hard to compute. 
– hard means exponential in the size of the key  

• The inverse function has to be easy to compute 
when you have access to a certain additional 
piece of information (trapdoor). 

•  A function meeting these two requirements is 
known as a trapdoor one-way function.  

• Both encryption and decryption functions are 
publicly known.  
 

253 



Inventors of Public Key 
Cryptosystems 

• Whit Diffie, Martin Hellman, Ralph Merkle 
– preceded by James Ellis  

• Ron Rivest, Adi Shamir and Len Adleman 
–  preceded by Clifford Cocks 

• preceded by unnamed NSA researcher 

254 



Clifford Cocks (1950 - ) 
the secret inventor of RSA 



RSA key generation 
• Compute 

– random large primes p1 and p2 
– n = p1p2 
– φ(p1p2) = (p1 – 1)(p2 – 1) 
– random pub, coprime with φ(p1p2)  
– prv, the multiplicative inverse of pub modulo φ(p1p2)  

• wait for the 2nd journey for the algorithm 

• Destroy: p1 , p2 
• Publish: (pub, n) 
• Keep secret: prv 

256 



Encoding/decoding 

• Encode: 
     power_semigroup(plain_text_block, 
                   pub, 
                   modulo_multiply<I>(n)); 
• Decode: 
     power_semigroup(cipher_text_block, 
                   prv, 
                   modulo_multiply<I>(n)); 

                                  
257 



Justification of RSA 

258 



Presupposition 

• Factoring is hard and, therefore, 
computing φ is not feasible. 
 

• The presupposition is not true if quantum 
computers are realizable.  

259 



extended_gcd 
template <EuclideanDomain I> 
std::pair <I, I> extended_gcd(I a , I b) { 
  if (b == 0) return std::make_pair(I(1), a);  
  I u(1); 
  I v(0); 
  while (true) { 
    I q = a / b;  
    a -= q * b;  // a = a % b; 
    if (a == I(0)) return std::make_pair(v, b);  
    u -= q * v; 
 
    q = b / a;  
    b -= q * a;  // b = b % a; 
    if (b == I(0)) return std::make_pair(u, a); 
    v -= q * u;  
  } 
} 
 
 

260 



multiplicative_inverse 
template <Integer I> 
I multiplicative_inverse(I a, I n) { 
  std::pair<I, I> p = extended_gcd(a, n); 
  if (p.second != I(1)) return I(0); 
  if (p.first < I(0)) return p.first + n; 
  return p.first; 
} 

returns multiplicative inverse of a modulo n if 
it exists or 0 if it does not. 

261 



Project 262 

• Implement RSA key generation library. 
 

• Implement RSA message 
encoder/decoder that takes a string and 
the key as its arguments. 

262 



“Spoils of the Egyptians”? 

 
Let us take from mathematicians what is 
eternal and beautiful, while leaving behind 
their passing fads. 

263 


	Introduction
	Lecture 1
	Lecture 2
	Lecture 3
	Lecture 4
	Lecture 5

