
Alexander Stepanov
A9.com

1

One algorithm from The Book:
 A tribute to Ira Pohl

http://www.stepanovpapers.com/IraPohlFest.pdf

The highest compliment [Erdős] could pay
to a colleague's work was to say, “That's
straight from The Book.”

 Encyclopedia Britannica

2

CS needs its Book

The Book contains algorithms that are:

•  Beautiful
•  Optimal
•  Useful

3

Programming R. Morris
Techniques Editor

A Sorting
Problem and
Its Complexity
I r a P o h l
U n i v e r s i t y o f C a l i f o r n i a *

A technique for proving min-max norms of sorting
a lgo r i t hms is given. O n e new a lgo r i t h m for f inding the
minimum and maximum elements of a set with fewest
comparisons is proved opt imal with this technique.

Key Words and Phrases : sor t ing , computational
complexity, computational combinatorics

C R Ca tegor i e s : 5.29, 5.31

Copyright (~) 1972, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part

of this material is granted, provided that reference is made to this
publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Com-
puting Machinery.

* Information and Computer Science Department, and
Stevenson College, University of California, Santa Cruz, CA
95060. This paper is a revision of a privately distributed communi-
cation, March 1970.

462

A sorting problem is a special case of finding a set
partition. The elements are identified by their rank in
a linear order. For a given finite set
X = {xl, x 2 , . . . , x,}

There is some permutation r*, such that

XTr*~l) < Xlr*~2) < . . . < XTr*~n~ .

(Note: we will ignore throughout the case of XTr*<~) =

Other partitions which do not completely sort the
set are often of interest, such as finding the minimum
element, the maximum element, the first K smallest
elements, the median or, as will be discussed here, the
minimum and maximum elements.

Algorithms which take unordered (or partially
ordered) sets and produce the desired partition are
fundamental to computing, making this area one of the
most intensely studied both practically and theoreti-
cally. In the theoretical attacks, the principal unit of
work has been the comparison. An algorithm is com-
pared to some norm on the number of comparisons.
The two norms of most interest are the maximum and
the average. The maximum norm (M-norm) is the
greatest number of comparisons the algorithm takes
over all possible inputs (n ! orderings are possible). The
average norm (E-norm) is the average number of
comparisons the algorithm takes with respect to the
uniform distribution on the possible orderings. The best
algorithm for a given norm is the one that minimizes
that norm.

The goals of this paper are: (1) to demonstrate a
technique for proving algorithms optimal in the maxi-
mum norm; and (2) using the technique developed, to
exhibit a new algorithm P2 for finding both the mini-
mum and maximum of a set, which is then proven
optimal in the M-norm.

Communications June 1972
of Volume 15
the ACM Number 6

4

Programming R. Morris
Techniques Editor

A Sorting
Problem and
Its Complexity
I r a P o h l
U n i v e r s i t y o f C a l i f o r n i a *

A technique for proving min-max norms of sorting
a lgo r i t hms is given. O n e new a l g o r i t h m for f inding the
minimum and maximum elements of a set with fewest
comparisons is proved opt imal with this technique.

Key Words and Phrases : sor t ing , computational
complexity, computational combinatorics

C R Ca tegor i e s : 5.29, 5.31

Copyright (~) 1972, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part

of this material is granted, provided that reference is made to this
publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Com-
puting Machinery.

* Information and Computer Science Department, and
Stevenson College, University of California, Santa Cruz, CA
95060. This paper is a revision of a privately distributed communi-
cation, March 1970.

462

A sorting problem is a special case of finding a set
partition. The elements are identified by their rank in
a linear order. For a given finite set
X = {xl, x 2 , . . . , x,}

There is some permutation r*, such that

XTr*~l) < Xlr*~2) < . . . < XTr*~n~ .

(Note: we will ignore throughout the case of XTr*<~) =

Other partitions which do not completely sort the
set are often of interest, such as finding the minimum
element, the maximum element, the first K smallest
elements, the median or, as will be discussed here, the
minimum and maximum elements.

Algorithms which take unordered (or partially
ordered) sets and produce the desired partition are
fundamental to computing, making this area one of the
most intensely studied both practically and theoreti-
cally. In the theoretical attacks, the principal unit of
work has been the comparison. An algorithm is com-
pared to some norm on the number of comparisons.
The two norms of most interest are the maximum and
the average. The maximum norm (M-norm) is the
greatest number of comparisons the algorithm takes
over all possible inputs (n ! orderings are possible). The
average norm (E-norm) is the average number of
comparisons the algorithm takes with respect to the
uniform distribution on the possible orderings. The best
algorithm for a given norm is the one that minimizes
that norm.

The goals of this paper are: (1) to demonstrate a
technique for proving algorithms optimal in the maxi-
mum norm; and (2) using the technique developed, to
exhibit a new algorithm P2 for finding both the mini-
mum and maximum of a set, which is then proven
optimal in the M-norm.

Communications June 1972
of Volume 15
the ACM Number 6

•  To find minimum (or maximum) of n elements
we need n – 1 comparisons

•  Don’t we need 2n – 2 (or 3?) comparisons to
find both?

•  Ira showed that we need at most
comparisons

•  And he showed that his algorithm is optimal

5

Finding both min and max

d 3
2ne � 2

 maybe min or maybe max

 not max not min

 not min and not max

6

Strict Weak Ordering

•  Weak trichotomy

•  Transitivity

•  Irreflexivity, or strictness

7

x � y _ y � x _ x ⇠ y

(x � y ^ y � z)) x � z

¬(x � x)

template <StrictWeakOrdering R> !
struct min_max !
{ !
 R r; !
 !
 template <Regular T> // T == Domain<R> !
 const T& min(const T& x, !
 const T& y) const { !
 if (r(y, x)) return y; !
 else return x; !
 } !

8

Weak Commutativity

•  Is min commutative?
•  Not for StrictWeakOrdering
•  Weak Commutativity!

•  Set with min defined is

– semigroup
–  (weak Abelian) semigroup

•  Weak theories
– equivalence axioms (instead of equational) 9

a � b ⇠ b � a

 template <Regular T> // T == Domain<R> !
 const T& max(const T& x, !
 const T& y) const { !
 if (r(y, x)) return x; !
 else return y; !
 } !
 !

10

 // the idiot who designed STL wrote: !
 template <Regular T> // T == Domain<R> !
 const T& max(const T& x, !
 const T& y) const { !
 if (r(x, y)) return y; !
 else return x; !
 } !
!
 // why is it wrong? !
!

11

 template <Regular T> // T == Domain<R> !
 pair<T, T> construct(const T& x, !
 const T& y) const { !
 if (r(y, x)) return {y, x}; !
 else return {x, y}; !
 } !
 !

12

 template <Regular T> // T == Domain<R> !
 pair<T, T> !
 combine(const pair<T, T>& x, !

" "const pair<T, T>& y) const { !
 return { min(x.first, y.first), !
 max(x.second, y.second) }; !
 } !
}; !

13

Iterators

•  Input
•  Forward
•  Bidirectional
•  RandomAccess

14

template <StrictWeakOrdering R> !
struct compare_dereference !
{ !
 R r; !
!
 template <InputIterator I> !
 // Domain<R> == ValueType<I> !
 bool operator()(const I& i, !
 const I& j) const { !
 return r(*i, *j); !
 } !
}; !
!

15

template <ForwardIterator I, !
 StrictWeakOrdering R> !
pair<I, I> !
min_max_element_even_length(I first, !
 I last, !
 R r) { !
 // assert(distance(first, last) % 2 == 0) !
 min_max<compare_dereference<R>> op{r}; !
 if (first == last) return {last, last}; !
!

16

 I prev = first; !
 pair<I, I> result = !
 op.construct(prev, ++first); !
 while (++first != last) { !
 prev = first; !
 result = op.combine(!
 result, !
 op.construct(prev, ++first)); !
 } !
 return result; !
} !

17

template <ForwardIterator I, !
 StrictWeakOrdering R> !
pair<I, I> !
min_max_element(I first, I last, R r) { !
 min_max<compare_dereference<R>> op{r}; !
 I prev = first; !
 if (first == last || ++first == last) !

"return {prev, prev}; !

18

 pair<I, I> result = !
 op.construct(prev, first); !
 while (++first != last) { !
 prev = first; !
 if (++first == last) !
 return op.combine(result, !
 {prev, prev}); !
 result = op.combine(!
 result, !

" op.construct(prev, first)); !
 } !
 return result; !
} !

19

Type Functions
template <InputIterator I> !
using ValueType = typename !
 std::iterator_traits<I>::value_type; !

20

template <InputIterator I, !
 StrictWeakOrdering R> !
pair<ValueType<I>, ValueType<I>>
min_max_value_nonempty(I first, !
 I last, !
 R r) { !
 typedef ValueType<I> T; !
 min_max<R> op{r}; !
 T val = *first; !
 if (++first == last) return {val, val}; !
 !

21

 pair<T, T> result = !
 op.construct(val, *first); !
 while (++first != last) { !
 val = *first; !
 if (++first == last) !

" return op.combine(result, !
 {val, val}); !
 result = op.combine(!
 result, !

" op.construct(val, *first)); !
 } !
 return result; !
} !

22

template <InputIterator I, !
 StrictWeakOrdering R> !
pair<ValueType<I>, ValueType<I>>
min_max_value(I first, I last, R r) { !
 typedef ValueType<I> T; !
 if (first == last) !
 return {supremum(r), infimum(r)} !
 return min_max_value_nonempty(first, !
 last, !
 r); !
} !

23

•  I have been teaching this algorithm every
2 – 3 years for the last 30 years

•  When I teach it, I implement it anew
•  Writing the code and teaching it gives me

joy every time

24

THANK YOU, IRA!

25

Getting rid of an extra compare
// Add to min_max: !
template <Regular T> // T == Domain<R> !
pair<T, T> combine(const pair<T, T>& x, !
 const T& val) const { !
 if (r(val, x.first)) return { val, x.second}; !
 if (r(val, x.second)) return x; !
 return {x.first, val}; !
} !

26

Getting rid of an extra compare (2)

// In min_max_element and !
// min_max_value_nonempty, replace: !
if (++first == last) !
 return op.combine(result, {val, val}); !
!
// with !
if (++first == last) !
 return op.combine(result, val); !

27

