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One algorithm from The Book: 
 A tribute to Ira Pohl 

http://www.stepanovpapers.com/IraPohlFest.pdf 



The highest compliment [Erdős] could pay 
to a colleague's work was to say, “That's 
straight from The Book.” 
 
                            Encyclopedia Britannica 
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CS needs its Book 

The Book contains algorithms that are: 
 
•  Beautiful 
•  Optimal 
•  Useful 
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A sorting problem is a special case of finding a set 
partition. The elements are identified by their rank in 
a linear order. For  a given finite set 
X = {xl, x 2 , . . . ,  x,} 

There is some permutation r*, such that 

XTr*~l) < Xlr*~2) < . . .  < XTr*~n~ . 

(Note: we will ignore throughout  the case of XTr*<~) = 

Other partitions which do not completely sort the 
set are often of  interest, such as finding the minimum 
element, the maximum element, the first K smallest 
elements, the median or, as will be discussed here, the 
minimum and maximum elements. 

Algorithms which take unordered (or partially 
ordered) sets and produce the desired partition are 
fundamental to computing, making this area one of the 
most intensely studied both practically and theoreti- 
cally. In the theoretical attacks, the principal unit of  
work has been the comparison. An algorithm is com- 
pared to some norm on the number of comparisons. 
The two norms of most interest are the maximum and 
the average. The maximum norm (M-norm) is the 
greatest number of comparisons the algorithm takes 
over all possible inputs ( n ! orderings are possible). The 
average norm (E-norm) is the average number of  
comparisons the algorithm takes with respect to the 
uniform distribution on the possible orderings. The best 
algorithm for a given norm is the one that minimizes 
that norm. 

The goals of this paper are: (1) to demonstrate a 
technique for proving algorithms optimal in the maxi- 
mum norm; and (2) using the technique developed, to 
exhibit a new algorithm P2 for finding both the mini- 
mum and maximum of a set, which is then proven 
optimal in the M-norm. 
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•  To find minimum (or maximum) of n elements  
we need n – 1 comparisons 

•  Don’t we need 2n – 2 (or 3?)  comparisons to 
find both? 

•  Ira showed that we need at most                      
comparisons 

•  And he showed that his algorithm is optimal 
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Finding both min and max 

d 3
2ne � 2



               maybe min or maybe max 
 
 
 
  not max                                        not min 
 
 
  
                   not min and not max 
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Strict Weak Ordering 

•  Weak trichotomy 
 

•  Transitivity 
 

•  Irreflexivity, or strictness 
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x � y _ y � x _ x ⇠ y

(x � y ^ y � z) ) x � z

¬(x � x)



template <StrictWeakOrdering R> !
struct min_max !
{ !
  R r; !
 !
  template <Regular T>  // T == Domain<R> !
  const T& min(const T& x, !
               const T& y) const { !
    if (r(y, x)) return y; !
    else         return x; !
  } !
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Weak Commutativity 

•  Is min commutative? 
•  Not for StrictWeakOrdering 
•  Weak Commutativity! 

  
•  Set with min defined is 

– semigroup 
–  (weak Abelian) semigroup 

•  Weak theories 
– equivalence axioms (instead of equational) 9 

a � b ⇠ b � a



  template <Regular T>  // T == Domain<R> !
  const T& max(const T& x, !
               const T& y) const { !
    if (r(y, x)) return x; !
    else         return y; !
  } !
  !
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  // the idiot who designed STL wrote: !
  template <Regular T>  // T == Domain<R> !
  const T& max(const T& x, !
               const T& y) const { !
    if (r(x, y)) return y; !
    else         return x; !
  } !
!
  // why is it wrong? !
!
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  template <Regular T>  // T == Domain<R> !
  pair<T, T> construct(const T& x, !
                       const T& y) const { !
    if (r(y, x)) return {y, x}; !
    else         return {x, y}; !
  } !
  !
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  template <Regular T>  // T == Domain<R> !
  pair<T, T> !
  combine(const pair<T, T>& x, !

" "const pair<T, T>& y) const { !
    return { min(x.first, y.first), !
             max(x.second, y.second) }; !
  } !
}; !
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Iterators 

•  Input 
•  Forward 
•  Bidirectional 
•  RandomAccess 
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template <StrictWeakOrdering R> !
struct compare_dereference !
{ !
  R r; !
!
  template <InputIterator I> !
  // Domain<R> == ValueType<I> !
  bool operator()(const I& i, !
                  const I& j) const { !
    return r(*i, *j); !
  } !
}; !
!
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template <ForwardIterator I, !
          StrictWeakOrdering R> !
pair<I, I> !
min_max_element_even_length(I first, !
                            I last, !
                            R r) { !
  // assert(distance(first, last) % 2 == 0) !
  min_max<compare_dereference<R>> op{r}; !
  if (first == last) return {last, last}; !
!
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  I prev = first; !
  pair<I, I> result = !
                 op.construct(prev, ++first); !
  while (++first != last) { !
    prev = first; !
    result = op.combine( !
                 result,    !
                 op.construct(prev, ++first)); !
  } !
  return result; !
} !
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template <ForwardIterator I, !
          StrictWeakOrdering R> !
pair<I, I> !
min_max_element(I first, I last, R r) { !
  min_max<compare_dereference<R>> op{r}; !
  I prev = first; !
  if (first == last || ++first == last) !

"return {prev, prev}; !
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  pair<I, I> result = !
                 op.construct(prev, first); !
  while (++first != last) { !
    prev = first; !
    if (++first == last) !
      return op.combine(result, !
                        {prev, prev}); !
    result = op.combine( !
                 result, !

"            op.construct(prev, first)); !
  } !
  return result; !
} !
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Type Functions 
template <InputIterator I> !
using ValueType = typename     !
      std::iterator_traits<I>::value_type; !
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template <InputIterator I, !
          StrictWeakOrdering R> !
pair<ValueType<I>, ValueType<I>> 
min_max_value_nonempty(I first, !
                       I last, !
                       R r) { !
  typedef ValueType<I> T; !
  min_max<R> op{r}; !
  T val = *first; !
  if (++first == last) return {val, val}; !
  !
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  pair<T, T> result = !
                 op.construct(val, *first); !
  while (++first != last) { !
    val = *first; !
    if (++first == last) !

" return op.combine(result, !
                        {val, val}); !
    result = op.combine( !
                 result, !

"            op.construct(val, *first)); !
  } !
  return result; !
} !

22 



template <InputIterator I, !
          StrictWeakOrdering R> !
pair<ValueType<I>, ValueType<I>> 
min_max_value(I first, I last, R r) { !
  typedef ValueType<I> T; !
  if (first == last) !
    return {supremum(r), infimum(r)} !
  return min_max_value_nonempty(first, !
                                last, !
                                r); !
} !
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•  I have been teaching this algorithm every 
2 – 3 years for the last 30 years 

•  When I teach it, I implement it anew 
•  Writing the code and teaching it gives me 

joy every time 
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THANK YOU, IRA! 
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Getting rid of an extra compare 
// Add to min_max: !
template <Regular T>  // T == Domain<R> !
pair<T, T> combine(const pair<T, T>& x, !
                   const T& val) const { !
  if (r(val, x.first)) return { val, x.second}; !
  if (r(val, x.second)) return x; !
  return {x.first, val}; !
} !
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Getting rid of an extra compare (2) 

// In min_max_element and !
// min_max_value_nonempty, replace: !
if (++first == last) !
  return op.combine(result, {val, val}); !
!
// with !
if (++first == last) !
  return op.combine(result, val); !
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