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Chapter 1 

Introduction 

1.1 Purpose of the book 

Higher order programming is a style of programming which uses functions 
that operate on functions (functional forms or operators), but does not 
avoid using destructive operations (in contrast to functional programming 
which disallows destructive operations). This style of programming allows 
the development of programs that are not just competitive with tradition- 
ally designed programs, but quite often outperform them. It also produces 
very concise, underst andable, and highly reliable code. 

Our notion of higher order programming combines several important 
programming paradigms developed in recent years, such as functional pro- 
grmming, object oriented programming, and abstract data types. It is our 
view that none of these paradigms is satisfactory by itself, but that they do 
complement each other. Functional programming provides us with the idea 
of functional forms, but we find that functional programming ideas can be 
extended to include non-applicative functions and functional forms. These 
non-applicative forms do not just increase efficiency of code, but very often 
allow expression of algorithms that are not easily expressible in a purely 
applicative style. 

A similar point can be made about object oriented programming. Mes- 
sage passing and data encapsulations are extremely useful, but we don't 
want to restrict our world view by viewing everything as a message receiv- 
ing object. With regard to abstract data types, the advantages they provide 
in permitting abstracting away from "how to" to "what" should be com- 
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plemented by a notion of algorithmic abstraction that permits describing 
"how to" independently of what kind of data is involved. 

A second point is that we believe that it would be very difficult to devise 
a set of operators a priori, so that this set will be able to express precisely 
many complex algorithms. On the contrary we are currently engaged in 
an effort to extract higher order primitives from large classes of algorithms 
and data structures, such as sorting a d  searching algorithms, network 
algorithms and theorem proving algorithms. We advocate an minimal ap- 
proach, in that no operator is introduced unless there is a real algorithm 
that requires it. 

A third point is that we view the science of programming as primarily 
a practical science. While we are willing to sacrifice some efficiency for 
clarity, we are not willing to accept an algorithm description that is "cute" 
but grossly inefficient. It is our opinion that a lot of work in functional 
programming has neglected the issues of algorithmic complexity. 

1.2 A view of algorithms 

It is our experience that there are many important algorithms in the litera- 
ture that are extremely hard to implement using conventional programming 
techniques. For example, it is indicative that several books on algorithm 
design and analysis, such as Sedgewick [ 1, Tarjan [ 1, and Gonnet [ 1, 
mention binomial queues as the best implementation of mergeable priority 
queues, but do not even attempt to give an implementation. Even the orig- 
inal papers where binomial queues are introduced give only pseudo-code 
descriptions of the algorithms. Yet higher order primitives make imple- 
menting these algorithms easy. 

Moreover, in our experience, the availability of higher order primitives 
facilitates the discovery of new algorithms and makes it feasible to study 
them experimentally. 

In this paper we use a functional form called "reduction" to derive a data 
structure called a tournament queue, similar to binomial queues, and a farn- 
ily of sorting algorithms based on it. The full discussion of the complexity 
of these algorithms can be found in (1. We then introduce encapsulations, 
which are collections of data and procedures similar to clusters in CLU [I, 
modules in Modula [I, and packages in Ada [I. The major distinctions be- 
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tween encapsulations and previous mechanisms are that encapsulations are 
first class objects (e.g., they can be passed as parameters, returned as as 
values, stored in variables) and that they are function constructing objects 
which receive messages and return functions. The functions that are thus 
obtained do not have the overhead usually associated with message passing 
and dispatching. 

We use these encapsulations and the data structures previously derived 
to implement a restricted priority queue, as needed for an example appli- 
cation, a program for allocating a budget according to a given assignment 
of priorities and costs to a large number of items. 

1.3 The role of the Scheme language 
Our approach is not dependent on a particular language, but we find it most 
convenient to work in a language in which functions are first class objects. 
The Scheme language [I, a modern dialect of Lisp, turns out to be almost 
ideal in this respect. Other Lisp dialects such as Common Lisp can be 
used, though less conveniently, and higher order programming techniques 
have been used by our students in other widely used languages such as C 
(these techniques have been taught in a graduate level course at Polytechnic 
University). In this paper we use a subset of Scheme which we briefly 
describe in the following section. Any reader who wishes to experiment 
with the example methods described can do so using any of the several 
widely available implementations of Scheme. 



Chapter 2 

Programming with Immutable 
Objects 

2.1 Model of computation: the frame ma- 
chine 

We will begin the description of our approach to programming by describing 
an ideal computer for higher order programming. This "virtual machine" is 
actually very close in structure to existing hardware/software implementa- 
tions of the Scheme programming language, but presenting it in a somewhat 
idealized form allows us to concentrate on the main issues needed for un- 
derstanding the programming techniques and principles presented in later 
chapters. 

Our ideal computer is capable of storing and manipulating objects of 
several different types, including not only numbers and characters but also 
procedures, which provide the machine with instructions and with organi- 
zation of its memory. Before considering procedures and other object types, 
let us examine the structure of the machine's memory. 

The memory of the frame machine consists of cells, each of which can 
hold any object. The memory is organized into 

frames: finite sequences of cells, 

and the frames are further organized into 

environments: finite sequences of frames. 
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Because of the central role played by frames, we will call our ideal computer 
"the frame machine." 

2.1.1 Addressing 

Environments control which cells can be addressed by the frame machine's 
instructions. The addresses in all instructions are of the form (i, j), in 
which i is a frame number and j is the number of a cell within that frame. 
Such an address is taken to refer to a cell in a "current environment," to 
be defined in a moment, and thus it is not possible for instructions to refer 
to cells out side the current environment. 

We assume the cost of accessing cell (i, j) varies between a best case 
which is a constant time and a worst case which is proportional to i + 1. 
(As we shall see later, i is always small, hence memory access is essentially 
bounded by a constant.) 

2.1.2 Procedures and procedure activations 

The frame machine gets its instructions and environments from procedure 
objects. A procedure object consists of an instruction sequence and an 
environment. Fkom a procedure the machine is capable of creating a pro- 
cedure activation, which also consists of an instruction sequence, called its 
~aved instruction sequence, and an environment. 

2.1.3 Computational states 

The machine operates on a current state (of computation), consisting of 

0 an instruction sequence, 

a procedure activation sequence. 

These two parts axe called the current instruction sequence and the current 
procedure activation sequence, and the first members of these sequences 
are called the current indtruction and the current procedure activation; the 
environment part of the latter is called the current environment. See Fig- 
ure ??. 
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2.1.4 Execution 

The frame machine proceeds by repeatedly removing the current instruc- 
tion from the current instruction sequence and carrying it out. The ma- 
chine keeps pulling off instructions until the current instruction sequence 
is exhausted, then it makes the saved instruction sequence in the current 
procedure activation be the new current instruction sequence and removes 
the current procedure activation. It proceeds in this way until the entire 
procedure activation sequence is exhausted, at which point it stops. 

However, the machine usually will not just march straight through all of 
the original procedure activations and stop, because there are instructions, 
called procedure application instructions, that are capable of creating a new 
procedure activation and putting it in front of the existing sequence. This 
new procedure activation has 

a as its environment: an environment obtained from the procedure 

as its saved instruction sequence: the current instruction sequence 
(those instructions following the procedure application instruct ion) 

The new current instruction sequence is the instruction sequence obtained 
from the procedure. After this is obtained, execution continues as described 
above. 

2.1.5 Continuations 

There are also instructions for saving the entire current state as  an object 
that can later be used to replace whatever current state then exists. Be- 
cause of t he existence of these "continuation instructions," t he procedure 
activations that are removed as the computation proceeds are not always 
just discarded; they may later be reused as parts of a continuation. 

2.1.6 Conditional behavior and looping 

Some instructions cause the frame machine to skip over one or more later 
instructions in the current intruction sequence if some condition if satisfied, 
e.g., if some cell contains a certain object. This kind of conditional behavior 
combines with procedure application instructions to give the frame machine 
the same capability of branching and looping as in other general purpose 
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computing machines: although there is no backward branching within the 
instruction sequence of a single procedure, one can always achieve the same 
effect by breaking down the procedure into smaller ones. 

2.1.7 More on procedures 

Procedures can be applied to some fixed number of objects (inputs), pos- 
sibly having an effect, and returning some object as the result (output) of 
the application (except that some procedures, for some inputs and environ- 
ments, may never terminate execution). By an effect is meant the creation 
of frames or objects, or assignment of new values to the cells in the created 
or already existing frames within the current environment or to compo- 
nents of objects. The effect of an application of procedure p is achieved by 
executing its instruction sequence, whose instructions direct the machine 
to carry out operations on cells and objects directly or indirectly via proce- 
dure applications, possibly including p itself (recursive applications). Some 
of the computations may occur simultaneously, but such parallel execution 
is not a requirement of a Scheme implementation. What series of compu- 
tations are carried out can depend not only on the procedure inputs but 
also on the values stored in cells in the current environment. 

The number of input objects for application of the procedure is fixed1 
and is determined at the time the procedure is created. Creation of a pro- 
cedure is also based on a description of the series of computations to be 
carried out, which is embodied in the procedure as an instruction sequence. 
It is the central purpose of the Scheme programming language, as discussed 
in Chapter 3, to provide a notation for writing such computational descrip- 
t ions. 

2.1.8 More on memory operations 

Cells can be created, assigned to and retrieved from; the value that is thus 
stored and retrieved can be any object. We use the term "accessing" for 
the operations of assigning a value to a cell or retrieving a value from it. 
It is helpful to think of a cell as a box whose contents is an object, as in 
Figure ??. 

'In Chapter 3, we shall see how the Scheme language provides an exception to this 
rule. 
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Actually, what is stored in the cell is in most cases a pointer to the 
object, rather than the object itself; see Figure ??. Pointers are a type of 
object that have only one operation defined: that of checking for identity of 
two pointers. Pointers are also called addresses (but should not be confused 
with the (i, j) addresses of cells). A pointer to an object is stored in a cell 
unless the object itself is "small," in the sense that it will fit into the same 
storage as ordinarily would be used to hold a pointer. As a consequence, 
the time it takes to access a cell is essentially independent of the type of 
object. 

Frames consist of a fixed number of cells, which are created at the same 
time as the frame. It is possible to have a frame with no cells in it, called 
an empty frame. 

An environment is a nonempty sequence of frames, the last member 
of which is called the global environment. A new environment is always 
created from a newly created frame and an existing environment. The neu7 
frame is the first member, fo, of the sequence of frames in the new envi- 
ronment and the members of the existing environment become fi , fi, . . . , 
etc. 

2.1.9 A classification of objects 
The types of object that the frame machine can manipulate can be divided 
into three groups: 

immutable, simple o bjects, or constants, including numbers, syn~bols, 
characters, the empty list, ports (objects that provide for input and 
output), and a few others; 

0 mutable, s t ruc tu~d objects, including lists, vectors, and strings, which 
have parts that are subject to change over time; 

procedural objects, including procedures and continuations. 

An important distinction exists between these groups in terms of tests for 
operational equivalence of objects. Two objects are operationally equivalent 
if and only if there is no computation that will distinguish them, other than 
by using operations that detect a difference in the pointers (if any) that are 
associated with the objects. 
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0 With simple objects, there are machine operations that check for op- 
erational equivalence of two objects of the same type. For numbers, 
for example, there is an operation = that provides this check. These 
checks are typically computable in constant time, with some excep- 
tions: for numbers, for example, in implementations in which they can 
be arbitrarily many digits long, the time will depend on the length of 
the shortest operand. 

0 With structural objects, the situation is more complicated. For lists, 
for example, there is an operation equal that is only an approxi- 
mation to operation equivalence, since it may never terminate for 
some inputs (circular li~ts). However, such an operation can be pro- 
grammed, as will be shown in Chapter ??. 

0 With procedural objects, there is no operation provided that even ap- 
proximates operational equivalence; and according to results of com- 
putability theory it is not even possible to program such an operation. 

Further discussion of operational equivalence will be given in Chapter ??. 
At this point we shall not give a detailed discussion of the different 

object types. Most of the details will emerge in later chapters, or can be 
found in the Revise8 Report on the Algorithmic Language Scheme, which 
is reprinted in Appendix ??. 

2.1.10 Extent of cells and objects 
One other point about the frame machine model of computation is crucial 
to effective use of Scheme (or any Lisp dialect). The frame machine provides 
means of creating arbitrary numbers of cells and of objects of each object 
type, but provides no way of destroying them. Cells and objects are said to 
have unlimited extent. This amounts to assuming that memory is infinite. 
Since memory is of course limited in any red  implementation, it might seem 
that the lack of any facility for destroying cells and objects would severly 
restrict the programmer, requiring great care to avoid creating cells and 
objects; for example, one might create lists or vectors only when none of 
the existing ones were available to be reused. For programs which must 
process large amounts of data, this strategy would lead to considerable 
programming difficulties. 
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Fortunately, Scheme and all other Lisp dialects are supported by imple- 
mentations that can recognize, in most cases, the situtation that a cell or 
object cannot possibly matter to any future computation, in which case the 
memory it occupies can be reclaimed. This reclamation is called "garbage 
collection," a process that occurs when a program invokes an operation 
that tries to create an object but no memory is available for it to occupy. 
Garbage collection can be regarded as a means of mapping infinite mem- 
ory into finite space (provided the amount of space actually needed at any 
given time is within the space available). The Scheme or Lisp programmer 
can depend on this feature and be more relaxed about creating cells and 
objects. 

Nonetheless, the programmer should not be too relaxed! Creating cells - 

and objects takes time, often substantially more than reusing existing ones, 
especially when the time for garbage collection is taken into account. In this 
text we will put considerable stress on techniques that serve the programmer 
well in avoiding unnecessary creation of cells and objects. 

2.2 The Scheme Language 

Scheme provides a notation for defining and applying procedures. It first 
of all provides a means of referring to cells and of denoting each member 
of each of the types of objects in the above model of computation. 

2.2.1 Denotations for cells: Identifiers 
An identifier is a sequence of characters that contains no special characters 
and begins with a character that cannot begin a number. Also, + and - are 
identifiers. Identifiers are sometimes used in Scheme programs to denote 
symbols, but in most cases an identifier in a Scheme program denotes a cell. 
A cell associated with a occurrence of an identifier is called a binding of 
the identifier. Identifiers are used in Scheme instead of machine addresses, 
and in fact occurrences of identifiers in a Scheme program can be put into 
one to one correspondence with the (i, j )  machine addresses described for 
the Scheme virtual machine in the previous chapter. As a consequence, an 
occurrence of an identifier can only refer to a cell in the current environ- 
ment. Since different environments become current during the course of 
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computation, an occurrence of an identifier may have different bindings at 
different times during the computation. See Figure xx. 

Also associated with an occurrence is a region of the program in which 
other occurrences of the identifier have the same binding. This region is 
also called the scope of the identifier. See Figure xx. Scheme is said to be 
it lexically scoped, since scopes are determined by how the text of program 
parts are nested among one another, rather than as an effect of computation 
(it dynamic scoping, which is what most Lisp dialect have, the other major 
exception being Common Lisp). The exact scope rules for Scheme will 
be given in later sections, as will a discussion of the significance of lexical 
scoping and how it interacts with the feature of unlimited extent of cells. 

2.2.2 Denotations for objects 

Only an overview of how the different types of objects are denoted in Scheme 
will be given at this point. More details will be given as other parts of the 
language and programming examples are discussed later. 

0 Numbers are denoted by sequences of digits and other characters such 
as period (used as a decimal point), using decimal representation. 

0 Symbols are denoted just by sequences of characters, though to dis- 
tinguish them from identifiers in a program a quoting convention is 
used, as described in Section xx. 

0 Strings are denoted by sequences of characters enclosed in double 
quotation marks, e.g., "f 00".  

0 The empty list is denoted by 0. 

Denotations of pairs, vectors, ports, procedures, and continuations will be 
discussed in later sections. 

2.2.3 Procedure applications 

Each Scheme implementation comes equipped with certain procedures al- 
ready defined in its initial environment, and some of these procedures pro- 
vide the basic operations on the different types of Scheme objects. For 
example, 
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denotes application of a procedure that takes two numbers and computes 
their product. This procedure object is contained in a cell bound to the 
identifier * in the initial environment of the Scheme system. Similarly, + 
stands for an addition procedure, and 

denotes the application of the addition procedure to the result of (* 3 4) 
and 5, which produces a result 17. The general notation for procedure 
application is 

(proc inputl input* . . . input,) 

where each of proc and inputl, . . . , input ,, is either 

0 a denotation of an object, or 

a a denotation of a procedure application, or 

0 a "special form" (which will be explained in the next subsection), 

such that evaluation of proc yields as its value a procedure object that 
expects n inputs. 

Before going on, we should mention a very important point about 
Scheme systems and how the reader can best understand many of the 
points to be made in the following discussion. A Scheme system is in- 
teractive, in the sense that when activated it creates a port and connects it 
to the user's terminal (or to the keyboard and screen of his or her micro- 
computer or workstation). The user can input sequences of characters that 
denote Scheme objects, procedure applications, or special forms, which the 
Scheme system will immediately evaluate. This kind of interactive pro- 
gram construction is familiar to Basic programmers, but contrasts with the 
"batch-oriented" approach of Fortran or Pascal. The reader will find it 
extremely helpful to have access to a Scheme system to use to work though 
examples and exercises that are presented. 

All lines displayed in this text that are 

in this f o n t  
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are legal input to the Scheme system and the reader is strongly encouraged 
to enter them while working through the text. In some cases, the results 
that are shown depend upon previous lines having been entered. 

Even programmers who are already experienced in some other Lisp di- 
alect should work through the examples and exercises on higher order pro- 
gramming techniques with the aid of either a Scheme system or, with some 
adaptation, another Lisp system. (Appendix xx discusses how to adapt the 
essential techniques to several other Lisp dialects.) 

2.2.4 Special forms for binding and referring to cells 
Cells are not Scheme objects and the Scheme notation for procedure appli- 
cations does not, by itself, provide a means of operating on cells. For this 
purpose, one must use a class of special forms; e.g., 

(def ine  x 3) 

means create a cell, bind the identifier x to it, and assign the object 3 to 
the cell. In 

the occurrence of the identifier x denotes retrieval of the object in the cell 
bound to x. Similarly, the occurrence of * denotes retrieval of the object 
in the cell bound to *. If that object is the multiplication procedure, as it 
is in the initial Scheme environment, and the above def ine  operation has 
just been performed, then the result of this procedure application is 12. 

It is important to understand why def ine  cannot be a procedure. If 
(def i n s  x 3) were a procedure application, the occurrence of x would 
mean retrieval of an object from a cell already bound to it (provided such 
a cell even existed), and all that define would "see" would be the object, 
not identifier or the cell. For def ine  to work properly, it must operate on 
the identifier itself to associate it with a cell. 

Thus def ine  is one example of a Scheme special form and just the 
appearance of an identifier in certain places is also considered a special 
form. Scheme provides these special forms to denote operations on cells 
and to provide ways of composing computations that cannot be provided 
with procedure applications alone. 

Define does not always create a new cell; in 
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(de f ine  x 4) 

if x already has a cell bound to it (in the region of this occurrence of x), 
then the new value, 4, is just assigned to the existing cell. The special 
form set !  also changes the value stored in cell, but it assumes that a cell 
already exists: 

( se t !  x 5) 

would be okay at this point, but 

( s e t !  y 5)  

would cause an error, since no cell is bound to y in the initial Scheme 
environment. 

2.2.5 Lambda notation 
The basic notation for denoting a procedure is in terms of a special form 
called a lambda expression. For example, 

(lambda (x)  (* x x ) )  

denotes a procedure that takes one input, assumed to be a number, and 
outputs the number that is the square of its input. This procedure can 
be given a name, square (i.e., can be assigned to a value cell created and 
associated with square), using define:  

(de f ine  square (lambda ( z )  (* z 2 ) ) )  

so that the subsequent input 

(square 5 )  

yields the value 25. But naming the procedure isn't necessary, 

((lambda (2) (* z 2)) 5) 

works just as well. The advantage of naming the procedure is for conve- 
nience in reusing it in other computations, principally in composing the 
definitions of other procedures. For example, we can 
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(def ine  sum-of-squares 
(lambda (x y) 

(+ (square x) (square y)) ) )  

so that 

(sum-of-squares 3 4) 

yields 25. This definition of sum-of-squares could have preceded that of 
square, because in obtaining a value for 

(lambda (x y) 
(+ (square x) (square y) ))  

the Scheme system does not attempt to get the procedure named by square; 
rather it produces a procedure that, when it is applied, will apply whatever 
procedure as then named by  square to the values of x and y. 

Let us examine closely how the Scheme system evaluates the application 

(sum-of-squares (+ 1 2) 4) 

First, each constituent of the application is evaluated: 

0 evaluation of this occurrence of identifier sum-of -squares means re- 
trieval of the procedure named by sum-of -squares, in this case the 
procedure created by the above (define sum-of -squares . . . ) . 

0 evaluation of (+ 1 2) results in the number 3. 

evaluation of 4 results in the number 4. 

Then the retrieved procedure object is applied to 3 and 4. Since the pro- 
cedure is the object created by 

(lambda (x y) (+ (square x) (square y)) )  

application of it causes two cells to be created and bound to x and y, and 
the values 3 and 4 are assigned to these cells. Then the form 

(+ (square x) (square y)) 

is evaluated, which means that each of +, (square x), and (square y) 
will be evaluated, then the procedure retrieved from + will be applied. 
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1. Evaluating + retrieves the addition procedure. 

2. Evaluating (square x) causes evaluating square and x, then appli- 
cation of the procedure retrieved from square 

3. Evaluating square retrieves the procedure created by 

(lambda (z)  (* z z ) ) )  

4. Evaluating x retrieves the value 3 

5. Application of the procedure created by (lambda (z)  (* z z )  ) causes 
a new cell to be created and bound to z and the value 3 to be assigned 
to it. Then (* z z )  is evaluated, resulting in the value 9. 

6. Similarly, evaluating (square y) yields the value 16 

7. Finally, the procedure named by + is applied to 9 and 16 to yield 25. 

One point about evaluation of (square x) is extremely important. In 
defining square, we could just as well have used the identifier y, 

(def ine  square (lambda (y) (* y y ) ) )  

since application of the procedure created by (lambda (y) (* y y) ) causes 
a new cell to be created and bound to y, and this cell is used only in the 
region of the identifier y, which in this case is just the lambda expression. 
Thus storing the value of 3 into this cell would not affect the value 4 stored 
in the cell bound to the y of (lambda (x y) (square x) (square y ) ) .  

As another example, consider 

(def ine  b 1) 

((lambda (a b) ; A procedure, 
(a 5) )  ; cal l  it procedure X 

(lambda (x) ; A procedure, c a l l  it procedure Y ,  
(+ x b) )  ; first  input  t o  procedure X 

2) ; Second input  t o  procedure X 

in which 
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the binding of a is a cell containing procedure Y, 

the binding of the b in procedure X is a cell containing 2. 

Thus in evaluating (a 51, what cell does the b that occurs in (+ x b) refer 
to? I.e., is the result 6 or 7? 

According to the lexical scope rules of Scheme, this b refers to the cell 
containing i that was created by the define, not to the the cell contain- 
ing 2 that was created by (lambda (a b) (a 5) ). The region of the latter 
binding of b is just (lambda (a b) (a 5)) and thus does not affect the oc- 
currence in (lambda (x) (+ x b)).  Dynamic scoping, on the other hand, 
would give the opposite conclusion. 

In general the following notation is used in Scheme to denote a proce- 
dure: 

(lambda (varl oar2 ... var, ) 

form1 
form2 

where varl, var2, . . . , var, are identifiers and forml, form2, . . . , formk 
are are any Scheme expressions. This denotes a procedure that takes n 
values as inputs and produces an output value by 

creating n cells, binding them to varl, varz, . . . , var, , and storing 
in them the n values passed as inputs, 

successively evaluating forml, form2, . . . , form for their effect, 

returning the value output by formk. 

The occurrences of varl, uarz, . . . , uar, at the beginning of the lambda 
expression are called binding occurrences. A binding occurrence has two as- 
sociations which are crucial to the precise definition of execution of Scheme 
procedures: 

the cell, call it c, that is created and bound to var; whenever the 
procedure is executed. 
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0 the region that is defined by the scope rules of the language definition. 
Scheme constructs that define regions for identifiers are called binding 
forms. In the case of a lambda binding form, the region of the binding 
occurrences is the entire lambda form. 

This region defines where in the text of programs other occurrences of var, 
refer to the same cell, c, according to the following 

0 nesting rule: every occurrence of var; refers to the binding of the 
identifier that established the innermost of the regions containing the 
occurrence. 

Thus within forml, form*, . . . , formk , occurrences of vari refer to the cell 
c, unless they lie within another binding form that defines a region for var, , 
such as another 

(lambda (. . . var; . . . ) . . . ) 
See Figure xx. 

Other binding forms besides lambda include l e t  and l e t * ,  which we 
now discuss. 

2.2.6 Let and let* expressions 

An example of l e t  is 

which means create new cells for x and y and assign the value of (+ a 1) 
to the cell for x and the value of (* b c) to the cell for z, then evaluate 
(* (+ x z) IS) and return its value. The general form of l e t  is 

( l e t  ((warl vforml) 
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meaning evaluate vforml, . . . , vform,in some order, assign the value of 
uformi to a new cell created for VaTi, then successively evaluate forml, 
form2, . . . , formk for their effect. The value of formk is returned as the 
value of the l e t .  The region of each of the VUTi  is forml, form2, . . . , formk 

The l e t  special form can be defined in terms of lambda: the above 
general form has the same meaning as 

((lambda (var1 . . . var,) 
f o m  
... 
formk) 

vform1 . . . vform,) 

and the example has the same meaning as 

Thus l e t  is not strictly necessary, but is usually more readable than the 
corresponding expression using lambda. 

The translation of l e t  in terms of lambda shows that in an expression 
such as 

which is equivalent to 

the x in (* x 4) does not refer to the value 3 associated with x by the 
(X 3) part. Rather, it refers to whatever value is associated with x in the 
lexical region of which the l e t  is a part (this region does not include the 
lambda form, since that form contains another occurrence of x). 

To be able to refer to the new bindings of identifiers, one can use the 
l e t  * special form, which has the general form 
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( l e t *  ((varl vformJ 

This is equivalent to 

( l e t  ((varl vforml)) 
( l e t  ( (var2 vform2) ) 

. . . 
( l e t  ( (var, vform,) ) 

form1 
. . . 
formk) . . .) 

and thus occurrences of var; in vformj, when j > i, mean retrieval from 
the cell newly bound to var; and containing the value of vform;. 

2.2.7 Lexical scoping and unliinited extent 
In the chapter on the Scheme model of computation, we mentioned that all 
cells and objects have unlimited extent, meaning that once created they are 
never destroyed. This feature combines with lexical scoping to give Scheme 
a capability that is extremely important to higher order programming. 

Consider a very simple procedure that returns a procedure as its output: 

(define make-constant-adder 
(lambda ( c )  

(lambda (x) (+ x d))) 

(define one-plus (make-constant-adder 1)) 

(define two-plus (make-constant-adder 2 ) )  

(one-plus 5)  

(two-plus 5)  
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When (one-plus 5 )  is evaluated, the procedure that is applied to 5 is the 
procedure returned by (make-constant -adder I ) ,  namely 

(lambda (x) (+ x c ) ) )  

in which c refers to the cell created by the application of 

to 1 in (make-constant-adder 1). Thus this cell contains 1, and one-plus 
is a procedure that returns its input plus 1. But (make-constant-adder 
2 )  causes another binding of c to be created, with 2 stored in it, so that in 
the evaluation of (two-plus 5)  the c in (lambda (x)  (+ x c ) )  refers to 
that cell. 

The main point is that a binding continues to live even after termina- 
tion of the procedure that created it, and different bindings of the same 
occurrence of an identifier, like c, can coexist. Without this feature, most 
of the higher order programming techniques that we will discuss could not 
be carried out in a direct and simple way. 

2.2.8 Examples of higher order programming: Com- 
binators 

The make-const ant -adder procedure is the first example we have given 
of a higher order procedure, i.e., one that takes a procedure as an input 
or produces one as its output (most higher order procedures do both, but 
make-constant-adder only outputs a procedure). We will frequently use the 
term operator for higher order procedures. Make-const ant -adder is just 
an instance of the more general and useful operators 

(de f ine  (bind-1-of-2 procedure constant)  
(lambda (x) 

(procedure const  ant x )  ) ) 

(de f ine  (bind-2-of-2 procedure constant)  
(lambda (x) 

(procedure x constant)  
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that make a procedure that takes two inputs into one that takes only one 
input. 

Problem: What does the procedure f oo produced by 

(define foo (bind-1-of-2 / 1) 

do? 
Bind- I-of -2 and bind-2-of - 2 are examples of operators found in the 

theory of "combinators" first introduced by M. Schoenfinkel in 1924 (50 
years before Scheme!). Another example is 

(define (double-input procedure) 
(lambda (x) (procedure x x)) 

from which another way to get square is 

(define square (double-input *)) 

or to get a doubling procedure is 

(define double (double-input +)) 

Thus, as in the example of make-constant-adder, a single occurrence 
of an identifier, in this case the occurrence of procedure in the definition 
of double-input, has two coexisting bindings, one to a cell containing the 
multiplication procedure and the other to a cell containing the addition 
procedure. 

There is an analogy between combinators and composition of digital 
circuits; for example, double-input corresponds to splitting an input to a 
circuit with internal wiring to become 2 inputs to an internal circuit: 

Corresponding to wiring of the output of one circuit as the input to 
another, as in 

is a combinator that composes two procedures: 

Problem: Define a combinator make-dif f erence that takes two 1-input 
procedures f and g, assumes that they produce numbers as outputs, and 
outputs a procedure d such that (d x) = (f x) - (g x) . 



CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 23 

Problem: Define an combinator transpose that takes a 2-input proce- 
dure f and returns a 2-input procedure g such that (g  x y) = ( f  y x).  

What is ((transpose -) 5 2)? 
Problem: What does the following procedure do? 

(define f oobar 
((transpose make-difference) ident i ty  (double-input *))) 

Such combinators as these can be made the base of a style of program- 
ming sometimes called variable-free programming, because they eliminate 
the need to ever use binding forms directly in defining new procedures. Al- 
though some authors advocate widespread use of such a programming style; 
we shall not pursue that line in this text, mainly because we feel a com- 
pletely combinator based style tends to be hard to read, but also because, 
with current compiling techniques, it tends to be significantly less efficient 
than more traditional programming styles. On the other hand, some of the 
combinators mentioned above are handy at times for quickly contructing 
experiment a1 code. 

2.2.9 Control forms 

The next class of special forms which we shall describe are control forms, 
which are not binding forms; their purpose is composition of forms in a way 
that is not conveniently described just using procedure application. The 
simplest of these is the begin form, 

(begin forml 
form2 

which means evaluate forml, formz, . . . , formk in sequence, whereas in 
procedure applications no order of evaluation is implied among evaluation 
of inputs. The output of the (begin . . . ) is the output of form,. 

Two other sequencing forms, if and cond, provide for selection, among 
a number of forms, of one or more to be evaluated. For example, 

( i f  (> f oo  4) (* f oo  5)  (+ f oo  6 ) )  
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means test whether f o o  is greater than 4, and if it is, compute (* f oo 5 )  
and return its value, otherwise compute (+ f o o  6) and return its value. 
In general, the meaning of 

(if test forml form2) 

is: 

0 the test is evaluated, and 

0 if it results in a "true" value then form, is evaluated and its value is 
returned as the value of the i f  form; 

if the evaluation of the test results in a "false" value then formz is 
evaluated and its value is returned as the value of the if form. 

Only one of forml and form2 is evaluated, which is why i f  cannot be defined 
as a procedure, since application of a procedure always first evaluates all 
of the forms specifying the inputs. 

The symbol #t is used to represent "true" and #f to represent "false"; 
the operation > always returns one of these two symbols. In places like the 
test part of i f ,  however, that are described as being a true or false value, 
any Scheme object is allowed, with the interpretation that only #f and the 
empty list, 0, are false; every other object is regarded as true. 

For more elaborate sequences of tests, it is often more convenient to to 
use cond instead of i f :  

(cond (test1 forml,, . . . ) 
(te3t2 formzpl . . . ) 
... 
(test, formnpl . . .)  
( e l s e  formn+lpl . . -1) 

is equivalent to 

( i f  test 1 

(begin formlpl . . . ) 
( i f  test 

(begin formzpl . . . ) 
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( i f  test, 
(begin form,,l . . . ) 
(begin  f o ~ m , + ~ , ~  . . . ). . . ) 

2.2.10 Quote 

The last special form we shall discuss is quote: 

(quote  object) 

means take the object as given, without attempting to evaluate it. The 
abbreviation ' object is permitted for (quote object). For example, 

( d e f i n e  f oo 3) 
( d e f i n e  b a r  foo)  
b a r  

yields 3, but 

( d e f i n e  bar ' foo)  
b a r  

yields the symbol foo.  That is, the object that is stored in the cell bound 
to b a r  is the symbol foo;  there is no attempt to treat f o o  as an identifier 
and retrieve a value from a cell bound to it (indeed, as an identifier it might 
not even have a binding). 

The use of ' is similar to the use of quotation marks in denoting strings: 
e.g., "foou denotes a string in Scheme, but ' can be used with any type 
of object. It is however unnecessary to use ' with numbers, strings, or the 
special symbols # t  or #f .  

2.2.11 Other special forms 

There are several other special forms, but we defer their discussion until 
they are used in examples later in the text. (The special forms that have 
been given are the ones that are most essential to the style of programming 
advocated in this text. It should also be noted that some of the special forms 
discussed above, such as cond, have variants that have not been mentioned, 
in the interest of brevity. The reader can consult [the R3 report] for further 
details. One variant of d e f i n e  that we will make use of (even though it is 
not available in all implementations of Scheme) is 
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(def ine  (identifier varl varz . . . var, ) 
form1 

which is equivalent to 

(def ine  identifier 
(lambda (varl varz . . . var, ) 

form1 

We also assume, though it is not required in all Scheme implementations, 
that one or more (def ine  ... ) expressions can be included as the first 
forms of a (def i n s  .. . ) : 

(de f ine  ( identif ier~ar~ var2 . . . var, ) 
(def ine  (identifier, . . . ) 

...) 
(def ine  (identifier2 . . . ) 

. . . I  
. . . 
(def ine  (identifier, . . . ) 

...) 
form1 

with the regions of the identifiers identifier,, . . . , identifierk being the entire 
outer def ine  expression. Appendix xx shows how to do without this feature 
if one is using a Scheme system that does not have it. 
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2.3 Procedural Schemata 

The procedures given as illustrations in the preceding sections are referred 
to as straight line procedures. There is a limit to how much we can ac- 
complish just using such simple procedures. It is therefore useful to define 
procedures which take other procedures as arguments. By defining such 
procedures, it is possible to create more complex procedures from simpler 
ones and thus, ultimately, compute virtually any computable function. 

There are a number of different ways to combine procedures. We will 
explore several of the most useful ones below. We refer to these methods 
of combining procedures as a procedural schemata. Since procedures are 
first class objects in Scheme, we can easily create procedural schemata by 
passing procedures as arguments to other procedures. 

2.3.1 Combinators 

The idea of combinators was introduced by Schonfinkel in 1934 to produce 
a variable-free functional calculus. Later his ideas were developed further 
by Haskell Curry who made this calculus into a separate branch or mathe- 
matics called Combinatory Logic. 

A pure combinator is a procedure, the body of which contains only 
formal parameters of this procedure, other lambda expressions and their 
parameters and procedure applications of these parameters and lambda 
expressions to each other. 

For example, f oo in 

is a pure combinator. While 
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is not since + is not bound in bar. 
Pure combinators capture a notion of connecting different functional 

boxes together. ... 
To make the formalism more tractable, combinatory logic deals with 

functions of only one argument. At first, this may appear too restrictive, 
but there is a beautiful device called "currying" which allows us to reduce 
all functions to functions of one argument. 

We will illustrate this device by "currying" addition. Obviously, we need 
some way to add two numbers, but we are allowed to have only procedures 
of one argument. We can solve this problem by defining 

(de f ine  p lus  
(lambda (x) 

(lambda (y)  (+ x y ) ) ) )  

Plus  is a function that takes a number and returns a procudure that adds 
this number to its argument. So to add 4 and 5 we evalute ( ( p l u s  4) 5).  

We can actually abstract from this and make a procedure that "currys" 
an arbitrary procedure of two arguments: 

(de f ine  curry 
(lambda (procedure) 

(lambda (x) 
(lambda (y)  (procedure x y) 1))) 

so we can easily obtain 

(de f ine  t imes (curry *)) 

and 

(de f ine  t ake-away (curry -) ) 

The first combinator we introduce is called the elementary ident i jkator ,  
I, 

(de f ine  I 
(lambda (x)  

x> 



CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 29 

The next combinator we introduce is the elementary permutator, C (for 
converse) : 

(define C 
(lambda ( f )  

(lambda (x) 
(lambda (y) 

( ( f  y) x ) ) ) ) )  

Now a procedure f l  defined as: 

(define f 1 ((C take-away) 1 ) )  

is equivalent to (lambda (x) (- x 1) ) . 
Next, we define the elementary duplicator, W (for ???): 

(define W 
(lambda ( f )  

(lambda (x) 
( ( f  x) x ) ) ) )  

Thus, the procedure f 2 defined as 

(define f 2 (w times) ) 

is equivalent to 

(lambda (x) (* x x ) )  

Next, we define the elementary cornpositor, B (for ???) as: 

(define B 
(lambda ( f )  

(lambda (g) 
(lambda (x) 
(f (g x ) ) ) ) ) )  

Problem: What does a function f 3 do if it is defined as 

(define f 3 ((b (w t imes))  ( ( c  plus) 1 ) ) )  

Finally, we define the elementary cancellator, K (for cancellator) as: 
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(define K 
(lambda ( c )  

(lambda (x) c ) ) )  

Problem: What does a function f4 do if it is defined as 

(define f 4  (w k)) 

Here is one more complicated combinator: 

(define s 
(lambda ( f )  

(lambda (g) 
(lambda (x) 
((f x)  (g x ) ) ) ) ) )  

Problem: What does a function f 5 do if it is defined as 

(define f 5 ( ( s  (k s).) k ) )  

We can continue adding new combinators forever, but fortunately this 
is unnecessary. There is a marvelous property called "combinatory corn- 
pleteness" which is possessed by a set of just two combinators K and s. It 
can be formally defined as follows: 

Let X = {xl , . . . , 3,) be a set of Scheme constants and variables. A 
binary expression based on X can be defined recursively: any xi is a binary 
expression, and if u and v are binary expressions so is (u v )  . Then for any 
binary expression T based on X there is an equivalent expression T' of the 
form: ( ( . . . ( (2 )  xI ) x2)  x3).  . . ) I,), where Z is a binary expression 
based on {K, S). 

For example if we are given an expression A: 

(f oo (bar (f oo (bar 1)))) 

we can construct a combinator expression Z out of the primitive combina- 
tors such that A would evaluate to the same result as 

(((S f oo) bar) 1) . 
The possibility to do so is in no sense means that it is easy to find such a 
2. For example if we want to define a procedure 



CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 31 

(define sin+cos 
(lambda (x) (+ ( s in  x)  (cos x ) ) ) )  

with the help of combinators we will end up with something like 

or if we use B, W ,  C: 

This example demonstrates that people most likely will not accept a pro- 
gramming language based on combinatory logic; nevertheless, it is an in- 
teresting example of how more complex functions can be built up from 
simpler ones by passing procedural arguments to other procedures. We 
will rely heavily on this methodology throughout this book. Problem: 
What does a function f 6 do if it is defined as 

(define f 6  ( ( c  i )  3 ) )  

Problem: Implement I, C, W ,  B in terms of and S. 

2.3.2 Conditionals 
The primitive conditional construct in Scheme is: 

( i f  condition consequent alternative) 

where condition is a predicate and consequent and alternative are forms. 
The condition is evaluated and if it returns a true value (anything other 
than tf  or ) ) then consequent is evaluated and its value is returned. 
Otherwise, alternative is evaluated and its value is returned. We can define 
the IF-combinator to be: 

(define IF-combinator 
(lambda (predicate p q) 

(lambda (x) 
( i f  (predicate x)  (p x)  (q x ) )  1) 
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Thus, for example, we can define a function which returns the real part of 
the square root of a real number as: 

(de f ine  rea l - sqrt  
(IF-combinator p o s i t i v e ?  sqrt  (lambda (x) 0) ) ) 

Problem: What does the following procedure do? 

(de f ine  f oo (IF-combinator odd? 1+ i d e n t i t y )  ) 

2.3.3 Primitive Recursion 
Recursion is another important procedural schema. A recursive procedure 
is a procedure which calls itself directly or indirectly. In the latter case, 
the procedure calls another procedure which calls the original procedure, 
possibly indirectly. If two or more procedures call upon one another, they 
are said to be mutually recursive. We will see that virtually all useful 
procedures on integers can be built up from a very simple class of procedures 
by using recursion. 

One of the simplest examples of a recursive procedure is factorial. AT 
factorial (written N!), is defined as 

for N = 0 
N! = { - 1 )  for N > 0 

This definition leads directly to the following recursive implement ation of 
factorial: 

(de f ine  f a c t o r i a l  
(lambda (n) 

( i f  (= n 0 )  
1 
(* n ( f a c t o r i a l  (- n 1)))))) 

While the program above does work, it has several defects. First, we note 
that it is not quite "first class"; its correctness depends on the global binding 
of f a c t o r i a l .  Thus, if we write: 

(def ine  new-factorial  f a c t o r i a l )  
(def ine  f a c t  o r i  a1 square) 
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then the reference to fac tor ia l  in the last line of the original definition is 
to the newly defined procedure (now redefined as squaring its argument) 
and if we now invoke 

(new-f ac tor ia l  5) 

we will find that it returns 80 instead of 120. In particular, the invocation 
(new-f ac tor ia l  5) will result in the invocation (* 5 ( factor ia l  4)) .  
The reference to fac tor ia l  will now be to the new definition, square, 
and hence, this will result in the invocation (square 4), which returns 16. 
Finally, (* 5 16) will return 80. 

What we want is to make a recursive procedural object independent of 
its global name namely, we want to bind the name factorial to the proce- 
dural object in the environment of this procedural object. 

There is a special form, le t rec ,  which will allow us do just that. The 
syntax of l e t r ec  is: 

( l e t rec  ( (varl forml) b a r z  form2) . . .) expl exp2 . . . ) 
Letrec works just like l e t  except that all the initializing forms are eval- 
uated in an environment extended to include the var,, varz, . . . , vat, . 
It is thus possible to make the varl, var2, . . . , var, mutually recursive 
procedures. We can now overcome the previous difficulty by redefining 
f ac to r i a l  as: 

(define f ac to r i a l  
( l e t rec  ( (fact  

(lambda (n) 
( i f  (= n 0) 

1 
(* n (fact (- n 1)))))) 

f ac t ) ) )  

Here we use l e t r ec  to define a procedure, fac t .  Fact is known only 
within the scope of the definition of fac tor ia l .  It is thus called a locally 
defined procedure. In this case, the reference to f ac t  is to the locally 
defined procedure defined here, not to a globally defined procedure. Now, 
the self-recursive reference is done through the local binding which cannot 
be affected by changing the global binding of factor ia l .  Note that we 
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could have called this locally defined procedure fac to r ia l ,  and there would 
have been no conflict with the globally defined procedure of the same name 
defined by the outer define, but this is unnecessarily confusing to the 
reader. 

In general, it is usually only meaningful to use l e t r e c  to define local, 
mutually recursive, procedures rather than, say, numerical variables since 
a numeric variable has to be defined before it is used. Thus, for example: 

( l e t r e c  ((a 3) (b (+ a 2 ) ) )  ...) 
is an error since, at the time the initial value of b is being evaluated, a does 
not actually have a value which can be passed to +. On the other hand, it 
is possible to define one procedure in terms of another without the latter 
procedure actually having a specific value at the time the definition of the 
former procedure is being set up. 

By defining f ac to r i a l  within the scope of the l e t r e c  we often also 
gain another advantage. Many Scheme implementations access a locally 
defined variable more efficiently than they do globally defined variables. 
Thus, the second implementation of factorial usually will be faster than 
the first. 

2.3.4 Tail Recursion 

The above definitions of f a c to r i a l  have another flaw. The first time 
f ac to r i a l  is called, the multiplication operation cannot be performed until 
both operands are available. This, in turn, does not happen until the result 
of the second call is returned. This continues to be true until, finally, n is 
0. Until that time, however, intermediate results and arguments must be 
saved and kept track of, as must the flow of control among invocations of 
f ac to r ia l .  This takes up both time and space. Thus, the procedure runs 
more slowly and its domain is limited by the size of the memory allocated 
for the purpose of keeping track of intermediate results. 

Let us closely examine what happens when f ac to r i a l  is defined as 
above and then applied to an argument. First, the define itself is evalu- 
ated in the global environment. This causes the global environment to be 
extended with a binding of the variable f a c to r i a l  to a procedural object 
(the body of the lambda expression, which is the code defining the proce- 
dure) and a pointer to the global environment (the place where f ac to r i a l  
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was defined). If we now apply f a c t o r i a l  to the argument 5, a new envi- 
ronment is created. This new environment has n bound to 5 and has the 
global environment as its parent (see Figure A). The body of the lambda 
expression is evaluated in this new environment. This evaluation results in 
another invocation of f a c t o r i a l  which causes another new environment 
to be created, again with the global environment as its parent and with n  
bound to the value 4 (see Figure A). Further recursive calls to f a c t o r i a l  
continue to create new environments of this type, until finally, when n  is 0, 
factorial returns 0 and the chain of recursive calls returns upward with the 
appropriate values being computed. Note that during the descent through 
the recursive calls to f a c t o r i a l ,  as n  takes the values 5, 4, 3, 2, and 1, no 
computation is done but intermediate values of n must be stored for later 
computation. 

All of this can be avoided by changing the definition of factorial to: 

(de f ine  f a c t  o r i  a 1  
(lambda (n) 

( l e t r e c  ((f a c t o r i a l - l o o p  
(lambda ( i  r e s u l t )  

( i f  (> i n) 
r e s u l t  
( f a c t o r i a l - l o o p  (+ i 1) (* r e s u l t  i ) ) ) ) ) )  

( f a c t o r i a l - l o o p  1 1)))) 

In this case, the variable result explicitly holds the necessary intermediate 
result and no auxiliary storage is necessary. A procedure like this is called 
tail-recursive, and it both more useful and more efficient than ordinary 
recursive procedures. 

The essential characteristic of a tail-recursive procedure is that the re- 
cursive call is the last thing that the procedure does. It is thus unnecessary 
to save any local environment in order to complete the computation in the 
calling procedure. 

In order to realize the advantages of tail-recursion, however, it is not 
enough for a procedure to be tail-recursive. The language it is written in 
must also be able to take proper advantage of this fact. A language which 
does this is called a properly tail-recursive language. Scheme is a properly 
tail- recursive language. *** last environment can become garbage because 
noone refers to it *** and does not extend the environment when evaluating 
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the last form in a procedure. Therefore, when the last form in a procedure 
is a recursive call to the procedure (as will be the case when the procedure 
is tail- recursive), no new binding is created. 

Tail recursion is really iteration. For example, we can write: 

(define sum 
(lambda (n) 

(letrec ( (sum-loop 

(lambda (i result) 
(if (> i n) 

result 
(sum-loop (+ result i) (+ i 1)))))) 

(sum-loop 1 0)))) 

we get a procedure which finds the sum of the integers from 1 to n using 
an iterative loop. This iteration is intrinsically no less (and no more) effi- 
cient than using a for-loop in C, or PASCAL or BASIC. This tail-recursive 
procedure is not like an iterative procedure, it i s  an iterative procedure. 

2.3.5 Transforming Primitive Recursion to Tail Re- 
cursion 

We can now ask what are the conditions that allow us to find a tail recursive 
representation of a primitive recursive procedure. It is possible to prove that 
any primitive recursive function has a tail recursive form. In Scheme we 
can construct the best possible proof of all: we can implement a procedure 
which does the transformation of a primitive recursive procedure into a tail 
recursive form. We shall restrict ourselves to functions of one variable. 

First, we define a procedure, called a maker that makes a primitive 
recursive procedure, given a transformation and an initial value: 

(define make-primitive-recursive 
(lambda (transform initial-value) 

(letrec 
((primitive-recursive 

(lambda (n) 
(if (= n 0) 
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initial-value 
(transf o m  n (primit ive-recursive (- n 1) ) ) ) ) ) ) 

primitive-recursive))) 

We can produce an equivalent iterative procedure with: 

(define make-primitive-iterative 
(lambda (transform initial-value) 

(lambda (n) 
(letrec 

((loop 
(lambda (i result) 

(if (= i n) 
result 
(loop (+ i 1) (transform (+ i 1) result)))))) 

(loop 0 init ial-value) ) ) ) ) 

Note, as mentioned above, that the primitive recursive version descends 
through values of n while the iterative version ascends from n equal O with- 
out any requirement for auxiliary storage. In the latter case, the variable 
result holds the intermediate value of the computation. 

Problem: Define factorial with the help of make-primitive-recursive. 
Problem: With the help of make-primitive-recursive and make-primit ive-iterat 

implement procedures (make-add-select predicate) and (make-add-select -iterat iv4 
predicate) that return a procedure defined on non-negative integers such 
that for any integer n it returns the sum of those integers less-or-equal to 
n that satisfy predicate. 

Problem: Define add-odd as (make-add-select odd?) and (add-odd-iterative) 
as (make-add-select-iterat ive odd?) ; what is the smallest integer, i ,  
in your system such that (add-odd-iterative i) runs and (add-odd 2 )  

does not? 
We now consider a somewhat more complex form of recursion. Suppose 

that we have a recursive procedure, p, which requires two previous values 
returned by itself. The well-known Fibonacci function gives rise to such a 
procedure. In a manner similar to that described above, we can create a 
maker which returns a recursive procedure: 

(define make-two-recursive 
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(lambda (transform value-0 value-1) 
( l e t r e c  

((two-recursive 
(lambda (n) 

( i f  (= n 0) 
value-0 
( i f  (= n 1) 

value-1 
(transform n 

(two-recursive (- n 1 ) )  
(two-recursive (- n 2 ) ) ) ) ) ) ) )  

two-recursive))) 

Here, two preceding values are passed along as arguments, instead of the 
one which was passed before. Clearly, this technique can be extended to 
procedures requiring any specific number of previous values. Again, how- 
ever, as with composition, the generalization to an arbitrary number of 
d u e s  is difficult. 

A corresponding iterative procedure is: 

(def ine  make-two-iterative 
(lambda (transform value-0 value-1) 

(lambda (n) 
( l e t r e c  ( ( loop 

(lambda (i first second) 
(if (= i n) 

first 
(loop (+ i 1) 

(transform (+ i 1) first second) 

f i r s t ) ) ) ) )  
( i f  (= n 0 )  

value-0 
(loop 1 value-1 va lue-0) ) ) ) ) )  

In addition to the advantages cited above, the iterative version has an 
enormous advantage over the recursive version in this case. The recursive 
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version runs for an exponential amount of time as a function of n, while 
the iterative version has runtime linear in n. This is due to the fact that 
the recursive version recomputes prior procedural values many times while 
the iterative version only computes them once. 

Fkom the above discussion, we observe that the transformation from 
a primitive recursive procedure to a tail recursive procedure is essentially 
mechanical. Any primitive recursive procedure can be created using an 
appropriate recursive maker of the above type and a corresponding iterative 
procedure can be created using a corresponding iterative maker. 

Problem: Define a procedure ( f i b  n) which returns n-th fibonacci 
number with the help of two-recursive. 

Time (fib 20). 
Problem: Transform fib into an iterative function with the help of 

two-recursive-iterative. 
Time (fib 20). 
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2.3.6 Exponentiation-An Example of an Operat or 

We illustrate the use of operators by considering the problem of creating an 
exponent in its general mathematical sense. We are given a set, S, and an 
associative binary operation with identity which is closed over S (monoid). 
We are also given a non-negative integer exponent, n, and an element, a, 
in S. The quantity an is then defined inductively by: 

1 for n = 0 
an = { a t a+') for n > o 

We use * in the above to denote an operation which is part of the 
definition of the exponent and 1 to denote the identity of this operation. 

The conventional notion of exponentiation is obtained by using num- 
bers as the set and multiplication as the operation. There are, however, 
many other meaningful operations and sets for which the definition of ex- 
ponentiation is interesting. We may wish to do multiplication modulo p. 
This example is explored below. Finding the n-th power of a matrix is 
another example. By suitably defining an inner product to be used within 
the matrix multiplication operation, it is possible to find shortest paths in 
a network via matrix multiplication. 

In all of these examples, the basic notion of exponentiation is the same; 
we wish to apply operation repeatedly to the same argument. We wish to 
capture this in a procedure without making the procedure dependent on 
the physical representation of a or on any properties of operation except 
those mentioned above. 

We begin by defining the procedure make-exponent along the lines of 
the above inductive definition. This procedure takes an operation and 
its i d e n t i t y  as arguments and returns another procedure as its value. 
The procedure returned by make-exponent is an exponentiation procedure 
which takes an exponent (the value of n) and value (the value of a )  as 
arguments. The procedure starts with the i d e n t i t y  in its accumulator 
and then invokes loop repeatedly applying operation to value and the 
result of previous operations. 

Note that make-exponent is not itself an exponentiation procedure, but 
rather, that it returns an exponentiation procedure. We refer to procedures 
like this as maker8 and will discuss them in more detail in the next section. 

Thus, make-exponent is called once to create the exponentiation pro- 
cedure and the exponentiation procedure is then, in general, called many 
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times during the course of computation. This is part of the style of higher 
order programming. 

(de f ine  (make-exponent operation i d e n t i t y )  
(lambda (value exponent) 

(de f ine  ( loop accumulator i )  
( i f  (= i 1) 

accumulator 
( loop (operation value accumulator) (- i 1 ) ) ) )  

( i f  (= exponent 0) 
i d e n t i t y  
( loop value exponent) ) ) ) 

Thus, 

(de f ine  f 1 (make-exponent 

defines ordinary exponentiation, 

(de f ine  f 2 (make-exponent 

(somewhat obtusely) defines multiplication and 

(de f ine  f 3  (make-exponent mat-mult ident i ty-matrix) )  

defines the n-th power of a matrix, where mat-mult is a matrix multiplica- 
tion procedure and identity-matrix is an identity matrix (or a procedure 
which creates an identity matrix) of the right size for the operand; i.e., if 
a is an n-by-n matrix, then identity-matrix must also be n-by-n. Thus, 
unlike in the other cases, the identity is not strictly a property of operation. 
Nevertheless, as we will see in the next section, using makers it is possible 
to define an appropriate exponent in a specific situation. 

The procedure returned by make-exponent invokes operation n - 1 
times. It is actually only necessary to do on the order of log n operations. 
This is accomplished by repeatedly squaring the intermediate result rather 
than simply multiplying the result by value. We rely on the associativity 
of operat i o n  to justify the rearrangement 
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which is central to the procedure make-binary-exponent given below. 
The procedure make-binary-exponent proceeds in two phases. First, 

even-loop is invoked to repeatedly square value  and halve exponent until 
exponent becomes odd. Then, odd-loop is invoked to compute this odd 
power of a. Thus, the original exponent, n, is represented as 2", where 
q is an odd integer. Even-loop computes va lue  * 2k and odd-loop then 
raises this to the k-th power. If p is the number of bits in the binary 
representation of q (i.e., p is the smallest integer not less than logq and 
m is the number of 1's in the binary representation of q, then odd-loop 
invokes operat  i o n  p+ m - 1 times. Even-loop invokes operat  ion  k times. 
Thus, if we let p + k = L, then L is the ceiling of log n, and operat  ion  is 
invoked a total of t = L + m - 1 times. Clearly, m is no greater than L. 
We thus have that: 

L I t 5 2 L  

So opera t  i on  is invoked on the order of log n times. Since every invocation 
of opera t ion  can at most double the power of a, at least L invocations are 
required. We see, therefore, that make-binary-exponent is within a factor 
of t~7o of the optimum. Actually, Knuth 1, in an extended discussion of 
this shows that this algorithm is very close to the optimum in terms of the 
number of invocations of operat ion required, rarely missing by more than 
one or two. Gonnet [I shows that it is always within a factor of ... of the 
optimum. 

(def ine  (make-binary-exponent operat  ion  i d e n t i t y )  
(lambda (value  exponent) 

(de f ine  (even-loop value  exponent) 
( i f  (even? exponent) 

(even-loop (operat  ion  value  value) 
(quot ient  exponent 2 ) )  

(odd-loop value  value  (quot ient  exponent 2 ) ) ) )  
(de f ine  (odd-loop accumulator va lue  exponent) 

( i f  (= exponent 0 )  
accumulator 
( l e t  ( (next -value (operat  ion  value  value) ) ) 

(odd-loop 
( i f  (odd? exponent) 

(operat  ion  accumulator next  -value) 
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accumulator) 
next-value 
(quotient exponent 2 ) ) ) ) )  

( i f  (= exponent 0) 
iden t i ty  
(even-loop value exponent)))) 

Problem: What is (make-binary-exponent + O)? 

2.3.7 Factorization - Another Example of a Maker 
We now consider the problem of defining a procedure, which we will call 
fac tors ,  to find prime factors of a given number, n. We will limit the 
search for factors to numbers no greater than a given limit. Factors works 
by testings trial factors of n starting from 2. We test a trial factor, i, by 
checking if n modulo i is 0. If i is found to be a factor of n, i is factored 
out and the procedure continues, trying to find factors of nli. The built- 
in procedure cons, which adds an element to the head of a list, is used to 
build (construct) the list of factors. Cons is part of extensive list-processing 
capabilities which are built into Scheme and will be discussed in greater 
detail in Chapter 3. 

The trial factors are generated by a procedure which we refer to as 
generator. We use a simple generation procedure here which generates 
the next odd number not divisible by 3 by alternately taking steps of 2 and 
4. The creation of this procedure is interesting in its own right. 

Generat o r  has two state variables, d and step, which retain their values 
from one call to the next and are not directly accessible outside the proce- 
dure. This is an example of an encap~ulation, where a local environment 
is maintained within a procedure and state variables maintain the local 
state which is used on successive calls to generate the desired value. The 
nature of this local state and the exact mode of computation are totally 
hidden from procedures which use it. In particular, it is possible to replace 
generator by a more sophisticated procedure which skips numbers which 
are factors of 5 and 7 as well, or even to replace it by one which skips to 
the next prime number, without modifying fac to r s  in any way. We will 
use encapsulations extensively in the remainder of this text. 

A problem arises, however, in the implementation of generator. As 
defined above, it will generate the next number in the sequence given the 
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current number, d, and the current value of step.  Somehow, however, these 
values must be initialized (in this case, to 1 &d 4, respectively.) It is not 
sufficient to simply define these values in a l e t  within generator, however, 
because d and s t e p  would then be initialized once when the def ine  is 
evaluated and we would be unable to restart the sequence if we wanted to 
factor a second number. We would be left with a very subtle bug. The first 
procedure to use generator would work properly, but only the first time it 
was called. This is clearly not acceptable. 

The solution to this problem is to define a maker; i.e., a procedure 
which creates the desired procedure and does the necessary initialization. 
The procedure make-generator given below does just that. It uses l e t  to 
initialize d and s t e p  and then returns the required procedure within the 
environment in which these initializations took place. Thus, every time 
make-generator is invoked, a newly initialized instance of the procedure 
is created and a new sequence is begun. 

(de f ine  (make-generat or)  
( l e t  ((a 1)  

( s t e p  4 ) )  
(lambda () 

(cond ((= d 1) ( s e t !  d 2 ) )  
((= d 2)  ( s e t !  d 3)) 
((= d 3) ( s e t !  d 5 ) )  
( e l s e  

( s e t !  s t e p  ( i f  (= s t e p  4 )  2 4 ) )  
( s e t !  d (+ d s t e p ) ) ) )  

d l )  

Given make-generator, it is now possible to define f a c t o r s  properly. A 
maker, however, can be used again to good advantage. As defined below, 
f a c t o r s  is a function of two arguments, the number to be factored and 
the limit on the size of factors. In different applications, we might choose 
different generators. We use the maker, make-f actors ,  to define a specific 
instance of f a c t o r s ,  given a specific make-generator. 

(def ine  (make-f ac tors  make-generat o r )  
(lambda (number l i m i t )  

(def ine  generator (make-generat or)  ) 



CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 45 

(de f ine  ( loop n i r e s u l t )  
(cond ((= n 1) r e s u l t )  

((> i l i m i t )  (cons n r e s u l t ) )  
((= (modulo n i) 0) 

(loop (quot ient  n i) i (cons i r e s u l t ) ) )  
( e l s e  (loop n (generator)  r e s u l t ) )  ) ) 

( loop number (generat  o r )  ' () ) ) ) 
For example, if we wanted to define a procedure to find all factors no greater 
than 7 using the generator defined above, we would write: 

(de f ine  f a c t o r s  (make-f a c t o r s  make-generat o r )  ) 

If we then invoked 

( f a c t o r s  18018 7)  

it would return 

Note that the factors come out largest first because cons adds elements to 
the front of the list and that the unfactored portion of the number, returned 
at the head of the list, includes all the factors greater than 7, in this case 
11 and 13. 

2.3.8 Priinality Testing 

We now turn to the problem of testing if a number is prime. Using the 
generator defined above, a simple primality tester can be constructed. We 
use the generator to select potential factors of p and if none are found, then 
p is prime. We need only test for factors up to the square root of p. 

(de f ine  (prime? p) 
(de f ine  genera t  o r  (make-generat o r )  ) 
(de f ine  (loop i l i m i t )  

(cond ((= (modulo p i )  0) # ! f a l s e )  
((>= i l i m i t )  #! t rue)  
( e l s e  (loop (generator)  l i m i t )  ) ) ) 

( loop (generator)  ( in teger - sqr t  p ) ) )  
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It is interesting to note in passing that for sufficiently large p, the built-in 
square root procedure is inadequate for finding the place to stop. It returns 
a floating point number which may not have sufficient precision to accu- 
rately define the square root. With versions of Scheme which implement 
exact arithmetic for integers, it is possible to obtain the square root of a 
number exactly using only integer operations: 

(define (integer-sqrt number) 
(define (loop guess) 
(let ((new-guess (quotient number guess))) 

(if (<= (abs (- new-guess guess)) 1) 
(min guess new-guess) 
(loop (quotient (+ guess new-guess) 2))))) 

(if (<= number 1) 
number 
(loop (floor (sqrt number) ) ) ) ) 

Some applications, most notably those in the area of encryption, require 
that we find prime numbers with hundreds of digits. It is clear that any 
method which relies on testing primality explicitly by division is doomed 
to failure in this case. Fortunately, there is an alternative which requires a 
much smaller number of tests, actually, a constant number independent of 
p. This approach does not guarantee that p is prime, but instead provides 
us with a bound which states that p is prime with probability which can 
be made as close as we want to 1. 

The method is based on several observations from number theory which 
we now state. In the discussion in the remainder of this section, all arith- 
metic is modulo p. The first fact, called the Little Fermat Theorem, is 
that 

a ~ - - l  = 1 

for all a such that 0 < a < p if p is prime. The converse is also true, as we 
shall see later. To see that this is true, consider the numbers 

Consider any a such that 0 < a < p. We multiply each of these numbers 
by a, obtaining 

a, 2a, 3a,. . . , (p - l )a  
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These numbers must all be different modulo p for if not, say if ia and j a  
were the same, then 

a(i - j) = 0 

and a would be a factor of p, contradicting the assumption that p is prime. 
Also, none of the ia can be 0 since, again, if this were so then a and i 
would be factors of p. Therefore, modulo p all the elements of the second 
sequence are different and are non-zero. Hence, the second sequence is just 
a permutation of the first. We thus have, modulo p: 

We now show that the converse is also true. If p is not prime then there 
exist f  and g both larger than 1 and less than p such that f and g are 
factors of p and hence 

f g  = 0 
If we assume that UP-' = 1 for all positive a less that p (in particular, for 
a = f and a = g) then, if we now consider (fg)p-'  we have 

an obvious contradiction. 

for all positive a less that 

Hence, we have that 

p if and only if p is prime. 
Thus, it is possible to test for primality of a given number p by raising 

all numbers a < p to the (p - 1)-th power. It is in fact sufficient to test 
only prime numbers less than p since the prime factors of any composite 
number which fails the test will also fail the test. This still results in and 
unacceptably large number of tests, however. 

It is in fact unlikely, based on empirical evidence, that a random a will 
pass the test if p is not prime, but unfortunately there is no provable bound 
on how unlikely this is. 

The procedure f ermat?, defined below, tests a number, p, for primality 
using a single a as defined above. 
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(de f ine  ( f  ermat? p a )  
(de f ine  (times x y)  (modulo (* x y)  p ) )  
(def ine  exponent (make-binary-exponent t imes 1 ) )  
(= (exponent a (- p 1 ) )  1 ) )  

By calling fermat? a sufficient number of times (still a small constant 
independent of p) it is possible to test for primality with virtual certainty. 
We thus have a primality test which has a running time which is polynomial 
in the length of the number being tested. 

The Fermat test can be strengthened so that it is now possible to prove 
an upper bound on the probability of its being fooled. The improved test 
relies upon the following simple number theoretic fact. For any positive a 
and p: 

If a2 = 1 (mod p), then either a = 1 (mod p) 
o r a = p - 1  (modp) 
or p is not prime. 

Suppose a2 = 1 (mod p). We then have: 

This can be true only if at least one of a + 1 and a - 1 is 0 modulo p or if 
a + 1 and a - 1 are factors of p. 

This leads to the following procedure, rabin? [Ref?], which tests p, 
an odd number greater than 2, for primality using a single number, a. 
As before, if a passes the test, we are probabilistically assured that p is 
prime. If the number fails, however, we are certain it is not prime. Rabin? 
proceeds along the same general lines as fermat?, but it was shown by 
Rabin and Weinberger [ref] that for a non-prime p and a random a, the 
probability of error is no greater than 114. Because of this, if we repeat the 
test T times, the probability of error is bounded by 1 1 2 ~ ~ .  Empirically, it 
has been found that the probability of error is far smaller. 

Since p is odd and greater than 2, we can write p-1 as: 

where q is odd and k is greater than 0. We thus begin to compute an. U7e 
first compute aq. If this is 1, then p is prime since 



CHAPTER 2. PROGRAMMING WITH IMMUTABLE OBJECTS 49 

In this case, the procedure halts, declaring p to be prime. If aq = p - 1, 
then the procedure also halts, declaring p to be prime. 

Otherwise, the procedure continues, squaring aq. If this is 1, then p is 
not prime since ( ~ 9 ) ~  is 1 but a' is not 1 or p - 1, and, as explained in the 
observation above, either a9 - 1 or a' + 1 is a factor of p. If aq is p - 1, then 
as we just explained, p is declared to be prime. The procedure continues, 
replacing aq by (a')* until either a9 = 1 or aq = p - 1 or an is computed. 

The procedure, rabin?, below assumes that the appropriate values of k 
and q, as defined above, are already available. A procedure for computing 
k and q is given as part of the overall primality testing procedure given 
after rabin?. 

(de f ine  (rabin? p k q a)  
(de f ine  (times x y)  (modulo (* x y)  p ) )  
(de f ine  exponent (make-binary-exponent t imes 
(de f ine  ( loop k z j) 

( i f  (= z (- p 1 ) )  
# ! t r u e  
( i f  (or  (>= j k) 

(= y 1 ) )  
# ! f a l s e  
( loop k (times z z) (+ j 1 ) ) ) ) )  

( l e t  ( ( 2  (exponent a q ) ) )  
( if  (= z 1) 

#!true 
( loop k z 1 ) ) ) )  

It is now possible to define a very fast test for primality, which can be made 
as accurate as we desire. We begin by defining a maker which creates a 
primality tester given the desired number of tests. The procedure created 
generates the appropriate number of random test numbers and calls rabin?. 
The local procedure outer-loop finds the appropriate values of k and q as 
defined above; i.e., k and q such that 

n = ~ - l = 2 ~ ~  forqodd 

Note that outer-loop produces values which are functions only of p, not 
the random test numbers, and hence needs to be executed only once. 
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(define (make-fast-prime number-of-tests) 
(lambda (p) 
(define (outer-loop k q) 
(if (even? q) 

(outer-loop (+ k 1) (quotient q 2)) 
(inner-loop 1 k q))) 

(define (inner-loop i k q) 
(if (> i number-of-tests) 

#!true 
(if (rabin? p k q (+ (random (- p 2)) 2)) 

(inner-loop (+ i 1) k q) 
#!false))) 

(outer-loop 0 (- p 1)))) 

We can then define the primality tester: 

(define fast-prime? (make-fast-prime 25)) 

This functions so efficiently that it is even possible to embed it in a loop to 
find prime numbers by testing successive odd numbers starting at a given 
point until a prime is found. It can be shown [Ref] that on the average 
(ln n)/2 numbers will be tested before a prime number is found. Thus, it 
is reasonable to use the following procedure to find even very large primes; 
e.g., for n on the order of 10lo0. 

(define (make-first-prime-larger number-of-tests) 
(lambda (n) 
(define fast-prime? (make-fast-prime number-of-tests)) 
(define (loop i) 
(if (fast -prime? i) 

i 
(loop (+ i 2) ) ) )  

(if (odd? n) 
(loop n) 
(loop (+ n 1))))) 

Problem: In 1644, the French mathematician Marin Mersenne conjec- 
tured that numbers of the form 2 P  - 1 were prime for p = 2,3,5,7,13, 
17,19,31,67,127,257, and for no other p c 257. It is now easy to test his 
conjecture. Write a progam to test whether he was correct. 


