
CRD
Corporate Research and Development
Schenectady, New York

ADA* GENERIC LIBRARY
LINEAR DATA STRUCTURE PACKAGES, VOLUME ONE

D.R. Mussefl and A.A. Stepano*
Information Systems Laboratory

April 1988

*Ada is a registered trademark of the U.S. Government (Ada Joint Program Off ice)
tRensselaer Polytechnic Institute, Troy, NY 121 80
$Polytechnic University, Brooklyn, NY 1 1201

Technical Information Series

Class 1

CLASSES OF GENERAL ELECTRIC
TECHNICAL REPORTS

CLASS I -- GENERAL INFORMATION

Available to anyone on request. Patent, legal, and commercial re-
view required before issue.

CLASS 2 -- GENERAL COMPANY INFORMATION

Available to any General Electric Company employee on request.
Available to any General Electric Subsidiary or Licensee, subject to
existing agreements. Disclosure outside General Electric Company
requires approval of originating component.

CLASS 3 -- LIMITED AVAILABILITY INFORMATION

Original distribution to those individuals with specific need for in-
formation. Subsequent Company availability requires originating
component approval. Disclosure outside General Electric Company
requires approval of originating component.

CLASS 4 -- HIGHLY RESTRICTED DISTRIBUTION

Original distribution to those individuals personally responsible for
the Company's interests in the subject. Copies serially numbered,
assigned, and recorded by name. Material content and knowledge
of existence restricted to copy holder.

Requests for Class 2, 3, or 4 reports from non-resident aliens c r dis-
closure of Class 2, 3, or 4 reports to foreign locations, except Canada,
require review for export by the CRD Counsel.

Corporate Research and Development

Technical Report Abstract Page

Title ADA* GENERIC LIBRARY LINEAR DATA STRUCTZJRE PACKAGES,
VOLUME ONE

Author(s) D.R Mussee
A.A. Stepanoq

Component Information Systems Laboratory

Report
Number 8 8 0 1 12

Number
of Pages 150

Phone (5 l8)38%6 120
8*833-6120

Date April 1988

Class 1

Key Words generic algorithms, generic packages, generic subprograms, list manipulation,
software library, software productivity, software reliability, software reuse

The purpose of the Ada Generic Library is to provide Ada programmers with an extensive, well-
structured and well-documented library of generic packages whose use can substantially increase pro-
ductivity and reliability. The construction of the library follows a new approach, whose principles
include the following:

Extensive use of generic algorithms, such as generic sort and merge algorithms that can be special-
ized to work for many different data representations and comparison functions.

Building up functionally in layers (practicing software reuse within the library itself).

Obtaining high efficiency in spite of the layering (using Ada's inline compiler directive).

Volumes 1 and 2 contain eight Ada packages, with over 170 subprograms, for various h e a r data
structures based on linked lists.

Manuscript received March 30, 1988

*Ada is a registered trademark of the US. Government (Ada Joint Program Office)
tRensselaer Polytechnic Institute, Troy, NY 12180
$.Polytechnic University, Brooklyn, NY 11201

~ d a @ Generic Library
Linear Data Structure Packages

Volume One

David R. Musser Alexander A. Stepanov
Rensselaer Polytechnic Institute Polytechnic University
Computer Science Department Computer Science Department

Amos Eaton Hall 333 Jay Street
Troy, New York 12180 Brooklyn, New York 11201

Copyright @ 1987
General Electric Company

Release 1.1
March 4, 1988

Ada is a registered trademark of the U. S. Government (Ada Joint Program Office)

Contents

1 Introduction 1
. 1.1 Purpose of the library 1

. 1.2 Principles behind the library 1
. 1.3 Related technology 2

. 1.4 Structure of the library 2
. 1.4.1 Dataabstractions 3

. 1.4.2 Algorithmic abstractions 3
. 1.4.3 Structural abstractions 4

. 1.4.4 Representational abstractions 4
. 1.5 Selection from the library 5

. 1.6 Using the library 5

2 Linear Data Structures 7
. 2.1 Sequences 7

. 2.2 Organization 8
. 2.2.1 Low-level data abstractions 8

. 2.2.2 Algorithmic, structural and representational abstractions 8
. 2.3 Selection from the library 9

SystemAllocated-SinglyJIinked Package 10
. 3.1 Overview 10

. 3.2 Packagespecification 10
. 3.3 Package body 11
. 3.4 Subprograms 12

. 3.4.1 Construct 12
. 3.4.2 First 13
. 3.4.3 Free 14
. 3.4.4 Next 15

3.4.5 Set-First . 16
3.4.6 Set-Next . 17

4 UserAllocatedSinglyLinked Package 18
4.1 Overview . 18
4.2 Package specification . 18
4.3 Packagebody . 19
4.4 Subprograms . 20

4.4.1 Construct . 20
4.4.2 First . 21

CONTENTS

. 4.4.3 Free 22

. 4.4.4 Next 23
. 4.4.5 Set-First 24
. 4.4.6 Set-Next 25

5 AutoJLeallocatingSingly-linked Package 26
. 5.1 Overview 26

. 5.2 Package specification 26
. 5.3 Packagebody 27
. 5.4 Subprograms 29

. 5.4.1 Construct 29
. 5.4.2 First 30
. 5.4.3 Free 31
. 5.4.4 Next 32

. 5.4.5 Set-First 33

. 5.4.6 Se t Jex t 34

6 Singly-Linked-Lists Package 35
6.1 Overview . 35

. 6.1.1 Construction and modification of sequences 35
6.1.2 Examining sequences . 37

. 6.1.3 Computing with sequences 38
6.1.4 Exception handling . 39
6.1.5 Notes on efficiency . 39

. 6.1.6 Implementation notes 40
. 6.1.7 Orderings for Merge and Sort 40

. 6.2 Package specification 40
6.3 Pacbage body . 41
6.4 Definitions for the examples . 42

. 6.5 Subprograms 44
. 6.5.1 Append 44
. 6.5.2 Butlast 45

6.5.3 Butlast-Copy . 46
6.5.4 Concatenate . 47
6.5.5 Concatenate-Copy . 48

. 6.5.6 Construct 49
6.5.7 Copy-First-N . 50
6.5.8 Copy-Sequence . 51
6.5.9 Count . 52
6.5.10 CountJf . 53
6.5.11 CountJf-Not . 54
6.5.12 Delete . 55
6.5.13 Delete-Copy . 56
6.5.14 Delete-Copy-Duplicates . 57
6.5.15 Delete-CopyJf . 58
6.5.16 Delete-CopyJf-Not . 59
6.5.17 Delete-Duplicates . 60
6.5.18 DeleteJf . 61

CONTENTS

. 6.5.19 D e l e t e m o t 62
. 6.5.20 Equal 63
. 6.5.21 Every 64

. 6.5.22Find 65
. 6.5.23 FindJf. 66

. 6.5.24 FindJf-Not 67
. 6.5.25 First 68

. 6.5.26 For-Each 69
. 6.5.27 ForSach-Cell 70

. 6.5.28 For-Each-2 71
. 6.5.29 ForSach-Cell-2 72

6.5.30 Free . 73
6.5.31 Free-Sequence . 74
6.5.32 Invert . 75

. 6.5.33 Invert-Copy 76
6.5.34 IsAnd . 77

. 6.5.35 I s J o t S n d 78
6.5.36 Last . 79

. 6.5.37 Length 80
. 6.5.38 MakeSequence 81

. 6.5.39 Map 82
. 6.5.40 M a p 2 83

6.5.41 Map-Copy . 84
6.5.42 Map-Copy-2 . 85
6.5.43 Merge . * 86
6.5.44 Mismatch . 87
6.5.45 Next . 89
6.5.46 NotAny . 90
6.5.47 NotSvery . 91
6.5.48 Nth . 92
6.5.49 Nthaes t . 93
6.5.50 Position . 94
6.5.51 PositionJf . 95
6.5.52 PositionJfJot . 96
6.5.53 Reduce . 97
6.5.54 ReverseAppend . 98
6.5.55 Reverse-Concatenate . 99
6.5.56 Search . 100
6.5.57 Set-F'irst . 101
6.5.58 Set-Next . 102
6.5.59 Set-Nth . 103
6.5.60 Some . 104
6.5.61 Sort . 105
6.5.62 Subsequence . 106
6.5.63 Substitute . 107
6.5.64 Substitute-COPY . 108
6.5.65 Substitute-CopyJf . 109
6.5.66 Substitute-Copylf-Not . 110

CONTENTS

. 6.5.67 SubstituteJf 111
. 6.5.68 SubstituteJfBot 112

7 LinkedJlist Algorit hrns Package 113
. 7.1 Overview 113

. 7.2 Package $pecification 114
. 7.3 Packagebody 114
. 7.4 Subprograms 115

. 7.4.1 Accumulate 115
. 7.4.2 Advance 116
. 7.4.3 Append 117

. 7.4.4 Append-First-N 118
. 7.4.5 Attach-To-Tail 119

. 7.4.6 Count 120
. 7.4.7 Delete-CopyAppend 121

. 7.4.8 Delete, CopyDuplicatesAppend 122
. 7.4.9 Delete-Duplicates 123

. 7.4.10 Equal 124
7.4.11 Every . 125
7.4.12 Find . 126
7.4.13 For-Each-Cell . 127
7.4.14 For3ac.h-Cell2. 128
7.4.15 Invert-Partition . 129
7.4.16 Last . 130
7.4.17 Length . 131
7.4.18 MapXopy2Append . 132
7.4.19 Map-CopyAppend . 133
7.4.20 Merge . 134
7.4.21 MergeJon-Empty . 135
7.4.22 Mismatch . 137
7.4.23 NotAny . 138
7.4.24 Notxvery . 139
7.4.25 Nth-Rest . 140
7.4.26 Position . 141
7.4.27 ReverseAppend . 142
7.4.28 Reverse-Concatenate . 143
7.4.29 Search . 144
7.4.30 Some . 145
7.4.31 S o r t - . 146

8 Using the Packages 148
8.1 Partially Instantiated Packages . 148

8.1.1 Using System-AllocatedSingly_linked 148
8.1.2 Using UserAllocated-Singly-Linked 148
8.1.3 Using Auto-ReallocatingSingly-Linked 149

8.2 Integer Instantiation . 149
8.3 Test Suite and Output . 150

Chapter 1

Introduction

1.1 Purpose of the library

The purpose of the Ada Generic Library is to provide Ada programmers with an extensive,
well-structured and well-documented library of generic packages whose use can substantially
increase productivity and reliability. Our main goal in this introduction is to explain both
the structure of this particular library and the general principles we have followed in creating
that structure. We believe these principles, which are quite different from those on which
other libraries such as in [I] have been founded, have broad applicability to the god of
widely-usable software components in Ada.

The first phase of the libraxy concentrates on a significant subset of the data struc-
tures problem: an extensive set of linear data structure manipulation facilities. The data
structures and algorithms included have been selected based on their well-established use-
fulness in a wide variety of applications. Volumes 1 and 2 include generic Ada packages for
Singly Linked-Lists, Double-Ended-Lists, Stacks, and Output-Restricted-Deques, contain-
ing over 170 subprograms and structured to allow plugging together interchangeably with
three packages providing different storage allocation strategies.

One note of warning about the current status of these packages, or, more accurately,
about the current state of Ada compilers. In the course of developing these packages we had
occasion to attempt to compile them with four different Ada compilers: the Alsys compiler
for the IBM PC, the Verdix and Telesoft compilers for the SUN workstation, and the DEC
Ada compiler for VAX computers. Only the DEC compiler succeeds in compiling all the
packages in this library. The others cannot handle the heavily layered generics we use in
structuring the library. We are working with the vendors of these compilers to make them
aware of these problems.
Acknowledgements This initial phase of Ada Generic Library was developed with support
from GE Aerospace (for Volume 1) and GE Corporate Research and Development (for
Volume 2). Susan Mickel and William Novak of GE Western Systems provided useful
suggestions and comments on early versions of Volume 1.

1.2 Principles behind the library

The main principles we have followed in building the library are the following:

1. Extensive use of generic algorithms, such as generic sort and merge algorithms that
can be specialized to work for many different data representations and comparison

CHAPTER 1 . INTRODUCTION

functions.

2. Building up functionality in layers, separating, to as large an extent as possible, con-
cerns about represent ations from those of algorithms.

*
3. Obtaining high efficiency in spite of the layering (using Ada's inline compiler direc-

tive).

4. Emphasis on careful selection and expert programming of highly efficient algorithms.

5. High quality documentation that makes it easy to find operations in the library and
select the best algorithm and data structure for the application at hand.

The most important technical idea is that of generic algorithms, which are a means of
providing functionality in a way that abstracts away from details of representation and basic
operations. Instead of referring directly to the host language facilities, generic algorithms
are defined in terms a few primitive operations that are considered to be parameters. By
plugging in actual operations for these parameters, one obtains specific instances of the
algorithms for a specific data structure. By carefully choosing the parameterization and the
algorithms, one obtains in a small amount of code the capability to produce many different
useful operations. It becomes much easier to obtain the operations needed for a particular
application by plugging components together than it would be to program them directly.

1.3 Related technology

The notion of generic algorithms is not entirely new, but there has not been any attempt to
structure a general software library founded on this idea. Older program libraries, written
in Fortran or other languages without the facilities for generic programming, could not take
advantage of the algorithm abstractions that were known. But even the recent improvements
in abstraction facilities in contemporary programming languages, such as Ada, have not
precipitated widespread use of algorithmic abstraction. (Booch, for example, makes some
use of generic algorithms for list and tree structures, but almost as an afterthought in a
chapter on utilities.) For the benefits of this approach to be fully realized, great care must
be exercised in selecting and structuring algorithms, especially in determining how they are
parameterized and how they are used to develop more concrete levels of the library. Indeed,
we view algorithm selection, abstraction, and structuring as being of far greater importance
to software reusability than any language or other human-interface issues; experience with
Unix tools provides ample evidence of this point.

1.4 Structure of the library

The key structuring mechanism used in building the library is abstraction. We discuss four
classes of abstractions that we have found useful in structuring the library, as shown in
Table 1.1, which lists a few examples of packages in the library. Each of these Ada packages
has been written to provide generic algorithms and generic data structures that fall into the
corresponding abstraction class. (The packages marked with a * are not included in this
release of the library.) These classes are defined as follows:

1.4. STRUCTURE O F THE LIBRARY

I Families of data abstractions I Linkedlist Algorit hms I

Data Abstractions
Data types with operations
defined on them
Algorithmic Abstractions

System AllocatedSingly-Linked
UserAllocat edSingly-Linked

{Inst antiations of representational abstractions)
SequenceAlgorithms*

with common algorithms
Structural Abstractions

Table 1.1: Classification of Abstractions and Example Ada Packages

VectorAlgorit hms
SinglylinkedJlist s

Intersections of
algorithmic abstractions
Representational Abstractions
Mappings from one structural
abstraction to another

1.4.1 Data abstractions

Dou blyJ,inked-Lists *
Vectors*

Double,Endedlist s
Stacks

0ut~utJtestrictedJ)eaues

Data abstractions are data types and sets of operations defined on them (the usual defini-
tion); they are abstractions mainly in that they can be understood (and formally specified
by such techniques as algebraic axioms) independently of their actual implementation. In
Ada, data abstractions can be written as packages which define a new type and procedures
and functions on that type. Another degree of abstractness is achieved by using a generic
package in which the type of elements being stored is a generic formal parameter. In our
library, we program only a few such data abstractions directly-those necessary to create
some fundamental data representations and define how they are implemented in terms of
Ada types such as arrays, records and access types. Three such packages, which we refer
to as "low-level data abstraction packages," are presented in Chapters 3, 4, and 5. Most
other data abstractions are obtained by combining existing data abstraction packages with
packages from the structural or representational classes defined below.

1 A.2 Algorithmic abstractions

These are families of data abstractions that have a set of efficient algorithms in common; we
refer to the algorithms themselves as generic algorithms. For example, in our library there is
a package of generic algorithms for linked-lists; in a future release there will be a more general
package of sequence algorithms whose members can be used on either linked-list or vector
representations of sequences. The linked-list generic algorithms package contains 31 different
algorithms such as, for example, generic merge and sort algorithms that are instantiated
in various ways to produce merge and sort subprograms in structural abstraction packages
such as singly-linked lists and doubly-linked lists.

We stress that the algorithms at this level are derived by abstraction from concrete, ef-
ficient algorithms. As an example of algorithmic abstraction, consider the task of choosing
and implementing a sorting algorithm for linked list data structures. The merge sort algo-
rithm can be used and, if properly implemented, provides one of the most efficient sorting
algorithms for linked lists. Ordinarily one might program this algorithm directly in terms
of whatever pointer and record field access operations are provided in the programming
language. Instead, however, one can abstract away a concrete representation and express

4 CHAPTER 1 . INTRODUCTION

the algorithm in terms of the smallest possible number of generic operations. In this case,
we essentially need just three operations: Next and SetJext for accessing the next cell in a
list, and Is-End for detecting the end of a list. For a particular representation of linked lists,
one then obtains the corresponding version of a merge sorting algorithm by instantiating
the generic access operations to be subprograms that access that representation.

Thus in Ada one programs generic algorithms in a generic package whose parameters
are a small number of types and access operations-e. g.,

generic
type Cell is private;
with function Next (S : Cell) return Cell ;
with procedure Set ,Next (S1 , S2 : Cell) ;
with function Is,End(S : Cell) return Boolean;
with function Copy,Cell(Sl , S2 : Cell) return Cell ;

package Linked-List ,Algorithms i s

The subprograms in the package are algorithms such as Merge and Sort that are efficient
when Next, Set J e x t , etc., are instantiated with constant time operations.

1.4.3 Structural abstractions

Structural abstractions (with respect to a given set of algorithmic abstractions) are also
families of data abstractions: a data abstraction A belongs to a structural abstraction S if
and only if S is an intersection of some of the algorithmic abstractions to which A belongs.
An example is singly-linked-lists, the intersection of sequence- , linked-list-, and singly-
linkedlistalgorithmic abstractions. It is a family of all data abstractions that implement a
singly-linked representation of sequences (it is this connection with more detailed structure
of representations that inspires the name "structural abstraction"). (In this release, the
Singly-LinkedLists package (Chapter 6) is actually programmed just in terms of the
Linked-ListAlgorithms package.)

Note that, as an intersection of algorithmic abstractions, such a family of data abstrac-
tions is smaller than the algorithm abstraction classes in which it is contained, but a larger
number of algorithms are possible, because the structure on which they operate is more
completely defined.

Programming of structural abstractions can be accomplished in Ada with the same kind
of generic package structure as for generic algorithms. The Singly-LinkehList s package
contains 66 subprograms, most of which are obtained by instantiating or calling in various
ways some member of the Linked-List4lgorithms package. In Ada, to actually place
one data abstraction in the singly-linked-lists family, one instantiates the Singly-Linked-
Lists package, using as actual parameters a type and the set of operations on this type
from a data abstraction package such as System-AllocatedSingly-linked that defines an
appropriate representation.

1.4.4 Representational abstractions

These are mappings from one structural abstraction to another, creating a new type and
implementing a set of operations on that type by means of the operations of the domain
structural abstraction. For example, stacks can easily be obtained as a structural abstraction

SELECTION FROM THE LIBRARY

from singly-linked-lists, and this is carried out in Ada using generic packages in a manner
that will be demonstrated in Volume 2. Note that what one obtains is really a family of
stack data abstractions, whereas the usual programming techniques give only a single data
abstraction.

1.5 Selection from the library

The first observation we would make is that proper classification of software components
for maximum usability may well depend more on internal structure than on functional
(input-output) behavior. In searching the library, the programmer needs to know not
only whether there is a subprogram that performs the right operation, but also what kind
of data representation it uses (if it is not a completely generic algorithm), since in all
but the simplest cases it will be used in a particular context that may strongly favor one
representation over another.

Experienced programmers will sometimes want to use generic algorithms directly, in-
stantiating the generic access operations to be subprograms accessing a particular data
representation. Although generic, these algorithms are tailored to be used with data rep-
resentations with particular complexity characteristics, such as linked-list- versus array-like
representations, and the programmer must be aware of these issues.

This is not to say that intelligent use of the library necessarily requires the program-
mer to examine the bodies of the subprograms. If construction of the library is, as we
have recommended, algorithmically-driven and draws upon the best books and articles on
algorithms and data structures, then it should be possible to develop sufficiently precise
and complete selection criteria based on the advice in those books and articles. Again, the
preparation of these selection criteria and other documentation must be done very carefully
and thoroughly to make later usage by programmers as simple as possible. (The selection
criteria contained in this release of the library are mainly for choosing between different sub-
programs within a package; criteria for choosing between different packages will be supplied
in a later release.)

1.6 Using the library

The packages in the Ada Generic Library are intended to be included in a local site's Ada
library structure (using the library mechanism supported by the Ada system in use locally),
so that a programmer can use them simply by including appropriate with statements in
his or her source code. In most cases the programmer will not use packages from the four
abstraction classes directly; instead it is simpler to use what we call Partially Instantiated
Packages, or PIPs. Each PIP effectively "plugs together" a low-level data abstraction
package with a structural or representational package, presenting a generic package interface
in which the only generic parameters are the element type and perhaps some size or other
control parameters. In this release of the library there are twelve PIPs provided, one for
each combination of one of the three low-level data abstraction packages in Chapters 3, 4,
and 5 with the Singly-Linked-Lists package in Chapter 6 or one of the three packages in
Volume 2. PIPs are discussed further in Chapter 7.

Bibliography

[I] G. Booch, G., Software Components in Ada. Benjamin/Cummings, 1987.

[2] 0.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured Programming, Academic
Press, 1972.

[3] D. E. Knuth, The Art of Computer Programming, Volume 1: f indamentd Algorithms,
Addison- Wesley, 1968.

[4] R. Sedgewick, Algorithms, Addison- Wesley, 1983.

[5] G. Steele, Common Lisp: The Language, Digital Press, 1984.

[6] N. Wirth, Algorithms + Data Structures = Programs, Prentice-Hall, 1976.

Chapter 2

Linear Data Structures

2.1 Sequences

The first phase of the Ada Generic Library, Linear Data Structures, can be described in
terms of the different data structures that are implemented, most of which are relatively
simple and familiar structures such as linked lists, vectors (one dimensional arrays), stacks,
queues, deques, etc. However, a highly unifying way to organize one's understanding of
these structures and the algorithms associated with them is in terms of the mathematical
notion of (finite) sequences. (In a later release, we will include a Sequences package of
generic algorithms, but for now we discuss sequences just as a way of understanding many
aspects of linked-list and vector representations.)

For a given data type T, the set of all sequences

for all integers n > 0, where each xi is a member of type T, is called the set (or type) of
sequences of T. If n = 0, we have the unique empty sequence of T . The number of elements,
n, in a sequence is called the length of the sequence. The index i of an element x; within a
sequence is also called a position in the sequence.

As mathematical objects, sequences are not of great interest (at least not the finite
variety we are discussing here), but their computational use introduces a great many in-
teresting and sometimes complex issues. The issue of insertion or deletion of elements in
a sequence comes immediately to mind; the need to frequently insert or delete elements
somewhere in the middle of a sequence favors a linked list representation; whereas the need
to access elements in random positions, as opposed to consecutive positions, favors a vector
represent ation.

Another discriminator between linked representations and vector representations is whether
it is possible to assume a fixed upper limit on the length of sequences, in which case we refer
to them as bounded sequences. Bounded sequences allow vector representations, whereas
unbounded sequences are generally implemented as linked lists. (However, a less well-known
representation called "extensible vectors" can also be used for unbounded sequences, as will
be discussed in a later volume.)

We will not attempt to give a complete discussion of the tradeoffs between various linear
data structures or to justify all of the assertions made in this overview or in the descriptions
of the packages and subprograms given in later chapters. We have, however, tried to remain
consistent with widely used terminology and notation, so that the reader can use textbooks
on data structures such as 131, [4], as sources of reference in conjunction with these packages.

I 8 CHAPTER 2. LINEAR DATA STRUCTURES

I
I In the remainder of this section, we give some additional terminology for sequences that
I will be used in the subprogram descriptions. For a sequence S of length n, say

we refer to xo as the first element (not the zeroth) and 2,-1 as the last element.
We also commonly refer to x0 as the left end and x,-1 as the right end of the sequence.

Thus, if there are one or more elements xi, x j , . . . equal to some element x , then we refer to
the element in the sequence with smallest index as the left-most occurrence of x in S.

In this discussion of sequences, the indices, or positions, of elements play a major role,
but computationally this is not necessarily the case. When using a linked list representation,
it is best to de-emphasize the calculation and use of numerical positions in favor of operations
that move through sequences element by element.

2.2 Organization

2.2.1 Low-level data abstractions

In this release we have provided three different low-level data abstractions using singly-
linked list represent at ions :

The System4llocatedSingly-linked package provides records containing datum
and link fields, allocated using the standard heap allocation and deallocation proce-
dures.

Once-User-Allocated-SinglyLinked provides more efficient allocation and deallo-
cation by allocating an array of records as a storage pool, but is less flexible than the
system allocated package since this array and the system heap are managed separately.

Auto-Reallocating-Singly-linked also uses an array of records for efficiency but
automatically allocates a larger array whenever necessary; its disadvantage is that
the parameters controlling the reallocation may need to be tuned to achieve optimum
reallocation behavior.

These data abstractions are described in Chapters 3, 4, and 5.

2.2.2 Algorithmic, structural and representational abstractions

This release of the library provides the following algorithmic, structural and representational
abstraction packages:

S i n g l y - L i n k e U i s t s is a structural abstraction package that provides over 60 sub-
programs for operations on a singly-linked list representation, including numerous
kinds of concatenation, deletion, substitution, searching and sorting operations.

Linked-List4lgorithms is a generic algorithms package that is the source of most
of the algorithms used in Singly-Linked-Lists; many of the algorithms will also be
used in implementing the Doubly-LinkedList s package.

Double-Ended-Lists (described in Volume 2) employs header cells with singly-linked
lists to make some operations such as concatenation more efficient and to provide
more security in various computations with lists.

2.3. SELECTION FROM THE LIBRARY 9

a Stacks (Volume 2) provides the familiar linear data structure in which insertions and
deletions are restricted to one end.

Output-RestrictedDeques (Volume 2) provides a data structure that restricts in-
sertions to both ends and deletions to one end.

The latter three packages are representational abstractions that produce different structural
abstractions from different representations of singly-linked lists. Any of the four structural
or representational abstraction packages can be plugged together with any of the three low-
level data abstraction packages provided, for a total of 12 different possible combinations.
Each of these 12 combinations, called a Partially Instantiated Package, or P I P for short,
is included in the library. To use them one only has to instantiate the element type to a
specific type. See Chapter 8 for further details on the form and usage of the PIPS.

A later release will also include:

Sequences

a Doubly-Linked-List s

Simple-Vectors

a Extensible-Vectors

packages, along with several low-level data abstraction packages that plug together with
them.

2.3 Selection from the library

There are, at a minimum, three kinds of selections to be made inusing these packages:

1. the choice of a low-level data abstraction package

2. the choice of a structural or representational abstraction package

3. the choice of operations within the structural or representational package

The fact that the structure of our library allows separate choices for 1 and 2 means that
there are many more selections available than would be the case with more conventional
organizations. However, it is not the case that these choices are entirely independent of
each other or of the choices in 3. In fact, the programmer will often have to give careful
consideration to the the combination of operations that he or she expects to use in an
application, and make a package selection based on algorithmic issues of time and space
efficiency of the subprograms as documented in the subprogram descriptions. Another issue
that might dictate a choice would be the possible exceptions raised by the operations to be
used.

Chapter 3

Syst em-Allocat edSingly-Linked
Package

3.1 Overview

This is the simplest of the three low-level data abstraction packages provided in this release.
It provides records containing datum and link fields, allocated using the standard heap
allocation and deallocation procedures.

The exceptions that are raised by the subprograms in this package (and the other two
low-level representation packages) are renamings of those defined in the package Linked-
Except ions, (which contains nothing but exception specifications). LinkehExcept ions is
used in a context clause of the the low-level representation packages and the data abstraction
packages with which they might be plugged together, so that both packages are referring
to the same set of exceptions; renamings are done to make the exceptions visible outside.
(The way that exceptions are set up in these packages may be revised in a future release.
Under consideration is the possibility of eliminating the exceptions entirely, allowing system
exceptions such as Contraint-Error and Storage-Error to surface from the packages.)

3.2 Package specification

The package specification is as follows:

with Linked-Exceptions;
generic

type Element is private;

package System-Allocated-Singly-Linked is

type Sequence is private;

Mil : constant Sequence;

First-Of-Nil : exception
renames Linked,Exception~.First_0f,Nil;

3.3. PACKAGE BODY

Set-First-Of -Nil : exception
renames Linked-Exceptions.Set-First-Of-Nil;

Next-Of-Nil : exception
renames Linked,Exceptions.Next-Of-Nil;

Set-Next-Of-Nil : exception
renames Linked-Exceptions.Set-Next-Of-Nil;

Out~Of~Construct~Storage : exception
renames Linked~Exceptions.Out~Of~Construct~Storage;

{The subprogram specifications)

private

type Node;

type Sequence is access Node;

Nil : constant Sequence := null;

end System-Allocat ed-Singly-Linked ;

3.3 Package body

The package body is as follows:

with Unchecked-Deallocat ion ;
package body System-Allocated-Singly-Linked is

type Node is record
Datum : Element;
Link : Sequence ;

end record;

procedure Free-Aux is new Unchecked-Deallocation(Node, Sequence);

(The subprogram bodies)

end System-Allocated-Singly-Linked;

12 CHAPTER 3. SYSTEMALLOCATED-SINGLYLINKED PACKAGE

3.4 Subprograms

3.4.1 Construct

Specification

function Construct(The-Element : Element; S : Sequence)
return Sequence;

pragma inline(C0nstruct);

Description Returns the sequence whose first element is The-Element and whose fol-
lowing elements are those of S. S is shared.

Time constant

Space constant

Mutative? No

Shares? Yes

Details May raise an exception, Out~Of~ConstructStorage. The relations

always hold unless an exception is raised.

See also First, Next, SetJirst , SetNext

Implementation

begin
return new NodeJ(The,Element, S);

except ion
when Storage-Error =>
raise Out-Of -Construct-Storage;

end Construct ;

3.4. SUBPROGRAMS

3.4.2 First

Specificat ion

function First(S : Sequence)
return Element ;

pragma inline(First) ;

Description Returns the first element of S

Time constant

Space 0

Mutative? No

Shares? No

Details Raises an exception, First-Of-Nil, if S = Nil.

See also SetJirs t , Next

Implementat ion

begin
return S. Datum;

exception
when Constraint ,Error =>
raise First-Of-Nil;

end First;

CHAPTER 3. SYSTEM-ALLOCATED-SINGLY-LINKED PACKAGE -

3.4.3 Free

Specifl cat ion

procedure Free(S : Sequence);
pragma inline (Free) ;

Description Causes the first cell of S to be made available for reuse. S is destroyed.

Time constant

Space 0 (makes space available)

where n = length(S)

Mutative? Yes

Shares? No

See also

Implementation

Temp : Sequence := S;
begin

Free,Aux(Temp);
end Free;

3.4. SUBPROGRAMS

3.4.4 Next

Specification

function Next (S : Sequence)
return Sequence;

pragma inline (Next) ;

Description Returns the sequence consisting of all the elements of S, except the first. S
is shared.

Time constant

Space 0

Mutative? No

Shares? Yes

Details Raises an exception, Next-Of-Nil, if S is Nil.

See also First, Set-Next

Implementat ion

begin
return S.Link;

except ion
when Constraint-Error =>

raise Next-Of-Nil;
end Next;

CHAPTER 3. SYSTEM-ALLOCATED-SINGLY-LINKED PACKAGE

3.4.5 Setl'irst

Specificat ion

procedure set-First@ : Sequence; X : Element);
pragma inline (Set ,First) ;

Description Changes S so that its first element is X but the following elements are
unchanged.

Time constant

Space 0

Mutative? Yes

Shares? No

Details Raises an exception, Set-First-Of-Nil, if S is Nil.

See also First, S e t J e x t

Implementation

begin
S.Datum := X;

except ion
when Constraint-Error =>

raise Set ,First ,Of ,Nil ;
end Set ,First ;

3.4. SUBPROGRAMS

3.4.6 SetJJext

Specificat ion

procedure Set-Next(S1, S2 : Sequence);
pragma inline (set ,Next) ;

Description Changes S1 so that its first element is unchanged but the following elements
are those of S2. S2 is shared.

Time constant

Space 0

Mutative? Yes

Shares? Yes

Details Raises an exception, Set-Next-Of-Nil, if S1 is Nil.

See also Next, Set-First

Implementat ion

begin
S1.Link := S2;

except ion
when Constraint-Error =>

raise Set ,Next ,Of ,Nil ;
end Set ,Next ;

Chapter 4

Package

4.1 Overview

Compared to the SystemAllocated-Singly-Linked low-level data abstraction, this pack-
age provides more efficient allocation and deallocation of list nodes by allocating an array
of records as a storage pool. This however makes it less flexible than the system allocated
package since the array and the system heap are managed separately, producing a greater
possibility of running out of storage.

See the discussion of exceptions in Section 3.1, which applies here also.
The subprogram descriptions are identical to those for Syst em4llocat ed-S ingly-Linked

in all respects except the implementations.

4.2 Package specificat ion

The package specification is as follows:

with Linked-Exceptions ;
generic

Heap-Size : in Natural;
type Element is private;

package User,Allocated,Singly-Linked is

type Sequence is private;

Nil : constant Sequence;

First ,Of ,Nil : exception
renames Linked,Exceptions.First-Of-Nil;

Set-First-Of-Nil : exception
renames Linked-Except ions. Set-First -Of -Nil ;

Next ,Of ,Nil : except ion
renames Linked-Except ions. Next -Of -Nil ;

4.3. PACKAGE BODY 19

Set -Next -Of -Nil : except ion
renames Linked-Exceptions.Set-Next-Of-Nil;

Out~Of~Construct~Storage : exception
renames Linked~Exceptions.Out~Of~Construct~Storage;

{The subprogram specifications)

private

type Sequence is new Natural;

Nil : constant Sequence := 0;

end User-Allocated-Singly-Linked;

4.3 Package body

The package body is as follows:

package body User-Allocated-Singly-Linked is

type Node is record
Datum : Element;
Link : Sequence;

end record;

type Heap-Of-Records is array(Sequence range <>) of Node;

Heap : Heap-Of-Records(1 .. ~equence(Heap-size));

Free-List : Sequence := Nil;

Fill-Pointer : Sequence := 1;

{The subprogram bodies)

end User,Allocated,Singly-Linked;

CHAPTER 4 . USER-ALLOCATED-SINGLY-LINKED PACKAGE

4.4 Subprograms

4.4.1 Construct

Specificat ion

function Construct(The-Element : Element; S : Sequence)
return Sequence;

pragma inline(C0nstruct);

Description Returns the sequence whose first element is The-Element and whose fol-
lowing elements are those of S. S is shared.

Time constant

Space constant

Mutative? No

Shares? Yes

Details May raise an exception, Out-Of-Construct-Storage. The relations

First(Construct(E,S)) = E
Next (Construct (E,S)) = S

always hold unless an exception is raised.

See also First, Next, Set-First, Set-Next

Implementation

Temp : Sequence;
begin

if Free-List /= Nil then
Temp : = Free-List ;
Free-List := Next (Free-List) ;

elsif Fill-Pointer <= Sequence(Heap-Size) then
Temp := Fill-Pointer;
Fill-Pointer := Fill-Pointer + 1;

else
raise Out,Of,Construct,Storage;

end if;
Set ,First (Temp, The-Element) ;
Set ,Next (Temp, S) ;
return (Temp) ;

end Construct;

4.4. SUBPROGRAMS

4.4.2 First

Specificat ion

function First@ : Sequence)
return Element ;

pragma inline(First) ;

Description Returns the first element of S

Time constant

Space 0

Mutative? No

Shares? No

Details Raises an exception, First-OfNil, if S = Nil.

See also Set-First, Next

Implementation

begin
return Heap (S) .Datum;

except ion
when Constraint ,Error =>
raise First ,Of ,Nil ;

end First ;

CHAPTER 4 . USERALLOCATED-SINGLYJ;INKED PACKAGE

4.4.3 Free

Specification

procedure Free(S : Sequence);
pragma inline(Free);

Description Causes the first cell of S to be made available for reuse. S is destroyed.

Time constant

Space 0 (makes space available)

where n = length(S)

Mutative? Yes

Shares? No

See also

Implementation

begin
~et,Next (S , Free-List) ;
Free-List := S;

end Free;

4.4. SUBPROGRAMS 23

4.4.4 Next

Specification

function Next (S : Sequence)
return Sequence;

pragma inline(Next);

Description Returns the sequence consisting of all the elements of S, except the first. S
is shared.

Time constant

Space 0

Mutative? No

Shares? Yes

Details Raises an exception, Next-Of-Nil, if S is Nil.

See also First, Set-Next

Implementation

begin
return Heap (S) .Link;

exception
when Constraint-Error =>
raise Next ,Of ,Nil ;

end Next;

CHAPTER 4. USER-ALLOCATED-SINGLYLINKED PACKAGE

4.4.5 SetJirst

Specification

procedure Set,First(S : Sequence; X : Element);
pragma inline (Set ,First) ;

Description Changes S so that its first element is X but the following elements are
unchanged.

Time constant

Space 0

Mutative? Yes

Shares? No

Details Raises an exception, Set-First-OfNil, if S is Nil.

See also First, Set-Next

Implementation

begin
Heap (S) .Datum : = X ;

except ion
when Constraint-Error =>

raise Set-First-Of , N i l ;
end Set-First;

4.4. SUBPROGRAMS

4.4.6 Setnext

Specification

procedure Set-Next(S1, S2 : Sequence);
pragma inline (Set ,Next) ;

Description Changes S1 so that its first element is unchanged but the following elements
are those of S2. S2 is shared.

Time constant

Space 0

Mutative? Yes

Shares? Yes

Details Raises an exception, Set-Next-Of-Nil, if S1 is Nil.

See also Next, Set-First

Implementation

begin
Heap(Sl).Link := S2;

except ion
when Constraint ,Error =>

raise Set-Next-Of-Nil;
end Set ,Next ;

Chapter 5

Package

5.1 Overview

Compared to the SysteleAllocatedSingly-Linked low-level data abstraction, this pack-
age provides more efficient allocation and deallocation of list nodes by allocating an array of
records as a storage pool. It is also more flexible than the User-AllocatedSingly-Linked
data abstraction, since it automatically reallocates a larger array whenever necessary. A
disadvantage is that it may be necessary to tune the parameters controlling the reallocation
based on characteristics of a particular application.

See the discussion of exceptions in Section 3.1, which applies here also.
The subprogram descriptions are identical to those for Syst em4llocat ed-Singly-Linked

in all respects except the implementations.

Package specificat ion -

The package specification is as follows:

with Linked-Exceptions;
generic

Initial-Number-Of ,Blocks : in Positive;
Block-Size : in Positive;
Coefficient : in Float;
type Element is private;

package Auto-Reallocat ing-Singly-Linked is

type Sequence is private;

Nil : constant Sequence;

First-Of-Nil : exception
renames Linked,Exceptions.First-Of-Nil;

Set-First ,Of ,Nil : exception

5.3. PACKAGE BODY 27

renames Linked-Except ions. Set -First -Of -Nil ;
Next-Of-Nil : exception

renames Linked,Exceptions.Next-Of-Nil;
Set -Next -Of -Nil : exception

renames Linked-Exceptions.Set-Next-Of-Nil;
Out~Of~Construct~Storage : exception

renames Linked~Exceptions.Out~Of~Construct~Storage;

{The subprogram specifications)

private

type Sequence is new Natural;

Nil : constant Sequence := 0;

end Auto-Reallocating-Singly-Linked;

5.3 Package body

The package body is as follows:

with Unchecked,Deallocation;
package body Auto-Reallocating-Singly-Linked is

Number-Of-Blocks : Positive := Initial-Number-Of-Blocks;

Heap-Size : Sequence := Sequence(Number-Of-Blocks * Block-Size);

type Node is record
Datum : Element;
Link : Sequence;

end record;

type Vector-Of-Nodes is array(Sequence range <>) of Node;

type Heap-Of ,Nodes is access Vector-Of ,Nodes ;

procedure Free-Heap is new Unchecked-Deallocat ion(Vector-Of -Nodes,
Heap-Of ,Nodes) ;

Heap : Heap-Of-Nodes;

Free-List : Sequence := Nil;

Fill-Pointer : Sequence := 1;

CHAPTER 5. AUTO-REALLOCATING-SINGLY-LINKED PACKAGE

procedure Reallocate is
New,Number,Of,Blocks : Natural : =

Positive(Float(Number~0f~Blocks) * Coefficient + 0.5);
New-Heap-Size : Sequence .=

Sequence(New,Number-Of -Blocks * Block-Size) ;
New-Heap : Heap-Of ,Nodes :=
new Vector,Of,Nodes(l .. New-Heap-Size);

begin
f o r I i n Heap'range loop

New-Heap (I) : = Heap (I) ;
end loop;
Free-Heap (Heap) ;
Heap : = New-Heap ;
Number-Of-Blocks := New,Number,Of,Blocks;
Heap-Size := New-Heap-Size;

end Reallocate ;

{The subprogram bodies)

begin

Heap := new Vector-Of ,Nodes (1 . . Heap-Size) ;

except ion

when Storage-Error =>
r a i s e Out ,Of ,Construct ,Storage ;

end Auto,Reallocating,Singly,linked;

5.4. SUBPROGRAMS

5.4 Subprograms

5.4.1 Construct

Specificat ion

function Construct(The-Element : Element; S : Sequence)
return Sequence;

pragma inline (Construct) ;

Description Returns the sequence whose first element is The-Element and whose fol-
lowing elements are those of S. S is shared.

Time constant except when reallocation is necessary

Space constant

Mutative? No

Shares? Yes

Details May raise an exception, Out-Of-Construct-Storage. The relations

First (Construct (E,S)) = E
Next(Construct(E,S)) = S

always hold unless an exception is raised.

See also First, Next, Set-First, Se t Jex t

Implementation

Temp : Sequence;
begin

if Free-List /= Nil then
Temp := Free-List;
Free-List : = Next (Free-List) ;

else
if Fill-Pointer > Sequence(Heap,Size) then

Reallocate ;
end if;
Temp : = Fill-Pointer;
Fill-Pointer := Fill-Pointer + 1;

end if;
Set-First (Temp, The-Element) ;
Set,Next(Temp, S);
return (Temp) ;

end Construct ;

CHAPTER 5. AUTO-REALLOCATING-SINGLY-LINKED PACKAGE

5.4.2 First

Specificat ion

function First (S : Sequence)
return Element ;

pragma inline(First) ;

Description Returns the first element of S

Time constant

Space 0

Mutative? No

Shares? No

Details Raises an exception, First-OfNil, if S = Nil.

See also Set-First, Next

Implementat ion

begin
return Heap (S) .Datum;

except ion
when Constraint-Error =>
raise First ,Of ,Nil ;

end First;

5.4. SUBPROGRAMS

5.4.3 Free

Specification

procedure Free(S : Sequence);
pragma inline (Free) ;

Description Causes the first cell of S to be made available for reuse. S is destroyed.

Time constant

Space 0 (makes space available)

where n = length(S)

Mutative? Yes

Shares? No

See also

Implementat ion

begin
set,Next(~, Free-List);
Free-List : = S ;

end Free;

CHAPTER 5. AUTO-REALLOCATING-SINGLY-LINKED PACKAGE

5.4.4 Next

Specification

function Next (S : Sequence)
return Sequence;

pragma inline (Next) ;

Description Returns the sequence consisting of d l the elements of S, except the first. S
is shared.

Time constant

Space 0

Mutative? No

Shares? Yes

Details Raises an exception, Next-Of-Nil, if S is Nil.

See also First, Set-Next

Implementation

begin
return Heap(S) .Link;

except ion
when Constraint-Error =>

raise Next-Of ,Nil;
end Next;

5.4. SUBPROGRAMS

5.4.5 Set-First

Specification

procedure Set -First (S : Sequence ; X : Element) ;
pragma inline (Set ,First) ;

Description Changes S so that its first element is X but the following elements are
unchanged.

Time constant

Space 0

Mutative? Yes

Shares? No

Details Raises an exception, SetBirst-OfJil, if S is Nil.

See also First, SetJext

Implementation

begin
Heap (S) .Datum : = X ;

except ion
when Constraint-Error =>

raise Set-First-Of-Nil;
end Set ,First ;

34 CHAPTER 5. A UTO-REALLOCATING-SINGLY-LINKED PACKAGE

5.4.6 Set-Next

Specificat ion

procedure Set-Next(S1, S2 : Sequence);
pragma inline(Set-Next);

Description Changes S1 so that its first element is unchanged but the following elements
are those of S2. S2 is shared.

Time constant

Space 0

Mutative? Yes

Shares? Yes

Details Raises an exception, Set-Next-Of-Nil, if S1 is Nil.

See also Next, SetJirst

Implementat ion

begin
Heap (Si) . Link : = S2 ;

except ion
when Constraint-Error =>

raise Set ,Next ,Of ,Nil ;
end Set ,Next ;

Chapter 6

Singly-Linked-List s Package

6.1 Overview

This package provides 66 subprograms (including those that are generic formal parameters)
for manipulating a singly-linked-list representation of sequences, in which the elements are
of any type (supplied by a generic parameter). The purposes of the these subprograms may
be classified into the following three categories:

1. Construction and modification of sequences

2. Examining sequences

3. Computing with sequences

In this section we give a brief overview of these categories, leaving the details and examples
of usage to the individual subprogram descriptions.

The selection of operations in this package and many details of their behavior were
inspired by the sequence and list operations defined for the Common Lisp language in [5].

6.1.1 Construction and modification of sequences

Basic construct ion

The most basic operation is Construct, which is actually a generic formal parameter to
the package and is therefore supplied by another package (such as System-Allocated-
Singly-~inked). It is assumed that Construct takes an element E and a sequence S and
produces a new sequence whose elements are E followed by all the elements of S. By using
the constant N i l , which is also a generic formal and represents the empty sequence, and
calls to Construct, one can obtain particular sequences; e.g., assuming the element type is
Integer , the expression

construct (1 ,construct (3,Construct (5 ,N i l)))

produces a sequence of the first three odd numbers.
The Make-Sequence function, given an integer N and an element E, produces a sequence

of N elements all equal to E.
Copy-Sequence(S) returns a sequence containing the same elements as S, but using new

cells. Copy,FirstA(S,N) produces a sequence consisting of the first N elements of S, using
new cells.

CHAPTER 6. SINGLYJIINKEDJIISTS PACKAGE

Basic modification

All of the subprograms for basic modification of sequences are procedures. Set-First (S ,E)
changes S so that its first element is E but the following elements are unchanged. Similarly,
Set-Next (S1 .S2) changes S i so that it retains its first element but the following elements
are all the elements of S2. S2 is unchanged, but the issue of argument sharing comes
into play here. S2 is shared in the sense that the cells making it up are used also in the
representation of S1. Thus if S2 is referred to later, one must remember that any change to
S1 may also change S2, and vice versa.

Set-Nth(S, N .E) is a more general version of Set-First allowing change of an element
in an arbitrary position. Note however that its execution time is a linear function of N,
rather than constant as in the case of vector accesses. Linked list representations are most
appropriate when the computation can be arranged so that operations like Set-Nth(S , N ,E)
that reference arbitrary positions in the list are only rarely if ever used.

There are two procedures for returning cells to the available space pool: Free(S) re-
turns just the first cell of S, while Free-Sequence(S) returns all cells of S. Note that
Set-Next (S1 .S2) does not free any cells; however, it is almost always applied when S1 is
the tail of a sequence, hence no cells need to be freed.

Set-First, S e t J e x t , and Free are actually generic parameters of the package, hence
these descriptions should be regarded as requirements on these parameters.

Reversing

There are two functions for computing the reverse of a given sequence, Invert and Invert-
Copy. The difference between them illustrates an important distinction that appears in
numerous other pairs of operations in this package: we say that Invert@) mutates its
argument S, since it uses the cells of S to hold the result, while Invert-Copy leaves S intact
by using newly allocated cells to hold the result. One way to implement Invert-Copy@)
would simply be

Invert (CopySequence (S))

but the actual implementation is more efficient. (It might in fact be reasonable to implement
Copy-Sequence (S) as

Invert (Invert-Copy (S))

although a different implement at ion is actually used .)
Mutative operations, such as Invert and many of the operations described below, must

be used with care since they can introduce subtle bugs, but they are essential to some kinds
of uses of sequences, such as data base applications, and their use in other cases can mean
enormous improvements in efficiency.

In some cases, no non-mutative version of an operation is supplied; when it is necessary
to perform such an operation on an argument that should not be mutated, one should first
copy the argument; e.g., Sort, described below, is mutative and there is no Sort-Copy, so
one should write

Sort (CopySequence (S))

if S will be needed later.

6.1. OVERVIEW

Concatenat ion

In a similar way, the two functions Concat enate and Concat enate-Copy provide for concate-
nating two sequences with or without mutating their arguments. More precisely, Concatenate(S1, S2)
mutates Si and shares S2, while Concatenate-Copy(Si,S2) builds its result out of com-
pletely new cells, leaving both S1 and S2 intact for further use.

There is another concatenation function, Append (S 1, S2), which is equivalent to

Concatenate (CopySequence (Si) , S2)

i.e., Si is left intact and S2 is shared. The implementation is however slightly more efficient.
There are two functions which combine the functions of reversing and concatenation.

ReverseJppend (S 1 ,S2) produces a sequence containing all the elements of S 1, in reverse
order, followed by those of S2, in order, with Si left intact and S2 shared. Reverse-
Concatenate(S1,SZ) returns the same result, but mutating S1 and sharing S2.

Merging and sorting

Merge(S1 ,S2) merges its arguments into a single sequence, using its generic parameter
Test to compare two elements; e.g., Test might be " < = I t or "<". If S1 and S2 are in order
as determined by Test, then the result will be in order as determined by Test (see Section
6.1.7 for further discussion of ordering). S1 and S2 are both mutated.

If either Si or either S2 is not in order, Merge(S1,SZ) will not be in order, but it
nevertheless will be an interleuving of S1 and S2: if element X precedes element Y in Sl then
X will precede Y in Merge (Si ,S2), and similarly for X and Y in S2.

Sort (S) takes a comparison function Test and returns a sequence containing the same
elements as S, but in order as determined by Test; S is mutated.

Both Merge and Sort are stable: elements considered equal by Test (see the discussion
in 6.1.7) will remain in their original order.

Deletion and subst it ut ion

There are eight different operations for deleting elements from a sequence, all of which have
a generic parameter Test (X) or Test (X , Y) , which are Boolean valued functions on element
values X and Y. For example, Delete-If (S) returns a sequence consisting of the elements
E of S except those satisfying Test (E) = True, mutating S. Delete-Copy-If (S) does the
same thing while leaving S intact. See also Delete, DeleteJf-Not, Delete-Duplicates,
and the corresponding Copy versions.

Similarly, there are six generic subprograms for substituting a new element for some
of the elements in a sequence: Substlitute (New-Item, OldJtem, S) , Subst itute-If (New-
Item, s), Subst itute-If J o t (New-Item,S) , and the corresponding Copy versions.

6.1.2 Examining sequences

Basic queries

IsInd(S) returns the Boolean value True if S = Nil, False otherwise. Is,Not-End(S) is
the same as not Is-End(S) ; it is provided purely for convenience. Length(S) returns the
number of elements in S.

CHAPTER 6. SINGLYLINKED-LISTS PACKAGE

Counting

The remaining operations for examining sequences are generic, all having either Test (X) or
Test(X,Y) as a generic parameter. For example, Count, Count-If, and Count-If-Not are
Integer valued functions for counting the elements in a sequence satisfying or not satisfying
Test.

Equality and matching

Equal(S1 ,S2) returns true if S i and S2 contain the same elements in the same order, using
Test as the test for the element equality. Using "=It for Test one obtains the ordinary check
for equality of two sequences, but this function can be used to extend other equivalence
relations on elements to an equivalence relation on sequences.

A more general operation is the procedure Mismatch, which scans its two inputs in
pardel until the first position is found at which they disagree, again using Test as the test
for element equality. Mismatch sets its two output parameters to be the subsequences of its
inputs beginning at the disagreement position and going to the end. S1 and SZ are shared.
(One use of Mismatch is to implement Equal.)

Searching

There are a number of functions for searching a sequence. If S contains an element E
such that Test(1tem.E) is true, then Find(1tem.S) returns the sequence containing the
elements of S beginning with the leftmost such element; otherwise N i l is returned. S
is shared. FinLIf and F i n L I f J o t are related functions. Position, Position-If, and
P o s i t i o ~ I f J o t are similar, but return as an integer the position of the leftmost occurrence
of It em satisfying Test, or - 1 if there is none. Search(S1, S2) returns leftmost occurrence
in S2 of a subsequence that element-wise matches Si, using Test as the test for element-wise
equality; N i l is returned if there is no match.

The other operations for searching are all Boolean valued. Some(S) returns True if Test
is true of some element of S, false otherwise. Similarly, Every(S) checks if Test is true of
every element of S, Not-Every (S) checks if Test is false for some element, and Not-Any (S)
checks if Test is false for every element. All of these operations start with elements indexed
0,1,. . . and stop performing Test after the first element that determines the answer (e.g.,
if S is a sequence of integers 2, 3, 5, 7, 11, the operation is Some, and Test (X) checks for X
being odd, then Test is performed only on 2 and 3).

6.1.3 Computing with sequences

Procedural iteration

The functions and procedures in this category are generic subprograms for iterating over
a sequence, applying some given subprogram to each element. ForJach, for example, is
a procedure that takes a generic parameter called TheSrocedure; For-Each (S) computes
TheSrocedure(E) for each element E of S. ForEachZ takes two sequences and a procedure
with two arguments and applies the procedure to corresponding pairs of elements in the
sequences.

6.1. OVERVIEW 39

Mapping

Map(S) applies its generic argument F to each element of S and returns the results as a
sequence. F must be a function from the Element type to the Element type. Map mutates
S, while Map-Copy leaves it intact. Map2 and Map-Copy-2 are similar functions for application
of a function F of two arguments to corresponding pairs of elements of two sequences SI
and S2.

Reduct ion

Reduce applies a function of two arguments, F(X ,Y) , to reduce a sequence to a single value;
for example, if F is "+", Reduce(S) sums up the elements of S. It is also necessary to supply
Reduce with an element that is the identity for F; e.g., 0 in the case of "+" when the
elements are integers.

6.1.4 Exception handling

The exceptions that are raised by the subprograms in this package are renamings of those
defined in the package LinkehExcept ions; see the discussion in Section 3.1.

With a,ll the subprograms that have subprograms as generic formal parameters, such as
Test or TheSrocedure, there is a question of what happens when an unhandled exception
is raised by the actual subprogram to which the parameter is instantiated. In all cases, such
an exception would end the processing being performed; e.g., with procedure Foraach, if
an unhanded exception is raised during execution of TheSrocedure on some cell X in S ,
the following cells are not processed.

6.1.5 Notes on efficiency

All of the subprograms in this package have either constant or linear time and space ef-
ficiency, with the exception of Sort , Dele tedupl ica tes , and Delete-Copy-Duplicat es.
That is, the computing time and space required to obtain the the answer is a linear function
of the length of the input(s), or is a constant. In most cases, subprograms that do not have
"Copy" in their names use no space at all in the sense that no new cells are used in con-
structing sequences, since they reuse the cells in one or more of their arguments to represent
the result. The exceptions are Construct, Make-Sequence, Append, and Reverse-Append,
which do use new cells in representing all or part of the results they compute.

The computing time for Sor t is order n log n, where n is the length of its argument. This
is the maximum as well as average and minimum time for sorting (a merge-sort algorithm
is used).

In the case of DeleteDuplicates and Delete-CopyDuplicates, the computing time is
order n2, which can be very time consuming for long lists. In certain cases a faster algorithm
could be used; e.g., if the elements can be totally ordered (see Section 6.1.7) then it would
be faster to sort them and then eliminate the duplicates in one pass, for a total time of
order nlogn. This assumes that order is not important in the result. Another possibility
would be to use a hashing scheme, which could produce essentially linear time behavior.
Neither of these alternatives may be available, however, for cases when Test is not just an
equality test; e.g., see the example given in the subprogram description, in which Test is a
divisibility check.

40 CHAPTER 6. SINGLYJINKEDJISTS PACKAGE

6.1.6 Implementation notes

As most of these subprograms are implemented as instances or calls of subprograms in
Linlred-List-Algorithms, one should refer to that package in Chapter 7 for algorithmic
details. As with the algorithms in that package, there is no use of recursion and the inline
pragma plays an import ant role in achieving efficiency.

6.1.7 Orderings for Merge and Sort

A precise description of the kind of function that can be used for comparing values when
using the Merge and Sort subprograms can be given in terms of the notion of a total onier
rehtiora. The generic subprogram parameter Test must be either a total order relation
(e.g., " < @ I or ">") or the negation of a total order relation (e.g., ">=" or "<=")

The requirements of a total order relation 4 are:

1. For all X,Y, Z, if X 4 Y and Y 4 Z, then X 4 Z (Transitive law).

2. For all X,Y, exactly one of X 4 Y, Y 4 X, or X = Y holds (Trichotomy law).

In determining whether a proposed relation satisfies the trichotomy law, it is not necessary
to have a strict interpretation of "="; one can introduce a notion of equivalence and define
the total order relation on the equivalence classes thus defined. Or, looked at another way,
we consider X and Y to be equivalent if both X 4 Y and Y 4 X are false. For example, X
and Y might be records that have integer values in one field and the records are compared
using "<" on that field. Thus two records that have the same integer in that field would be
equivalent, but might not be equal because of having different values in other fields.

If Test is a total order relation or the negation of a total order relation, we can define
the notion of a sequence S being "in order as determined by Test" as follows: for any two
elements X and Y that are not equivalent (in the sense defined above), then Test(X, Y)
is true if and only if X precedes Y in S . (Thus "<" or la<= '* will produce ascending order,
while " > I t or ">=I1 will produce descending order.)

6.2 Package specification

The package specification is as follows:

with Linked-Exceptions;
generic

type ElementO is private;
type SequenceO is private;
Nil0 : SequenceO;
with function FirstO(S : SequenceO) return ElementO;
with function NextO(S : SequenceO) return SequenceO;
with function ConstructO(E : ElementO; S : SequenceO) return SequenceO;
with procedure Set,FirstO(S : SequenceO; E : ElementO);
with procedure Set-NextO(S1, S2 : SequenceO);
with procedure FreeO(S : SequenceO);

package Singly-Linked-Lists is

6.3. PACKAGE BODY

I-'

subtype Element is Elemento;
subtype Sequence is SequenceO;
Nil : Sequence renames NilO;

First ,Of ,Nil : exception
renames Linked-Exceptions . First -Of -Nil ;

Set,First,Of ,Nil : exception
renames Linked-Except ions. Set ,First -Of -Nil ;

Next ,Of ,Nil : except ion
renames Linked-Except ions. Next -Of -Nil ;

Set ,Next ,Of ,Nil : except ion
renames Linked-Except ions. Set ,Next-Of -Nil ;

Out,Of,Construct,Storage : exception
renames Linked-Except ions . Out -Of ,Construct ,St orage ;

{The subprogram specifications)

end Singly-Linked-Lists;

6.3 Package body

The package body is as follows:

with Linked-List ,Algorithms ;
package body Singly,Linked,Lists is

function Copy-Cell(S1, S2 : Sequence) return Sequence is
begin

return Construct (First (Si) , S2) ;
end Copy-Cell ;

pragma Inline(Copy,Cell) ;

package Algorithms is new Linked-List-Algorithms(Cel1 => Sequence,
Next => Next, Set-Next => Set-Next, Is-End => Is-End,
Copy-Cell => Copy-Cell);

generic
Item : Element;
with function Test(X, Y : Element) return Boolean;

function Make,Test(S : Sequence) return Boolean;

function Make,Test(S : Sequence) return Boolean is
begin

return Test (Item, First (S)) ;
end Make-Test ;

CHAPTER 6. SINGLYJIINKED-LISTS PACKAGE

pragma Inline(Make,Test);

generic
with function Test(X : Element) return Boolean;

function Make-Test-If (S : Sequence) return Boolean;

function Make-Test -If (S : Sequence) return Boolean is
begin

return Test (First (S)) ;
end Make-Test-If ;

pragma Inline(Make,Test,If);

generic
with function Test(X : Element) return Boolean;

function Make-Test ,If ,Not (S : Sequence) return Boolean;

function Make-Test-If ,Not (S : Sequence) return Boolean is
begin

return not Test (First (S)) ;
end Make-Test ,If ,Not ;

pragma Inline(Make,Test ,If ,Not) ;

generic
with function Test (X, Y : Element) return Boolean;

function Make-Test-Both(S1, S2 : Sequence) return Boolean;

function Make-Test-Both(S1, S2 : Sequence) return Boolean is
begin

return Test (First (Sl) , First (S2)) ;
end Make-Test ,Both ;

pragma Inline(Make,Test,Both);

{The subprogram bodies)

end Singly-Linked-Lists;

6.4 Definitions for the examples

The following definitions are referenced in the examples included in the subprogram de-
scriptions. (This is the skeleton of a test suite in which the examples are included.)

with System,Allocated,Singly,linked,lists;
package Integer-Linked-Lists is new

6.4. DEFINITIONS FOR THE EXAMPLES 43

Syst em,Allocated,Singly,Linked,Lists (Integer) ;

with Integer-Linked-Lists, Text-10, Examples-Help;
procedure Examples is
use Integer,Linked,Lists.Inner, Text-10, Examples-Help;
Flag : Boolean :+ True; -- used in Shuffle-Test
function Shuffle_Test(X, Y : Integer) return Boolean is

-- used in examples of Sort and Merge subprograms to
-- produce merge with every-other-one interleaving;
-- ignores X and Y

begin
Flag := not Flag;
return Flag;

end Shuffle-Test;

function Iota(N : Integer) return Sequence is
-- returns a sequence of the integers 0, 1, . . . , N - 1
Result : Sequence := Nil;

begin
for I in reverse 0 .. N - 1 loop

Result : = Construct (I, Result) ;
end loop;
return Result;

end Iota;

procedure Show-List (S : Sequence) is
-- prints the sequence S on a line beginning with --:
-- using Print-Integer from Examples-Help
procedure Show-List-Aux is new For-Each(Print-Integer);

begin
Put (It-- : It) ; Show,List,Aux(S) ; New-Line;

end Show-List ;

begin

{Examples from the subprograms)

end Examples;

CHAPTER 6. SINGLYLINKEDLISTS PACKAGE

6.5 Subprograms

6.5.1 Append

Specification

function Append(S1, S2 : Sequence)
return Sequence;

Description Returns a sequence containing all the elements of S1 followed by those of
S2. S2 is shared.

Time order nl

Space order nl

where nl = length(S 1)

Mutative? No

Shares? Yes

See also Concatenate, Concatenate-Copy

Examples

Show-List (Append(Iota(S), Iota(6))) ;
-- 0 1 2 3 4 0 1 2 3 4 5

~how~List(~ppend(Ni1, Iota(6)));
Ow 0 1 2 3 4 5

~hov,List (~ppend(Iota(S), Nil)) ; -- 0 1 2 3 4

Implementation

begin
return Algorithms.Append(S1, 5 2) ;

end Append;

6.5. SUBPROGRAMS

6.5.2 Butlast

Specificat ion

function Butlast(S : Sequence; N : Integer := 1)
return Sequence ;

Description Returns a sequence containing all of the elements of S except the last N
elements. S is mutated.

Time order n

Space 0

where n = length(S)

Mutative? Yes

Shares? No

See also Butlast-Copy, S ubseqeunce

Examples

show-~ist (Butlast (Iota(5))) ;
-- 0 1 2 3

show-List (Butlast (Iota(5) , 3)) ; -- 0 1

show-~ist (Butlast (Iota(S), 5)) ;
-0

Implementat ion

I : Integer := Length@) - N;
begin

i f I <= 0 then
return N i l ;

e l s i f N > 0 then
Set-Next (Nth-Rest (I - 1 , S) , Nil) ;

end i f ;
return S;

end Butlast;

6.5.3 Butlast-Copy

Specification

CHAPTER 6. SINGLYL.lNKED,L.lSTS PACKAGE

function Butlast-Copy(S : Sequence; N : Integer := 1)
return Sequence ;

Description Returns a sequence containing all of the elements of S except the last N
elements.

Time order n

Space n - N

where n = length(S)

Mutative? No

Shares? No

See also Butlast, Subsequence

Examples

Show-List (~utlast,Copy(Iota(S))) ;
-.- 0 1 2 3

Show,List(Butlast,Copy(Iota(5), 3));
-0 0 1
Show-List (Butlast,Copy(Iota(5), 5)) ;
0-

Implementat ion

begin
return Copy-First-N(S. Length@) - N);

end Butlast-Copy;

6.5. SUBPROGRAMS

6.5.4 Concatenate

Specification

function Concatenate(S1, S2 : Sequence)
return Sequence;

Description Returns a sequence containing all the elements of S1 followed by those of
S2. S1 is mutated and S2 is shared.

Time order nl

Space 0

where nl = length(S 1)

M utat he? Yes

Shares? Yes

See also Append, Concatenate-Copy

Examples

~how,List (Concatenate(Iota(5) , Iota(6))) ;
,, 0 1 2 3 4 0 1 2 3 4 5

~how,List (Concatenate(Ni1, Iota(6))) ; -- 0 1 2 3 4 5

show-~ist (~oncatenate(Iota(5) , Nil)) ;
ow 0 1 2 3 4

Implementation

begin
if Is,End(Si) then
return S2;

end if;
Set-Next (Last (Si) , S2) ;
return S1;

end Concat enat e ;

48 CHAPTER 6. SINGLYLINKEDLISTS PACKAGE

6.5.5 Concatenate-Copy

Specification '_1
function Concat enate-Copy (S 1, S2 : Sequence)

return Sequence;

Description Returns a sequence containing a l l the elements of S1 followed by those of

d

Time order nl + nz
Space order nl + 722 1

where nl = length(S1) and n2 = length(S2)

Mutative? No

Shares? No

See also Append, Concatenate

Implementat ion

begin
return Append(S1, Append(S2, Nil)) ;

end Concatenate-Copy;

6.5. SUBPROGRAMS

6.5.6 Construct

Specificat ion

function Construct (E : Element ; S : Sequence)
return Sequence renames ConstructO;

Description Returns the sequence whose first element is E and whose following elements
are those of S. S is shared.

Time constant

Space const ant

Mutative? No

Shares? Yes

Details This description is actually a requirement on ConstructO, a generic formal pa-
rameter of the package. May raise an exception, Out-Of-ConstructS torage. The
relations First(Construct(E,S)) = E and Next(Construct(E,S)) = S always hold un-
less an exception is raised.

See also First, Next, Set-First , Set-Next

CHAPTER 6. SINGLY-LINKED-LISTS PACKAGE

6.5.7 Copy-First-N

Specification

function Copy-First -N (S : Sequence ; N : Integer)
return Sequence;

Description Returns a copy of the first N elements of S.

Time order N

Space order N

Mutative? No

Shares? No

See also Butlast, Butlast-Copy, CopySequence

Implementation

begin
return Algorithms.Append,First,N(S, Nil, N);

end Copy-First-N ;

6.5. SUBPROGRAMS

6.5.8 CopySequence

Specificat ion

function Copy,Sequence(S : Sequence)
return Sequence ;

Description Returns a sequence containing the same elements as S, in the same order,
but using separate storage cells.

Time order n

Space order n

where n = length(S)

Mutative? No

Shares? No

See also Butlast, Butlast-Copy, Copy-First-N

Implementation

begin
return ~ppend(S, Nil) ;

end Copy-Sequence;

6.5.9 Count

Specification

CHAPTER 6. SINGLY-LINKED-LISTS PACKAGE

generic
with function Test(X, Y : Element) return Boolean;
function Count (Item : Element; S : Sequence)

return Integer;

Description Returns a non-negative integer equal to the number of elements E of S such
that Test(Item,E) is true.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

See also CountV, CountJf-Not, Find

Examples

declare
function Count ,When,Divides is

new Integer,Linked,Lists.Inner.Count(Test => Divides);
begin

Show,Integer(Count,When,Divides(3, Iota(10)));
-0 4
end;

Implementation

function Test-Aux is new Make-Test (Item, Test) ;
function Count-Aux is new Algorithms : Count (Test -Aux) ;

begin
return Count,Aux(S);

end Count;

6.5. SUBPROGRAMS

Specificat ion

generic
with function Test (X : Element) return Boolean;
function Count ,If (S : Sequence)

return Integer;

Description Returns a non-negative integer equal to the number of elements E of S such
that Test(E) is true.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

See also Count, Count-If-Not, Find, FindJf

Examples

declare
function Count-If ,Odd is new Count-If (Test => Odd) ;

begin
Show-Integer(Count ,If -Odd(Iota(S))) ; -- 4

end ;

Implementation

function Test ,Aux is new Make-Test ,If (Test) ;
function Count-Aux is new Algorithms.Count(Test-Aux);

begin
return Count ,Am (S) ;

end Count ,If ;

CHAPTER 6. SINGLYLINKEDLISTS PACKAGE

6.5.11 Count-IfiNot

Specification

generic
with function Test(X : Element) return Boolean;
function Count ,If ,Not (S : Sequence)

return Integer;

Description Returns a non-negative integer equal to the number of elements E of S such
that Test(E) is false.

Time order nrn

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

See also Count, CountJf, Find, FindJfDot

Examples

declare
function Count,If,Not,Odd is new Count,If,Not(Test => Odd);

begin
Show-Integer (Count ,If ,Not -Odd(Iota(S))) ; -- 5

end ;

Implementation

function Test-Aux is new Make-Test-If ,Not (Test) ;
function Count-Aux is new Algorithms.Count(Test,~ux);

begin
return Count,Aux(S) ;

end Count ,If ,Not ;

6.5. SUBPROGRAMS 55

6.5.12 Delete

Specification

generic
with function Test(X, Y : Element) return Boolean;
function Delete(1tem : Element ; S : Sequence)

return Sequence ;

Description Returns a sequence consisting of all the elements E of S except those for
which Test(Item,E) is true. S is mutated.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? Yes

Shares? No

See also Deletelf, DeleteJfDot

Examples

declare
function Delete-When-Divides

is new Integer,Liaked,Lists.Inner.Delete(Test => Divides);
begin

Show,List(Delete,When,Divides(3, Iota(15))); -- 1 2 4 5 7 8 1 0 1 1 1 3 14

end ;

Implementation

function Test-Aux is new Make,Test(Item, Test);
procedure Partition-Aux

is new Algorithms. Invert-Part it ion(Test ,Aux) ;
Temp-1, Temp-2: Sequence := Nil;

begin
Partition,Aux(S, Temp-1, Temp-2);
Free-Sequence (Temp-1) ;
return Invert (Temp-2) ;

end Delete;

CHAPTER 6. SINGLYLINKED-LISTS PACKAGE

6.5.13 Delete-Copy

Specification

generic
with function Test(X, Y : Element) return Boolean;
function Delete-Copy (Item : Element ; S : Sequence)

return Sequence;

Description Returns a sequence consisting of all the elements E of S except those for
which Test(Item,E) is true.

Time order nm

Space order n

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

See also Delete

Examples

declare
function Delete-Copy-When-Divides

is new Integer,Linked,Lists.Inner.Delete,Copy(Test => Divides);
begin

Show,List(Delete,Copy~Uhen,Divides(3, Iota(15)));
,- 1 2 4 5 7 8 1 0 1 1 1 3 1 4

end ;

Implementation

function Test-Aux is new Make,Test(Item, Test);
function Delete-Copy-Aux

is new Algorithms.Delete,Copy,Append(Test,Aux);
begin

return Delete,Copy,Aux(S , Nil) ;
end Delete-Copy;

6.5. SUBPROGRAMS

Specification

generic
with function Test(X, Y : Element) return Boolean;
function Delete,Copy,Duplicates (S : Sequence)

return Sequence ;

Description Returns a sequence of the elements of S but with only one occurrence of
each, using Test as the test for equality.

Time order n2m

Space order n

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

Details The left-most occurrence of each duplicated item is retained.

See also Delete-Duplicates

Examples

declare
function Delete,Copy,Duplicates,When,Divides

is new Delete,Copy~Duplicates(Test=>Divides);
begin

Show-List (Delete-Copy-Duplicates-When-Divides(Next (Next (Iota(20))))) ;
-- 2 3 5 7 11 13 17 19
end ;

Implementation

function Test-Awt is new Make,Test,Both(Test);
function Delete-Copy-Aux

is new Algorithms. Delete,Copy,Duplicates,Append(Test -Aux) ;
begin

return Delete,Copy,Aux(S , Nil) ;
end Delete,Copy,Duplicates;

CHAPTER 6. SINGLYLINKEDLISTS PACKAGE

6.5.15 Delete-Copy J f

Specification

generic
with function Test (X : Element) return Boolean;
function Delete-Copy-If (S : Sequence)

return Sequence;

Description Returns a sequence consisting of all the elements E of S except those for
which Test(E) is true.

Time order nm

Space order n

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

See also DeleteJf, Delete-Copy J f J o t

Examples

declare
function Delete,Copy,If,Odd is new Delete-Copy-If (Test => Odd) ;

begin
Show,List(Delete,Copy,If,Odd(Iota(10)));

Ow 0 2 4 6 8

end ;

Implementation

function Test-Aux is new Make,Test,If(Test);
function Delete-Copy-Aux

is new Algorithms. Delete,Copy,~ppend(Test -Am) ;
begin

return Delete,Copy,Aux(S, Nil) ;
end Delete-Copy-If;

6.5. SUBPROGRAMS

6.5.16 Delete-Copy JflVot

Specification

generic
with function Test(X : Element) return Boolean;
function Delete-Copy-If _Not (S : Sequence)

return Sequence;

Description Returns a sequence consisting of all the elements E of S except those for
which Test(E) is false.

Time order nm

Space order n

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? Yes

See also D e l e t e m o t , Delete-Copylf

Examples

declare
function Delete-Copy-If-Not-Odd is new Delete-Copy-If-Not(Test => Odd);

begin
Shov_List(Delete_Copy_If~Not_Odd(Iota(10)));

-- 1 3 5 7 9

end;

Implementation

function Test-Aux is new Make,Test,If,Not(Test);
function Delete-Copy-Aux

is new Algorithms. Delete,Copy,Append(Test -Am) ;
begin

return Delete,Copy,Aux (S , Nil) ;
end Delete,Copy,If,Not;

6.5.17 DeleteDuplicates

Specificat ion

CHAPTER 6. SINGLYAINKED-LISTS PACKAGE

generic
with function Test(X, Y : Element) return Boolean;
function Delete-Duplicates (S : Sequence)

return Sequence;

Description Returns a sequence of the elements of S but with only one occurrence of
each, using Test as the test for equality. S is mutated.

Time order n2m

Space 0

where n = length(S) and m = average(time for Test)

Mutative? Yes

Shares? No

Details The left-most occurrence of each duplicated item is retained.

See also Delete-Copy-Duplicates

Examples

declare
function Delete,Duplicates,When,Divides is

new Delete,Duplicates(Test=>Divides);
begin

Show,List(Delete,Duplicates~~en,Divides(Next(Next(Iota(20)))));
,- 2 3 5 7 11 13 17 19

end ;

Implementation

function Test-Aux is new Make,Test,Both(Test);
function Delet e,Aux is

new Algorithms.Delete~Duplicates(Te~t~Aux, Free);
begin

return Delete-Awc (S) ;
end Delete-Duplicates ;

6.5. SUBPROGRAMS

Specificat ion

generic
with function Test (X : Element) return Boolean;
function Delet e,If (S : Sequence)

re turn Sequence;

Description Returns a sequence consisting of all the elements E of S except those for
which Test(E) is true.

Time order nrn

Space order n

where n = length(S) and m = average(time for Test)

Mutative? Yes

Shares? No

See also DeleteXopy J f , DeleteJfJJot

Examples

declare
function Delete-If-Odd is new Delete,If(Test => Odd);

begin
Show,List(Delete,If~Odd(Iota(10))); -- 0 2 4 6 8

end ;

Implementation

function Test-Aux is new Make-Test-If (Test) ;
procedure Part it ion,Aux

is new ~ l g o r i t h m s . Invert ,Part it ion(Test ,Aux) ;
Temp-1 , Temp-2 : Sequence : = N i l ;

begin
Partition,Aux(S, Temp-1 , Temp-2) ;
Free-Sequence (Temp-1) ;
re turn Invert (Temp-2) ;

end Delete-If;

6.5.19 Delete Jfmot

Specificat ion

CHAPTER 6. SINGLYJIINKEDJIISTS PACKAGE

generic
with function Test (X : Element) return Boolean;
function Delete-If ,Not (S : Sequence)

return Sequence ;

Description Returns a sequence consisting of all the elements E of S except those for
which Test(E) is false. S is mutated.

Time order n m

Space order n

where n = length(S) and m = average(time for Test)

Mutative? Yes

Shares? No

See also Delete-CopylfJot , Deletelf

Examples

declare
function Delete,If,Not,Odd is new Delete,If,Not(Test => Odd);

begin
Show,List(Delete,If,Not,Odd(Iota(10))); -- 1 3 5 7 9

end;

Implementation

function Test-Aux is new Make,Test,If(Test);
procedure Part it ion-Aux is

new Algorithms.Invert,Partition(Test,Aux);
Temp-1, Temp-2: Sequence := Nil;

begin
partition-Aux(S, Temp-1, Temp-2);
Free-Sequence(Temp-2) ;
return Invert (Temp, 1) ;

end Delete-If-Not;

6.5. SUBPROGRAMS 63

6.5.20 Equal

Specificat ion

generic
with function Test(X, Y : Element) return Boolean;
function Equal(S1, S2 : Sequence)

return Boolean;

Description Returns true if S1 and S2 contain the same elements in the same order,
using Test as the test for element equality.

Time order m min(length(Sl), length(S2))

Space 0

where m = average(time for Test)

Mutative? No

Shares? No

See also Mismatch

Examples

declare
function Equal-Equal is new Equal(Test => "=") ;

begin
Show~Boolean(Equal,Equal(Iota(10),Iota(10~));

--True
Show,Boolean(Equal,Equal(Iota(10) ,Iota(ll))) ;

--False
Show~Boolean(Equa1-Equal (Invert (Iota(10)) , Iota(10))) ;

--False
Show,Boolean(Equal~Equal(Iota(1O),Nil));

--False
Show,Boolean(Equal,Equal(Nil,Iota(10)));

--False
Show~Boolean(Equal,Equal (Nil, Nil)) ;

--True
end ;

Implementation

function Test-Aux is new Make,Test,Both(Test);
function Equal-Aux is new Algorithms.~qual(Test,~ux);

begin
return Equal-Aux(S1, S2);

end Equal;

CHAPTER 6. SINGLYLINKED-LISTS PACKAGE

6.5.21 Every

Specification

generic
with function Test(X : Element) return Boolean;
function Every@ : Sequence)

return Boolean;

Description Returns true if Test is true of every element of S, false otherwise. Elements
numbered 0, 1, 2, ... are tried in order.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

Details Returns true if S is Nil.

See also NotSvery, Some

Examples

declare
function Every-Odd is new Every(Test => Odd);
function Delete,If,Not,Odd is new Delete,If,Not(Test => Odd);

begin
Show,Boolean(Every,Odd(Iota(10)));

--False
Show,Boole9n(Every,Odd(Delete,If,Not~Odd(Iota(10))));

--True
end ;

Implementat ion

function Test-Aux is new Make,Test,If(Test);
function Every-Aux is new Algorithms.Every(Test,Aux);

begin
return Every,Aux(S) ;

end Every;

6.5. SUBPROGRAMS

6.5.22 Find

Specificat ion

generic
with function Test(X, Y : Element) return Boolean;
function Find(1tem : Element ; S : Sequence)

return Sequence;

Description If S contains an element E such that Test(Item,E) is true, then the se-
quence containing elements of S beginning with the leftmost such element is returned;
otherwise Nil is returned.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? Yes

See also FindJt, FindJf-Not, Some, Search

Examples

declare
function Find-When-Greater is new Find(Test => 11<11) ;

begin
Show-List (Find-When-Greater (9, Iota(2O))) ;

-- 10 11 12 13 14 15 16 17 18 19

end ;

Implementation

function Test-Aux is new Make,Test(Item, Test);
function Find-Aux is new Algorithms.Find(Test-A=);

begin
return Find,Awt(S) ;

end Find;

CHAPTER 6. SINGLYJIINKEDLISTS PACKAGE

6,5.23 Find J f

Specificat ion

generic
with function Test (X : Element) return Boolean;
function Find-If (S : Sequence)

return Sequence;

Description If S contains an element E such that Test(E) is true, then a sequence con-
taining the elements of S beginning with the leftmost such element is returned; oth-
erwise Nil is returned.

Time order nm

Space 0

where n = length(S) and rn = average(time for Test)

Mutative? No

Shares? Yes

See also Find, FindJfJot , Some, Search

Examples

declare
function Find-If ,Great er-Than-7

is new Find,If(Test => Greater-Than-7);
begin

Show-List (Find-If ,Greater-Than-7(Iota (15))) ; -- 8 9 10 11 12 13 14

end ;

Implementat ion

function Test-Aux is new Make,Test,If(Test);
function Find-Aux is new Algorithms.Find(Test,Aux);

begin
return Find-Aw (S) ;

end Find-If;

6.5. SUBPROGRAMS

6.5.24 Find JfiNot

Specificat ion

generic
with function Test (X : Element) return Boolean;
function Find-If -Not (S : Sequence)

return Sequence ;

Description If S contains an element E such that Test(E) is false, then a sequence
containing the elements of S beginning with the leftmost such element is returned;
otherwise Nil is returned.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? Yes

See also Find, FindJf, Some, Search

Examples

declare
function Find-If-Not-Greater-Than-7

is new Find,If,Not(Test => Greater-Than-7) ;
begin

Show~List(Find~If~Not~Greater~Than~7(Invert(Iota (15))));
0 - 7 6 5 4 3 2 1 0
end ;

Implementation

function Test-Am is new ~ake,~est,~f,~ot(~est);
function Find-Aux is new Algorithms.Find(Test,Aux);

begin
return Find,Aux(S) ;

end Find-If ,Not ;

CHAPTER 6. SINGLY-LINKEDJISTS PACKAGE

6.5.25 First

Specificat ion

function F i r s t (S : Sequence)
return Element renames FirstO;

Description Returns the first element of S

Time constant

Space 0

Mutative? No

Shares? No

Details This description is actudy a requirement on FintO, a generic formal parameter
of the package. Raises an exception, First-OfJil, if S = Nil.

See also SetiFirst, Next

6.5. SUBPROGRAMS

6.5.26 Forxach

Specificat ion

generic
with procedure The,Procedure(X : Element);
procedure For-Each(S : Sequence) ;

Description Applies The-Procedure to each element of S.

Time order np

Space 0

where n = length(S) and p = average(time for The-Procedure)

Mutative? No

Shares? No

Details S : Sequence

See also For-Each-2, Map

Implementation

procedure The,Procedure,Aux(X : Sequence) is
begin

The,Procedure(First(X));
end The,Procedure,Aux;
pragma Inline(The,Procedure,Aux);
procedure For-Each-Aux

is new Algorithms.For,Each,Cell(The~Procedure,Aux);
begin

For,Each,Aux(S);
end For-Each ;

CHAPTER 6. SINGLYLINKEDJISTS PACKAGE

6.5.27 Foraach-Cell

Specification

generic
with procedure The,Procedure(X : Sequence);
procedure For,Each,Cell(S : Sequence);

Description Applies The-Procedure to each storage cell of S.

Time order np

Space 0

where n = length($) and p = average(time for TheSrocedure)

Mutative? No

Shares? No

See also ForXach, Map

Implementation

procedure For-Each-Aux
is new ~lgorithms.For,Each,Cell(The~Procedure);

begin
For,Each,Aux(S);

end For-Each-Cell;

6.5. SUBPROGRAMS

Specificat ion

generic
with procedure The-Procedure (X , Y : Element) ;

procedure For_Each_2(Si, S2 : Sequence) ;

Description Applies Theprocedure to pairs of elements of S1 and S2 in the same posi-
tion.

Time order np

Space order n

where p = average(time for Theprocedure) , n = min(nl,n2), nl = length(S1) ,
n2 = length(S2)

Mutative? No

Shares? No

Details Stops when the end of either S1 or S2 is reached.

See also For-Each, For-Each-Cell-2, Map

Implementat ion

procedure The-Procedure-Aux(X, Y : Sequence) is
begin

The,Procedure(First (X) , First (Y)) ;
end The,Procedure,Aux;
pragma Inline(The,Procedure,Aux);
procedure For-Each-Aux

is new Algorithms. For-Each-Cell-2 (The-Procedure-Aux) ;
begin

For,Each,Awt(Sl,S2);
end For-Each-2 ;

CHAPTER 6. SINGLYLINKEB-LISTS PACKAGE

6.5.29 For-Each-Cell2

Specification

generic
with procedure The,Procedure(X, Y : Sequence);

procedure For,Each,Cell,2(Si9 S2 : Sequence);

Description Applies Theprocedure to pairs of cells of S1 and S2 in the same position.

Time order np

Space order n

where p = average(time for The-Procedure) , n = min(nl,nz), nl = length(S1) ,
722 = length(S2)

Mutative? No

Shares? No

Details Stops when the end of either S1 or S2 is reached.

See also For-Each-Cell, ForSach-2, Map

Implementation

procedure For-Each-Aux
is new ~lgorithm~.For,Each,Cell,2(The~Procedure);

begin
For-Each-Aux (S1 , S2) ;

end For-Each-Cell-2 ;

6.5. SUBPROGRAMS

6.5.30 Free

Specificat ion

procedure Free@ : Sequence) renames FreeO;

Description Causes the first cell of S to be made available for reuse. S is mutated.

Time constant

Space 0 (makes space available)

where n = length(S)

Mutative? Yes

Shares? No

See also FreeSequence

CHAPTER 6. SINGLYLINKED-LISTS PACKAGE

6.5.31 FreeSequence

Specificat ion

procedure Free,Sequence(S : Sequence);

Description Causes the storage cells occupied by S to be made available for reuse. No
further reference should be made to S or to any sequence that shares with S.

Time order n

Space 0 (makes space available)

where n = length(S)

Mutative? Yes

Shares? No

See also n e e

Implementation

procedure Free-Sequence-Aux is new Algorithms.For,Each,Cell(Free);
begin

Free,Sequence,Aux(S);
end Free-Sequence;

6.5. SUBPROGRAMS

6.5.32 Invert

Specification

function Invert (S : Sequence)
return Sequence;

Description Returns a sequence containing the same elements as S but in reverse order.
S is mutated.

Time order n

Space 0

where n = length(S)

Mutative? Yes

Shares? No

See also Invert-Copy, ReverseAppend, Reverse-Concatenate

Examples

Show-List (Invert (Iota(6))) ; -- 5 4 3 2 1 0

Implementation

begin
return Reverse,Concatenate(S, Nil) ;

end Invert ;

CHAPTER 6. SINGLY-LINKED-LISTS PACKAGE

6.5.33 Invert-Copy

Specificat ion

function Invert,Copy(S : Sequence)
return Sequence ;

Description Returns a new sequence containing the same elements as S but in reverse
order.

Time order n

Space order n

where n = length(S)

Mutative? No

Shares? No

See also Invert, ReverseAppend, Reverse-Concatenate

Examples

Implementation

begin
return ~everse,Append(S, Nil) ;

end Invert-Copy;

6.5. SUBPROGRAMS

6.5.34 IsiEnd

Specificat ion

function Is-End (S : Sequence)
return Boolean;

Description Returns true if S is the Nil sequence, false otherwise.

Time constant

Space 0

Mutative? No

Shares? No

See also Is-Notsnd

Implementat ion

begin
return S = Nil;

end Is-End;

CHAPTER 6. SINGLY-LINKED-LETS PACKAGE

6.5.35 Is-Not-End

Specification

function Is,Not,End(S : Sequence)
return Boolean;

Description Returns false if S is the Nil sequence, true otherwise.

Time constant

Space 0

Mutative? No

Shares? No

See also Is-End

Implementation

begin
return not Is,End(S) ;

end Is-Not ,End ;

6.5. SUBPROGRAMS

6.5.36 Last

Specification

function Last (S : Sequence)
return Sequence;

Description Returns the sequence containing just the last element of S.

Time order n

Space 0

where n = length(S)

Mutative? No

Shares? Yes

Details Raises an exception, Next-Of-Nil, if S is Nil.

See also First

Examples

show-List (Last (Iota(6))) ;
-- 5

Implementation

begin
return Algorithms. Last (S) ;

end Last;

SO CHAPTER 6. SINGLY-LINKED-LISTS PACKAGE

6.5.37 Length

Specificat ion

function Length (S : Sequence)
return Integer;

Description The number of elements in S is returned as a non-negative integer.

Time order n

Space 0

where n = length(S)

Mutative? No

Shares? No

See also

Implementation

begin
return ~lgorithms.Length(S);

end Length;

6.5. SUBPROGRAMS

6.5.38 Makesequence

Specification

function Make-Sequence(Size : Integer; Initial : Element)
return Sequence ;

Description Returns a sequence of length Size in which each element has the value of
Initial.

Time order Size

Space order Size

Mutative? No

Shares? No

See also

Examples

Show-List (Make-Sequence(5, 9)) ; -- 9 9 9 9 9

Implementation

Result : Sequence := Nil;
I : Integer := Size;

begin
while I > 0 loop
Result := Construct(Initia1, Result);
I := I - 1;

end loop;
return Result ;

end Make-Sequence;

6.5.39 Map

Specificat ion

CHAPTER 6. SINGLY-LINKED-LISTS PACKAGE

generic
with function F(E : Element) return Element;
function Map (S : Sequence)

return Sequence;

Description Returns a sequence consisting of the results of applying F to each element
of S. S is mutated.

Time order nf

Space order n

where n = length(S) and f = average(time for F)

Mutative? Yes

Shares? No

See also Map-Copy, Map-2, For-Each

Examples

declare
function Map-Square is new Map(F => Square);

begin
Show,List(Map,Square(Iota(S)));

-- 0 1 4 9 1 6

end ;

Implementation

procedure The,Procedure,Aux(S : Sequence) is
begin

Set,First(S, F(First(S)));
end The-Procedure-Aux;
pragma Inline(The,Procedure,Aux);
procedure Map-Aux

is new Algorithms.For,Each~Cell(The,Procedure,Aux);
begin

Map-Aux (S) ;
return S;

end Map;

6.5. SUBPROGRAMS

Specificat ion

generic
with function F(X, Y : Element) return Element;
function Map_2(Sl, S2 : Sequence)

return Sequence;

Description Returns a sequence consisting of the results of applying F to corresponding
elements of S1 and S2. S1 is mutated.

Time order nf

Space order n

where f = average(time for F) , n = min(nl, n2), nl = length(S1) , n2 = length(S2)

Mutative? Yes

Shares? No

Details Let Xo, XI, . . . , X,, be the elements of S 1 and Yo, Yl , . . . , Y,, be those of S2.
The sequence returned by Map-2 consists of F(Xo,Yo), F(X1 ,Yi), . . ., F(Xn-1 ,Yn-l),
where n = min(nl, nz).

See also Map, Map-Copy-2, For-Each

Examples

declare
function Map-2,Times is new Map,2(F => "*'I) ;

begin
show-List (Map-2,Times (Iota(5) , 1nvert (1ota(5)))) ;

,- 0 3 4 3 0

end ;

Implementat ion

procedure The-Procedure-Aux(S1, S2 : Sequence) is
begin

Set-First (S1, F(First (S1) , First(S2))) ;
end The-Procedure-Aux;
pragma Inline(The,Procedure,Aux);
procedure Map-Aux

is new Algorithms.For,Each~Cell,2(The,Procedure~Aux);
begin

Map-Aux (S1, S2) ;
return S1;

end Map-2;

CHAPTER 6. SINGLY-LINKED-LISTS PACKAGE

6.5.41 Map-Copy

Specification

generic
with function F(E : Element) return Element;
function Map-Copy (S : Sequence)

re turn Sequence;

Description Returns a sequence consisting of the results of applying F to each element
of S.

Time order nf

Space order n

where n = length(S) and f = average(time for F)

Mutative? No

Shares? No

See also Map, ForIach

Examples

declare
function Map-Copy-Square is new Map,Copy(F => Square);

begin
Show-List (Map-Copy-Square (Iota(5))) ;

-- 0 1 4 9 1 6

end ;

Implementat ion

function Make-Cell(S1, S2 : Sequence) re turn Sequence is
begin

re turn Construct (F (F i r s t (Sl)) , S2) ;
end Make-Cell ;
pragma Inl ine (Make-Cell) ;
function Map-Copy-Aux

is new Algorithms. Map-Copy-Append(Mak8-Cell) ;
begin

re turn Map-Copy-Aux (S, Nil) ;
end Map-Copy ;

6.5. SUBPROGRAMS

6.5.42 Map-Copy2

Specification

generic
with function F(X, Y : Element) return Element;
function Map-Copy-2 (S1, S2 : Sequence)

return Sequence;

Description Returns a sequence consisting of the results of applying F to corresponding
elements of S1 and S2.

Time order nf

Space order n

where f = average(time for F) , n = min(nl,n2), nl = length(S1) , n2 = length(S2)

Mutative? No

Shares? No

Details Let Xo, XI , . . . , Xn, -1 be the elements of S1 and Yo, Yl, . . . , Yn2-1 be those
of S2. The sequence returned by Map-Copy2 consists of F(Xo,Yo), F(X1 ,K), . . .,
F(Xn-1 ,Yn-l), where n = min(nl, n2).

See also Map-2

Examples

declare
function Map-Copy-?-Times is new Map-Copy-2 (F => "*'I) ;

begin
~how~List(Map~Copy~2~Times(Iota(5), Invert(Iota(5)))); -- 0 3 4 3 0

end ;

Implementation

function Make-Cell(S1, S2, S3 : Sequence) return Sequence is
begin

return Construct (F(First 611, First (S2)), 53) ;
end Make-Cell;
pragma Inline (Make-Cell) ;
function Map-Copy-Aux

is new Algorithms. Map-~opy_2-~ppend(Make~Cell) ;
begin

return Map-Copy-Aux(S1, S2, Nil) ;
end Map-Copy-2;

CHAPTER 6. SINGLY-LINKED-LISTS PACKAGE

6.5.43 Merge

Specification

generic
with function Test (X, Y :Element) return Boolean;
function Merge (S1 , S2 : Sequence)

return Sequence;

Description Returns a sequence containing the same elements as S1 and S2, interleaved.
If S1 and S2 are in order as determined by Test, then the result will be also. Both S1
and S2 are mutated.

Time order (nl + n2)m

Space order nl + n2

where nl = length(S1) , n* = length(S2) , and m = average(time for Test)

Mutative? Yes

Shares? No

Details By L'interleaved" is meant that if X precedes Y in S1 then X will precede Y in
Merge(Sl,S2) and similarly for X and Y in S2 (even if S1 or S2 is not in order). The
property of stability also holds. See Section 6.1.7 for discussion of the restrictions on
Test and definition of "in order as determined by Test."

See also Sort, Concatenate

Implementation

function Test-Aux is new Make,Test,Both(Test);
function Merge-Aux is new Algorithms. Merge (Test-Aux) ;

begin
return ~erge-Aux(S1, S2);

end Merge;

6.5. SUBPROGRAMS 87

6.5.44 Mismatch

Specification

generic
with function Test(X, Y : Element) return Boolean;
procedure Mismatch(S1, S2 : in Sequence; 53, S4 : out Sequence) ;

Description S1 and S2 are scanned in parallel until the first position is found at which
they disagree, using Test as the test for element equality. S3 and S4 are set to be the
subsequences of S1 and S2, respectively, beginning at this disagreement position and
going to the end. S1 and S2 are shared.

Time order min(nl, nz)m

Space 0

where nl = length(S1) and n2 = length(S2) and m = average(time for Test)

Mutative? No

Shares? Yes

Details S3 and S4 are both set to Nil if S1 and S2 agree entirely.

See also Equal

Examples

declare
Temp-1, Temp-2 : Sequence;
procedure Mismatch-Equal is new Mismatch(Test => "=I1) ;

begin
 is match-Equal(Iota(10) , Iota(lO), Temp-1, Temp-2) ;

Show-List (Temp-1) ; Show-List (Temp-2) ; --
--

~ismatch~Equal(Iota(1O) ,Iota(ll), Temp-1, Temp-2) ;
Show-List (Temp-1) ; Show-List (Temp-2) ;

--
-- 10

 is match-Equal(1nvert (Iota(10)) ,Iota(lO) Temp-1, Temp-2) ;
show-List (Temp-1) ; show-List (~emp-2) ; -- 9 8 7 6 5 4 3 2 1 0

-- 0 1 2 3 4 5 6 7 8 9

 is match-Equal (Iota(10) ,Nil, Temp-1, ~emp-2) ;
Show-List (Temp-1) ; Show-List (Temp-2) ;

-- 0 1 2 3 4 5 6 7 8 9
--

 is match-Equal (Nil, Iota(l0) , Temp-1, Temp-2) ;
show-List (Temp-1) ; Show-List (Temp-2) ;

CHAPTER 6. SINGLY-LINKED-LISTS PACKAGE

--
--
end ;

Implementation

function Test-Aux is new Make-~est-Both(Test);
procedure Mismatch-Aux is new ~lgorithms.~ismatch(Test~~ux);

begin
Mismat ch,Aux (S1 , S2, S3, S4) ;

end Mismatch ;

6.5. SUBPROGRAMS

6.5.45 Next

Specification

function Next (S : Sequence)
return Sequence renames NextO;

Description Returns the sequence consisting of all the elements of S, except the first. S
is shared.

Time constant

Space 0

Mutative? No

Shares? Yes

Details This description is actually a requirement on NextO, a generic formal parameter
of the package. Raises an exception, Next-OfJil, if S is Nil.

See also Set-Next, First

CHAPTER 6. SINGLY-LINKED-LISTS PACKAGE

6.5.46 Not-Any

Specification

generic
with function Test (X : Element) return Boolean;
function Not-Any(S : Sequence)

return Boolean;

Description Returns true if Test is false of every element of S, false otherwise. Elements
numbered 0, 1, 2, ... are tried in order.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

Details Returns true if S is Nil.

See also Every, Some, Not-Every

Examples

declare
function Not-Any-Odd is new Not,Any(Test => Odd);
function Delete-If ,Odd is new Delete-If (Test => Odd) ;

begin
Show,Boolean(Not,Any~Odd(Iota(10)));

--False
~how,Boolean(Not,Any~0dd(Delete~If~Odd(Iota(10))));

--True
end ;

Implementation

function Test-Aux is new Make-Test-If (Test) ;
function Not-Any-Aux is new Algorithms.Not,Any(Test~Aux);

begin
return Not ,Any,Aux (S) ;

end Not-Any;

6.5. SUBPROGRAMS

6.5.47 Not-Every

Specification

generic
with function Test(X : Element) return Boolean;
function Not ,Every (S : Sequence)

return Boolean;

Description Returns true if Test is false of some element of S, false otherwise. Elements
numbered 0, 1, 2, ... are tried in order.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

Details Returns false if S is Nil.

See also Every, Some

Examples

declare
function Not-Every-Odd is new Not_Every(Test => Odd);
function Delete-If -Not -Odd is new Delete-If -Not (Test => Odd) ;

begin
Show~Boolean(Not,Every~Odd(Iota(iO))) ;

--True
Show~Boolean(Not~Every~Odd(Delete~If_Not~Odd(Iota(10))));

--False
end ;

Implementation

function Test-Aux is new Make,Test,If(Test);
function Not-Every-Aux is new Algorithms.Not~Every(Test~Aux);

begin
return Not ,Every,Aux(S) ;

end Not-Every;

92 CHAPTER 6. SINGLY-LINKED-LISTS PACKAGE

6.5.48 Nth

Specification

function Nth(N : Integer; S : Sequence)
return Element ;

Description Returns the N-th element of S.

Time order N

Space 0

Mutative? No

Shares? No

Details The numbering of elements begins with 0, hence Nth(0,S) is the same as First(S)
and Nth(Length(S)-1,s) is the same as First(Last(S)). An exception, Next-OfNil, is
raised if N > Length(S) - 1. If N < 0, First(S) is returned.

See also Nth-Rest

Implementation

begin
return First (Nth-Rest (N, S)) ;

end Nth;

6.5. SUBPROGRAMS

6.5.49 NthJLest

Specification

function Nth-Rest(N : Integer; S : Sequence)
return Sequence ;

Description Returns a sequence containing the elements of S numbered N, N+1, ...,
Length(S)- 1.

Time order N

Space order N

Mutative? No

Shares? Yes

Details The numbering of elements begins with 0, hence NthJtest(0,S) is the same as
S and Nth-Rest(Length(S)-1,s) is the same as Last(S). An exception, Next-Of-Nil, is
raised if N > Length(S) - 1. If N < 0, S is returned.

See also Nth, Butlast, Butlast-Copy

Implementation

begin
return Algorithms.Nth,Rest(N, S) ;

end Nth-Rest;

CHAPTER 6. SINGLY-LINKED-LISTS PACKAGE

6.5.50 Position

Specificat ion

generic
with function Test(X, Y : Element) return Boolean;
function Position(1tem : Element; S : Sequence)

return Integer;

Description If S contains an element E such that Test(Item,E) is true, then the index
of the leftmost such item is returned; otherwise -1 is returned.

Time order nrn

Space 0

where n = length(S) and rn = average(time for Test)

Mutative? No

Shares? No

Details The index of the first item is 0, of the last is length(S)-1.

See also PositionJf, PositionXNot, Find, Some, Search

Examples

declare
function Position-When-Greater is new Position(Test => It<It);

begin

show-~nteger (position-When-Greater (3, Iota(7))) ;
-- 4
end ;

Implementation

function Test-Aux is new Make,Test(Item, Test);
function Position-Aux is new Algorithms.Position(Test,Aux);

begin
return Position-Aux (S) ;

end Posit ion;

6.5. SUBPROGRAMS

6.5.51 PositionJf

Specification

generic
with function Test(X : Element) return Boolean;
function Position-If (S : Sequence)

return Integer;

Description If S contains an element E such that Test(E) is true, then the index of the
leftmost such item is returned; otherwise -1 is returned.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

Details The index of the first item is 0, of the last is length(S)-1.

See also PositionJf-Not, Position, Find, Some, Search

Examples

declare
function Position-If ,Greater-Than-7 is

new Position,If(Test => Greater-Than-7);
begin
show-~nteger (Position-If -Greater-Than-7 (Iota(10))) ; -- 8

end ;

Implementation

function Test-Aux is new ~ake,~est,If(Test);
function Position-Aux is new ~lgorithms.~osition(~est~~ux);

begin
return Position,Aux(S) ;

end Posit ion-If ;

CHAPTER 6. SINGLY-LINKED-LISTS PACKAGE

6.5.52 Position Jf,,Not

Specification

generic
with function Test (X : Element) return Boolean;
function Position-If ,Not (S : Sequence)

return Integer;

Description If S contains an element E such that Test(E) is false, then the index of the
leftmost such item is returned; otherwise -1 is returned.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

Details The index of the first item is 0, of the last is length(S)-1.

See also Position Jf-Not , Position, Find, Some, Search

Examples

declare
function Position,If,Not,Greater-Than-7 is

new Position,If,Not(Test=>Greater-Than-7);
begin

~how,Integer(Position,If ,Not,Creater-Than-7 (Invert (Iota(10) 1)) ;
-- 2
end ;

Implementation

function Test-Aux is new ~ake,~est,~f,Not(Test);
function Position-Aux is new Algorithms.Position(Test,Aux);

begin
return Position,Aux(S) ;

end Position-If-Not;

6.5. SUBPROGRAMS

6.5.53 Reduce

Specificat ion

generic
Identity : Element;
with function F(X, Y : Element) return Element;
function Reduce (S : Sequence)

return Element;

Description Combines all the elements of S using F; for example, using "+" for F and
0 for Identity one can add up a sequence of Integers.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

See also For-Each, Map

Examples

declare
function Reduce-Times is new Reduce(1dentity => 1, F => "*");

function Reduce-Plus is new Reduce(1dentity => 0, F => "+I1) ;
begin

Show,Integer(Reduce,Times(Next(Iota(5))));
0- 24

Show-Integer (Reduce-Plus (Iota(100))) ;
-- 4950

end ;

Implementation

function F,Aux(X : Element; S : Sequence) return Element is
begin

return F (X, First (S)) ;
end F-Aux;
pragma Inline(F,Aux);
function Reduce-Aux

is new Algorithms. Accumulate (Element, F-Aux) ;
begin

if Is,End(S) then
return Identity ;

end if;
return Reduce-Aux (Next (S) , First (S)) ;

end Reduce;

CHAPTER 6. SINGLY-LINKED-LISTS PACKAGE

6.5.54 ReverseAppend

Specification

function Reverse-Append(S1, S2 : Sequence)
return Sequence;

Description Returns a sequence consisting of the elements of S1, in reverse order, fol-
lowed by those of S2 in order. S2 is shared.

Time order nl

Space order nl

where nl = length(S1)

Mutative? No

Shares? Yes

See also Reverse-Concatenate

Implementation

begin
return Algorithms.Reverse,Append(Sl, S2) ;

end Reverse-Append;

6.5. SUBPROGRAMS

6.5.55 Reverse-Concatenate

Specificat ion

function Reverse-Concatenate(S1, S2 : Sequence)
return Sequence;

Description Returns a sequence consisting of the elements of S1, in reverse order, fol-
lowed by those of S2 in order. S1 is mutated and S2 is shared.

Time order nl

Space 0

where nl = length(S 1)

Mutative? Yes

Shares? Yes

See also ReverseAppend

Examples

show-~ist (Reverse_Concatenate(Iota(5), Iota(6))) ; -- 4 3 2 1 0 0 1 2 3 4 5

Show-List (Reverse-Concatenate(Ni1, Iota(6))) ;
-- 0 1 2 3 4 5

Show-List (Reverse-Concatenate(Iota(5) , Nil)) ;
-- 4 3 2 1 0

Implementation

begin
return ~lgorithms.Reverse~~oncatenate(S1, S2);

end Reverse-Concatenate;

CHAPTER 6. SINGLY-LINKED-LISTS PACKAGE

6.5.56 Search

Specification

generic
with function Test(X, Y : Element) return Boolean;
function Search(S1, S2 : Sequence)

return Sequence;

Description Returns the leftmost occurrence of a subsequence in S2 that element-wise
matches S1, using Test as the the test for element-wise equality. If no matching
subsequence is found, Nil is returned.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? Yes

See also Position, Find, Some, Search

Examples

declare
function Search-Equal is new Search(Test => It=");

begin
Show-List (Search-Equal(Construct (7. Construct (8, Construct (9, Nil))) ,

Iota(l2))) ;
-- 7 8 9 10 11

end ;

Implementation

function Test-Aux is new Make,Test,Both(Test) ;
function Search-Aux is new Algorithms.Search(Test,Aux);

begin
return Search-Aux(S1, S2);

end Search;

6.5. SUBPROGRAMS

6.5.57 SetJirst

Specification

procedure Set-First(S : Sequence; E : Element) renames Set-FirstO;

Description Changes S so that its first element is E but the following elements are
unchanged.

Time constant

Space 0

Mutative? Yes

Shares? No

Details This description is actually a requirement on Set-NextO, a generic formal param-
eter of the package. Raises an exception, Set-First-OfJil, if S is Nil.

See also Next, SetJirst

CHAPTER 6. SINGLY-LINKED-LISTS PACKAGE

6.5.58 Setnext

Specification

procedure Set-Next(S1, S2 : Sequence) renames Set-NextO;

Description Changes S1 so that its first element is unchanged but the following elements
are those of S2. S2 is shared.

Time constant

Space 0

Mu tat ive? Yes

Shares? Yes

Details This description is actually a requirement on Set-NextO, a generic formal param-
eter of the package. Raises an exception, Set-Next-OfNil, if S 1 is Nil.

See also Next, SetPirst

6.5. SUBPROGRAMS

6.5.59 Set-th

Specificat ion

procedure Set-Nth(S : Sequence; Index : Integer; New-Item : Element);

Description Replaces the element of S specified by Index with Newltem. S is mutated.

Time order Index

Space 0

Mutative? Yes

Shares? No

Details The numbering of elements begins with 0, hence Set-Nth(O,S,X) is the same as
Set-First(S,X) and Set-Nth(Length(S)-1,s ,X) is the same as Set-First(Last (S),X). An
exception, Next-Of-Nil, is raised if S has fewer than Index+l elements.

See also Nth

Implementation

begin
s e t - ~ i r s t (Nth-Rest (Index, S) , New-Ited ;

end Set-Nth;

CHAPTER 6. SINGLY-LINKED-LISTS PACKAGE

6.5.60 Some

Specification

generic
with function Test(X : Element) return Boolean;
function Some(S : Sequence)

return Boolean;

Description Returns true if Test is true of some element of S, false otherwise. Elements
numbered 0, 1, 2, ... are tried in order.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

Details Returns false if S is Nil.

See also Not-Every, Every, Not-Any

Examples

declare
function Some-Odd is new Some(Test => Odd) ;
function Delete-If-Odd is new Delete,If(Test => Odd);

begin
Show,Boolean(Some~Odd(Iota(10))) ;

--True
Show,Boolean(Some~Odd(Delete~If~Odd(Iota(10))));

--False
end ;

Implementation

function Test ,Aux is new Make-Test-If (Test) ;
function Some-Aux is new Algorithms.Some(Test,Aux);

begin
return Some,Aux(S);

end Some;

6.5. SUBPROGRAMS

6.5.61 Sort

Specification

generic
with function Test (X, Y : Element) return Boolean;
function Sort (S : Sequence)

return Sequence;

Description Returns a sequence containing the same elements as S, but in order as
determined by Test. S is mutated.

Time order (n log n)m

Space 0

where n = length(S) and m = average(time for Test)

Mutative? Yes

Shares? No

Details This is a stable sort. See Section 6.1.7 for discussion of the restrictions on Test
and definition of "in order as determined by Test."

See also Merge

Examples

declare
function Sort-Ascending is new Sort (Test => "<'I) ;
function Shuffle-Merge is new Merge(Test => Shuffle-Test);

begin
~how~~ist(~ort~~scending(Shuffle~Merge(Iota(S), Invert(Iota(5)))));

-- 0 0 1 1 2 2 3 3 4 4

end ;

Implementation

function Test-Aux is new Make,Test,Both(Test);
function Sort-Aux is new Algorithms.Sort(32, Nil, Test-Aux);

begin
return Sort ,Aux (S) ;

end Sort;

106 CHAPTER 6. SINGLY-LINKED-LISTS PACKAGE

6.5.62 Subsequence

Specification

function Subsequence (S : Sequence ; Start, Stop : Integer)
return Sequence;

Description Returns a sequence consisting of the elements of S numbered Start through
Stop-1.

Time order Stop

Space order Stop- Start

Mutative? No

Shares? No

Details Start and Stop should satisfy 0 5 Start 5 Stop 5 Length(S). The number-
ing of elements begins with 0, hence Subsequence(S,O,Length(S)) is a copy of S. An
exception, Next-OfJil, is raised if Stop > Length(S).

See also Butlast, Butlast-Copy, C o p y J i r s t J

Examples

show-~ist (Subsequence (Iota(10) , 2, 5)) ; -- 2 3 4

Implementat ion

begin
return Copy,First,N(Nth,Rest (Start, S) , Stop - Start) ;

end Subsequence;

6.5. SUBPROGRAMS 107

6.5.63 Substitute

Specification

generic
with function Test (X, Y : Element) return Boolean;
function Substitute(New-Item, Old-Item : Element; S : Sequence)

return Sequence;

Description Returns a sequence of the elements of S except that those E such that
Test(Oldltem,E) is true are replaced by Newltem. S is mutated.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? Yes

Shares? No

See also Substitute-Copy, SubstituteV, Substitutelf-Not

Examples

declare
function Substitute-When-Divides

is new Substitute(Test => Divides);
begin

Show-List(Substitute-When-Divides(-1, 3, Iota(l5)));
-- -1 1 2 -1 4 5 -1 7 8 -1 10 11 -1 13 14

end ;

Implementation

procedure The-Procedure-Aux(S : Sequence) is
begin

if Test(Old,Item, First(S)) then
Set ,First (S, New-Item) ;

end if;
end The-Procedure-Aux;
pragma Inline(The,Procedure,Aux);
procedure Nsub-Aux

is new Algorithms.For~Each,Cell(The~Procedure~Aux);
begin

Nsub,Aux(S);
return (S);

end Substitute;

CHAPTER 6. SINGLY-LINKED-LISTS PACKAGE

6.5.64 Substitute-Copy

Specification

generic
with function Test(X, Y : Element) return Boolean;
function Substitute-Copy(New-Item, Old-Item : Element; S : Sequence)

return Sequence;

Description Returns a sequence of the elements of S except that those E such that
Test(OldJtem,E) is true are replaced by Newltem.

Time order nm

Space order n

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

See also Substitute, Substitute-CopyV, Substitute-CopyXBot

Examples

declare
function Substitute,Copy,Uhen,Divides

is new Substitute-Copy (Test => Divides) ;
begin

Show~List(Substitute~Copy~When~Divides(-1, 3, Iota(l5)));
-- -1 1 2 -1 4 5 -1 7 8 -1 10 1 -1 13 14

end ;

Implementation

function F-Aux (X : Element) return Element is
begin

if Test (Old-Item, X) then
return New-Item;

else
return X;

end if;
end F-Aux;
pragma Inline(F,Aux);
function Subst-Aux is new Map-Copy(F-Aux);

begin
return Subst,Aux(S) ;

end Subst itute-Copy ;

6.5. SUBPROGRAMS 109

6.5.65 Substitute-Copy J f

Specification

generic
with function Test(X : Element) return Boolean;
function Substitute-Copy-If (New-Item : Element; S : Sequence)

return Sequence;

Description Returns a sequence
Test(E) is true are replaced by

Time order nm

Space order n

where n = length(S) and m =

Mutative? No

Shares? No

of the elements of S except that those E such that
NewJtem.

average(time for Test)

See also Substitute,CopyJf.Xot, SubstituteJf, Substitute-Copy

Examples

declare
function Substitute-Copy-If ,Odd

is new Substitute-Copy-If (Test => Odd) ;
begin

Show,List(Substitute,Copy,If,Odd(-l, Iota(15)));
-- 0 -1 2 -1 4 -1 6 -1 8 -1 10 -1 12 -1 14

end ;

Implementation

function F,Aux(X : Element) return Element is
begin

if Test (X) then
return New-Item;

else
return X;

end if;
end F-Aux;
pragma Inline(F,Aux);
function Subst-Aux is new Map,~opy(F,Aux) ;

begin
return Subst,Aux(S);

end Substitute-Copy-If;

110 CHAPTER 6. SINGLY-LINKED-LISTS PACKAGE

6.5.66 Substitute-Copylf-Not

Specificat ion

generic
with function Test(X : Element) return Boolean;
function Substitute~Copy~If~Not(New~Item : Element; S : Sequence)

return Sequence;

Description Returns a sequence of the elements of S except that those E such that
Test(E) is false are replaced by Newltem.

Time order nm

Space order n

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

See also Substitute-Copylf, Substitute-If-Not, Substitute-Copy

Examples

declare
function Substitute,Copy,If,Not-Odd

is new Substitute-Copy-If ,Not (Test => Odd) ;
begin

Shov~List(Substitute~Copy~If~Not~Odd(-1, Iota(15)));
-- 1 1 -1 3 -1 5 -1 7 -1 9 -1 11 -1 13 -1

end;

Implementat ion

function F,Aux(X : Element) return Element is
begin

if Test(X) then
return X;

else
return New-Item;

end if;
end F-Aux;
pragma Inline (F-Aux) ;
function Subst-Aux is new Map-Copy (F-Aux) ;

begin
return Subst ,Aux (S) ;

end Substitute-Copy-If ,Not ;

6.5. SUBPROGRAMS

6.5.67 SubstituteJf

Specification

generic
with function Test (X : Element) return Boolean;
function Substitute,If(New,Item : Element; S : Sequence)

return Sequence;

Description Returns a sequence of the elements of S except that those E such that
Test(E) is true are replaced by Newltem. S is mutated.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? Yes

Shares? No

See also SubstituteXNot, Substitute, Substitute-Copy

Examples

declare
function Substitute-If-Odd is new Substitute-Xf(Test => Odd);

begin
Show-List (Substitute-If -Odd(-1, Iota(l5))) ; -- 0 -1 2 -1 4 -1 6 -1 8 -1 10 -1 12 -1 14

end ;

Implementat ion

procedure The,Procedure,Aux(S : Sequence) is
begin

if Test (First (S)) then
Set-First (S, New-Item) ;

end if;
end The-Procedure-Aux;
pragma Inline(The,Procedure,Aux);
procedure Nsub-Aux

is new Algorithms.For,Each,Cell(The8Procedure,Aux);
begin

Nsub,Aux(S);
return S;

end Substitute-If ;

CHAPTER 6. SINGLYLINKEDLISTS PACKAGE

6.5.68 Substitute JfiNot

Specification

generic
with function Test(X : Element) return Boolean;
function Substitute~If~Not(New~Item : Element; S : Sequence)

return Sequence;

Description Returns a sequence of the elements of S except that those E such that
Test(E) is false are replaced by Newdtem. S is mutated.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? Yes

Shares? No

See also SubstituteJf, Substitute, Substitute-Copy

Examples

declare
function Substitute,If,Not,Odd

is new Substitute-If ,Not (Test => Odd) ;
begin

Show-List (Substitute-If ,Not-Odd(-l, Iota(15))) ;
-- -1 1 -1 3 -1 5 -1 7 -1 9 -1 11 -1 13 -1

end ;

Implementat ion

procedure The,Procedure,Aux(S : Sequence) is
begin

if not Test (First (S)) then
Set,First(S, New-Item);

end if;
end The-Procedure-Aux;
pragma Inline(The,Procedure,Aux);
procedure Nsub-Aux

is new Algorithms.For,Each,Cell(The~Procedure,Aux);
begin

Nsub-Aux (S) ;
return S;

end Substitute-If-Not;

Chapter 7

Linked-List -Algorithms Package

7.1 Overview

This is a generic algorithms package that provides 31 algorithms for manipulating a linked
list representation of sequences. Only a singly-linked representation is assumed, but many
of the algorithms can also reasonably be used with other representations such as circular
or non-circular doubly-linked representations. As can be seen from the subprogram imple-
ment ations in the previous chapter, even for a singly-linked represent ation these algorithms
can be instantiated in various ways to produce a substantially larger collection of useful
operations.

Generic algorithm packages such as this are mainly for use in building the library,
but nonetheless we include their full descriptions since they illustrate many principles of
component reuse in addition to allowing the programmer to be fully aware of the algorithms
used. Programmers familiar with the details of these algorithms and the principles of the
library structure may also want to consider direct use of generic algorithms packages in
some situations.

Perhaps the most interesting aspect of this package is the fact that more than 30 useful
algorithms have been programmed entirely in terms of only four primitive operations, which
have been made generic formal parameters along with a type, Cell:

funct ion Next (S : Cell) return C e l l ;

procedure Set-Next(S1, S2 : C e l l) ;

funct ion Is-End@ : Cel l) return Boolean;

funct ion Copy-Cell (S i , S2 : Cel l) return C e l l ;

It is assumed that

Next (S) returns the sequence of cells of S except for its first cell;

Set-Next (S i , S2) changes S i so that it retains its first cell but the following cells
are all of those of S2;

I s J h d (S) returns true if S is the empty sequence of cells; false otherwise; and

Copy-Cell (S i , S2) returns a sequence starting with a new cell containing some in-
formation from the first cell of S i ; the following cells are those of S2.

114 CHAPTER 7. LINKED-LIST-ALGORITHMS PACKAGE

All of the manipulation of data is therefore isolated in Copy-Cell.
Most of the algorithms in this package are straightforward; nevertheless, there is a major

advantage of having them in a library since there are many small details that must be pro-
grammed correctly. Two of the operations, Merge-WonBpty, and Sort, are of substantial
interest from an algorithmic point of view. The Sort operation uses a merge-sort algorithm.
In merge-sorting, it is essential that merging is always performed on sequences of the same
length whenever possible, in order to produce nlog n time behavior. With linked-lists this
could be accomplished by traversing the initial list in order to divide it in two, and so on
recursively, but this approach is both clumsy and inefficient (neither of which has prevented
it from appearing in some textbooks). Instead, we employ a "binary counter" technique:
an array, Register, is kept in which ~egister(1) always holds either an empty sequence or
one of length 2', and single element sequences are "added" to the "count" in the register,
with carries taking the form of merging of equal-lengt h sequences.

7.2 Package specification

The package specification is as follows:

generic

type Cell is private;
with function Next (S : Cell) return Cell;
with procedure Set-Next(S1, S2 : Cell);
with function Is,End(S : Cell) return Boolean;
with function Copy-Cell(S1, S2 : Cell) return Cell;

package Linked-List-Algorithms is

(The subprogram specifications)

end Linked-List-Algorithms;

7.3 Package body

The package body is as follows:

package body Linked-List-Algorithms is

(The subprogram bodies)

end Linked-List-Algorithms;

7.4. SUBPROGRAMS

7.4 Subprograms

7.4.1 Accumulate

Specification

generic
type Element is private;

with function F(X : Element; Y : Cell) return Element;
function Accumulate(S : Cell; Initial-Value : Element)

return Element ;

Description Puts InitiaLValue into an accumulator and successively updates the accu-
mulator with F(accumulator,X) for each cell X of S.

Time order nm

Space 0

where n = length(S) and f = average(time for F)

Mutative? No

Shares? No

See also For-Each-Cell, Map

Implementation

To-Be-Done : Cell := S;
Result : Element : = Initial ,Value ;

begin
while not Is-End(To-Be-Done) loop

Result := F(Result, To-Be-Done);
Advance (To-Be-Done) ;

end loop;
return Result ;

end Accumulate ;

CHAPTER 7. LINKED-LIST-ALGORITHMS PACKAGE

7.4.2 Advance

Specification

procedure Advance(S : i n out C e l l) ;
pragma i n l i n e (Advance) ;

Description Changes S to Next(S).

Time constant

Space 0

Mutative? No

Shares? Yes

Details Used for traversing a sequence, nondestructively-does not free any cells.

See also Next

Implementat ion

begin
S : = Next (S) ;

end Advance;

7.4. SUBPROGRAMS 117

7.4.3 Append

Specificat ion

function Append(S1, S2 : Cell)
return Cell;

Description Returns a sequence containing copies of all the cells of S1 followed by the
cells of S2. S2 is shared.

Time order nl

Space order nl

where nl = length(S1)

Mutative? No

Shares? Yes

See also Append-First-N, ReverseAppend

Implementation

Result, Current : Cell;
To-Be-Done : Cell := S1;

begin
if Is-End(S1) then
return S2;

end if;
Result : = Copy-Cell (To-Be-Done , S2) ;
Current : = Result ;
loop
Advance (To-Be-Done) ;
if Is,End(To,Be,Done) then
return Result;

end if;
~ttach-To-Tail (Current, Copy-Cell (To-Be-Done, S2)) ;

end loop;
end Append;

118 CHAPTER 7. LINKEDLIST-ALGORITHMS PACKAGE

Specification

function Append-First-N(S1, S2 : Cell; N : Integer)
return Cell;

Description Returns a sequence containing the first N cells of S1 followed by all the cells
of S2. S2 is shared.

Time order nl

Space order nl

where nl = min(N, length(S1))

Mutative? No

Shares? Yes

See also Append

Implementation

Result, Current, Temp : Cell;
To-Be-Done : Cell := S1;
I : Integer := N - 1;

begin
if Is-End(S1) or else I < 0 then
return S2;

end if;
Result := Copy,Cell(To,Be,Done, S2);
Current := Result;
loop
Advance(To,Be,Done);
I := I - 1;
if Is,End(To,Be,Done) or else I < 0 then
return Result ;

end if;
Attach,To,Tail(Current, ~opy,Cell(To,Be,Done, S2));

end loop;
end Append-First-N;

7.4. SUBPROGRAMS 119

7.4.5 Attach-To-Tail

Specificat ion

procedure Attach-To-Tail(X : in out Cell; Y : in Cell);
pragma inline(Attach-To-Tail);

Description Performs Set-Next(X,Y) followed by X := Y.

Time constant

Space 0

Mutative? Yes

Shares? Yes

See also

Implementation

begin
Set,Next(X, Y);
X := Y;

end Att ach,To,Tail ;

CHAPTER 7. LINKED-LIST-ALGORITHMS PACKAGE

7.4.6 Count

Specification

generic
with function Test (X : Cell) return Boolean;

function Count (S : Cell)
return Integer;

Description Returns a non-negative integer equal to the number of cells X of S such
that Test(X) is true.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

See also Find

Implementation

Result : Integer : = 0 ;
To-BeODone : Cell := S;

begin
while not Is-End (To-Be-Done) loop

i f Test (To-BeODone) then
Result := Result + 1;

end i f ;
Advance (To-Be-Done) ;

end loop;
return Result ;

end Count;

7.4. SUBPROGRAMS

7.4.7 Delete-Copy-Append

Specificat ion

generic
with function Test(X : Cell) return Boolean;

function Delete-Copy-Append(S1, S2 : Cell)
return Cell;

Description Returns a sequence consisting of copies of all the cells X of S1 except those
for which Test(X) is true, followed by all the cells of S2. S2 is shared.

Time order nm

Space order n

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? Yes

Details Copy-Cell (a generic parameter of the package) is used to do the copying.

See also Delete, Append

Implementat ion

To-Be ,Done : Cell := S1;
Result, Current : Cell;

begin
while not Is,End(To,Be,Done) and then Test(To,Be,Done) loop

Advance(To,Be,Done);
end loop;
if Is,End(To,Be,Done) then
return To-Be-Done;

end if;
Result := Copy,Cell(To,Be,Done, S2);
Current : = Result ;
Advance (To-Be-Done) ;
while not Is,End(To,Be,Done) loop

if not Test (To-Be-Done) then
~ttach,To,Tail(Current, Copy,Cell(To,Be,Done, S2));

end if;
Advance(To,Be,Done) ;

end loop;
return Result ;

end Delete-Copy-Append;

122 CHAPTER 7. LINKED-LIST-ALGORITHMS PACKAGE

7.4.8 Delete-CopyDuplicates-Append

Specification

generic
with function Test(X, Y : Cell) return Boolean;

function Delete,Copy,Duplicates,Append(Sl, S2 : Cell)
return Cell;

Description Returns a sequence of copies of the cells of S 1 but with only one occurrence
of each, using Test as the test for equality, followed by all the cells of S2. S2 is shared.

Time order n2m

Space order n

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? Yes

Details The left-most occurrence of each duplicated item is retained. Copy-Cell (a
generic parameter of the package) is used to do the copying.

See also Delete-Duplicates

Implementation

Result, Current, I : Cell;
To-Be-Done : Cell := Si;

begin
if Is-End(S1) then
return S1;

end if;
Result : = Copy-Cell (To-Be-Done , S2) ;
Current := Result;
Advance (To-Be-Done) ;
while not Is-End (To-Be-Done) loop

I := Result;
while not Is,End(I) and then not Test(1, To-Be-Done) loop
Advance(1) ;

end loop;
if Is,End(I) then
Attach,To,Tail(Current, Copy-Cell(To,Be,Done, S2));

end if;
Advance (To-Be-Done) ;

end loop;
return Result ;

end Delete,Copy,Duplicates,Append;

7.4. SUBPROGRAMS 123

7.4.9 Delete-Duplicates

Specification

generic
with function Test(X, Y : Cell) return Boolean;

with procedure Free(X : Cell) ;
function Delete-Duplicates (S : Cell)

return Cell;

Description Returns a sequence of the cells of S but with only one occurrence of each,
using Test as the test for equality. S is mutated.

Time order n2m

Space 0

where n = length(S) and m = average(time for Test)

Mutative? Yes

Shares? No

Details The left-most occurrence of each duplicated cell is retained.

See also Delete-CopyDuplicates

Implement at ion

Tail, To-Be-Done, I : Cell := S;
begin

if not Is,End(To,Be,Done) then
Advance (TooBeoDone) ;
while not Is,End(To,Be,Done) loop

I := s;
while I /= To-BeODone and then not Test(1, To-Be-Done) loop

Advance(1) ;
end loop;
if I = To,Be,Done then
Tail : = To,Be,Done ;
Advance(To,Be,Done);

else
I := To-BeODone;
Advance (To,Be,Done) ;
Set ,Next (Tail, To-Be-Done) ;
Free(1) ;

end if;
end loop;

end if;
return S;

end Delete-Duplicates ;

CHAPTER 7. LINKED-LIST-A LGORITHMS PACKAGE

7.4.10 Equal

Specification

generic
with function Test (X, Y : Cell) return Boolean;

function Equal (S1 , S2 : Cell)
return Boolean;

Description Returns true if S1 and S2 are of the same length and for each position the
cells in that position in S1 and S2 are equal, using Test as the test for cell equality.

Time order m min(length(Sl), length(S2))

Space 0

where m = average(time for Test)

Mutative? No

Shares? No

See also Mismatch

Implementation

Tail-1, Tail-2 : Cell;
procedure Mismatch-Awc. is new Mismatch(Test1;

begin
Mismatch,Awc (S1, S2, Tail.1, Tail-2) ;
return Is-End(Tai1-1) and Is-End(Tail.2);

end Equal;

7.4. SUBPROGRAMS 125

7.4.11 Every

Specificat ion

generic
with function Test(X : Cell) return Boolean;

function Every(S : Cell)
return Boolean;

Description Returns true if Test is true of every cell of S, false otherwise. Cells numbered
0, 1, 2, ... are tried in order.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

Details Returns true if Is-End(S) is true.

See also Not-Every, Some

Implementation

To-Be-Done : Cell := S;
begin

while not Is_End(To_Be_Done) and then Test(To-Be-Done) loop
Advance(To,Be,Done) ;

end loop;
return Is,End(To,Be,Done) ;

end Every;

CHAPTER 7. LINKED-LIST-ALGORITHMS PACKAGE

7.4.12 Find

Specification

generic
with function Test (X : Cell) return Boolean;

function Find(S : Cell)
return Cell;

Description If S contains an cell X such that Test(X) is true, then the sequence of cells
of S beginning with the leftmost such cell is returned; otherwise a cell X such that
Is-End(X) is true is returned.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? Yes

See also Some, Search

Implementat ion

To-Be-Done : Cell := S;
begin

while not Is-End(To-Be-Done) and then not Test(To-Be-Done) loop
Advance (To-Be-Done) ;

end loop;
return To-Be-Done;

end Find;

7.4. SUBPROGRAMS

7.4.13 ForXach-Cell

Specificat ion

generic
with procedure The-Procedure (X : Cell) ;

procedure For,Each,Cell(S : Cell);

Description Applies TheTrocedure to each cell of S.

Time order np

Space 0

where n = length(S) and p = average(time for The-Procedure)

Mutative? No

Shares? No

Details 0

See also For-Each-Cell-2, Map

Implementation

To-Be-Done : Cell := S;
Tamp : Cell;

begin
while not Is-End(To-Be-Done) loop

Temp : = Next (To-Be-Done) ;
The,Procedure(To,Be,Done);
To-Be-Done := Temp;

end loop;
end For-Each-Cell;

CHAPTER 7. LINKED-LIST-ALGORITHMS PACKAGE
13

Specification 3
generic

with procedure The,Procedure(X, Y : Cell);
procedure For,Each,Cell,2(Si, S2 : Cell);

Description Applies TheSrocedure to pairs of cells of S1 and S2 in the same position.

Time order np

Space order n 3
where nl = length(S1) , n2 = length(S2) , n = min(nl, n2), and p = average(time for TheSrocedure

Mutative? No

Shares? No
1

Details Stops when a cell X is reached in either of S1 or S2 such that Is-End(X) is true. 3
See also ForAach-Cell, Map2

Implementation I
To-Be-Done1 : Cell := S1;
To-Be-Done2 : Cell := S2;
Temp-1 : Cell;
T e m p 2 : Cell;

begin
while not Is,End(To,Be,Donel)

and then not Is-End(To-Be-Done2) loop
Temp-1 := Next(To-Be-Donel);
Temp-2 : = Next (To-Be-Done2) ;
The,Procedure(To,Be,Donel, To-Be-Done2);
To-Be-Done1 := Temp-1;
To-Be-Done2 := Temp-2;

end loop;
end For-Each-Cell-2;

7.4. SUBPROGRAMS

Specificat ion

generic
with function Test (S : cell) return Boolean;

procedure Invert-Partition(S1: in Cell; S2, S3: in out Cell);

Description Partitions the cells of S1 into two sequences S2 and S3 with those in S2
satisfying Test and those in S3 failing Test. The cells in S2 and S3 are in reverse order
of their occurrence in S1. S 1 is mutated.

Time n m

Space 0

where n = length(S) and m = average(time for Test)

Mutative? Yes

Shares? Yes

See also

Implementation

To-Be-Done, Temp: Cell := S1;
begin

while not Is-End(To-BeODone) loop
Advance(To,Be,Done) ;
if Test(Temp) then
Set ,Next (Temp, S2) ;
S2 := Temp;

else
Set ,Next (Temp, S3) ;
S3 := Temp;

end if;
Temp := To,Be,Done;

end loop;
end Invert ,Part it ion ;

CHAPTER 7. LINKEDLIST-ALGORITHMS PACKAGE

7.4.16 Last

Specificat ion

function Last (S : Cell)
return Cell;

Description Returns the sequence consisting of just the last cell of S .
Time order n

Space 0

where n = length(S)

Mutative? No

Shares? Yes

Details An attempt is made to compute Next(S) even if Is-End(S) is true.

See also

Implementat ion

I , J : Cell := S;
begin

loop
Advance(J);
exit when Is,End(J);
I := J;

end loop;
return I;

end Last ;

7.4. SUBPROGRAMS 131

7.4.17 Length

Specificat ion

function Length(S : Cell)
return Integer;

Description The number of cells in S is returned as a non-negative integer.

Time order n

Space 0

where n = length(S)

Mutative? No

Shares? No

See also

Implementat ion

Result : Integer := 0;
To,Be,Done : Cell := S;

begin
while not Is-End(To-Be-Done) loop

Result := Result + 1;
Advance(To,Be,Done);

end loop;
return Result ;

end Length;

132 CHAPTER 7. LINKED-LIST-ALGORITHMS PACKAGE

Specificat ion

generic
with function Make,Cell(X, Y, Z : Cell) return Cell;

function Map,Copy,2,Append(Sl , S2, S3 : Cell)
return Cell;

Description Returns a sequence of cells consisting of the results of applying Make-Cell
cells of S1 followed by the cells of S2, using Make-Cell to do the copying. S2 is shared.

Time order nl + nz
Space order nl

where nl = min(length(Sl), length(S2)) and nz = length(S2)

Mutative? No

Shares? Yes

Details Each application of Make-Cell has a cell of S1 as its first argument, the cor-
responding cell of S2 as its second argument, and S3 as its third argument. Stops
when a cell C in either S1 or S2 is reached such that Is-End(C) is true, ignoring any
remaining cells in the other sequence.

See also Append, Reverse-Append

Implementat ion

Result, Current : Cell;
To-Be-Done1 : Cell := S1;
To-Be-Done2 : Cell := S2;

begin
if Is,End(To,Be,Donei) or else Is-End(To-Be-Done21 then
return S3;

end if;
Result := Make,Cell(To,Be,Donel, To-Be-Done2, S3);
Current := Result;
Advance(To,Be,Donel) ;
Advance (To-Be-Done2) ;
while not Is,End(To,Be,Donel)

and then not Is-End(To-Be-Done2) loop
Attach,To,Tail(Current,

Make,Cell(To,Be,Donel, To-Be-Done2, S3));
Advance(To,Be,Donel) ;
Advance(T0-Be-Done2) ;

end loop;
return Result ;

end Map-Copy-2,Append ;

7.4. SUBPROGRAMS 133

7.4.19 Map-CopyAppend

Specificat ion

generic
with function MakeoCell(X, Y : Cell) return Cell;

function Map-Copy-Append(S1, S2 : Cell)
return Cell;

Description Returns a sequence of cells consisting of the results of applying Make-Cell
to the cells of S1 followed by the cells of S2.

Time order nl + n2
Space order nl

where nl = length(S1) and n2 = length(S2)

Mutative? No

Shares? Yes

Details Each application of Make-Cell has a cell of S1 as its first argument and S2 as its
second argument.

See also Append, ReverseAppend

Implementation

Result, Current : Cell;
TooBeoDone : Cell := S1;

begin
if Is,End(To,Be,Done) then
return S2;

end if;
Result := Make,Cell(To,Be-Done, S2);
Current : = Result ;
Advance (To-BeODone) ;
while not IsoEnd(TooBe,Done) loop

Attach-To-Tail (Current, Make-Cell (To-Be-Done , S2)) ;
Advance(To,Be,Done) ;

end loop;
return Result ;

end Map-Copy-Append;

CHAPTER 7. LINKEDLISTALGORITHMS PACKAGE

7.4.20 Merge

Specificat ion

generic
with function Test (X, Y : Cell) return Boolean;

function Merge(S1, S2 : Cell)
return Cell;

Description Returns a sequence containing the same cells as S1 and S2, interleaved. If
S1 and S2 are in order as determined by Test, the result is also. Both S1 and S2 are
mutated.

Time order (nl + n2)m

Space order nl + n2

where nl = length(S1) , n2 = length(S2) , and m = average(time for Test)

Mutative? Yes

Shares? No

Details By "interleaved" is meant that if X precedes Y in S1 then X will precede Y in
Merge(Sl,S2) and similarly for X and Y in S2 (even if S1 or S2 is not in order). The
property of stability also holds. See Section 6.1.7 for discussion of the restrictions on
Test and definition of "in order as determined by Test."

See also Merge-NonLEmpty, Sort

Implementation

function Merge-Aux is new Merge,Non,Empty(Test);
begin

if Is-End(S1) then
return S2;

elsif Is-End(S2) then
return S1;

else
return Merge-Aux(S1, S2);

end if;
end Merge;

7.4. SUBPROGRAMS

7.4.21 Merge-Non-Empty

Specification

generic
with function Test(X, Y : Cell) return Boolean;

function Merge-Non-Empty(S1, S2 : Cell)
return Cell;

Description Returns a sequence containing the same cells as S1 and S2, interleaved. If
S1 and S2 are in order as determined by Test, the result is also. Both S1 and S2 are
mutated.

Time order (nl + nz)m

Space order nl + na

where nl = length(S1) , nz = length(S2) , and m = average(time for Test)

Mutative? Yes

Shares? No

Details An attempt is made to compute Next(S1) even if Is-End(Sl), and similarly for
S2. (Merge avoids this potential problem; this subprogram exists mainly for use in
implementing the Sort algorithm.) By "interleaved" is meant that if X precedes Y in
S1 then X will precede Y in Merge(Sl,S2) and similarly for X and Y in S2 (even if
S1 or S2 is not in order). The property of stability also holds. See Section 6.1.7 for
restrictions on Test and definition of "in order as determined by Test ."

See also Merge, Sort

Implementation

I, J, K, Result : Cell;
begin

if Test(S2, S1) then
Result : = S2;
I : = Next (S2) ;
J := Sl;
K := S2;
goto Wrong-Loop;

else
Result := S1;
I := Next(S1);
J := S2;
K := S1;
goto Right ,Loop ;

end if;
Right-Loop >>if Is,End(I) then
Set ,Next (K , J) ;

136 CHAPTER 7. LINKEDJ,ISTALGORITHMS PACKAGE

return Result;
elsif Test(J, I) then
Attach,To,Tail(K, J);
J := I;
I : = Next (K) ;

else
K := I;
Advance(1) ;
goto Right ,Loop ;

end if;
<< Wrong-Loop >>if Is,End(I) then

Set ,Next (K , J) ;
return Result;

elsif Test(1, J) then
K := I;
Advance(1);
goto Wrong-Loop;

else
Attach-To-Tail (K, J) ;
J := I;
I : = Next (K) ;
goto Right ,Loop ;

end if;
end Merge-Non-Empty;

7.4. SUBPROGRAMS 137

7.4.22 Mismatch

Specificat ion

generic
with function Test(X, Y : Cell) return Boolean;

procedure Mismatch(S1, S2 : in Cell; S3, S4 : out Cell);

Description S1 and S2 are scanned in parallel until the first position is found at which
they disagree, using Test as the test for cell equality. $3 and S4 are set to be the
subsequences of S1 and S2, respectively, beginning at this disagreement position and
going to the end. S1 and S2 are shared.

Time order min(nl, nz)m

Space 0

where nl = length(S1) and nz = length(S2) and m = average(time for Test)

Mutative? No

Shares? Yes

Details Is-End(S3) and Is-End(S4) will both be true if S1 and S2 agree entirely.

See also Equal

Implementation

To-Be-Done-1 : Cell := S1;
To-Be-Done-2 : Cell := S2;

begin
while not Is,End(To,Be,Done,l)

and then not Is,End(To,Be,Done,2)
and then Test (To-Be-Done-l , To-Be-Done-2) loop

Advance(To,Be,Done,l) ;
Advance(T0-Be-Done-2);

end loop;
S3 := To-Be-Done-1;
S4 : = To-Be-Done-2;

end Mismatch ;

CHAPTER 7. LINKED-LIST-ALGORITHMS PACKAGE

7.4.23 Not-Any

Specification

generic
with function Test(X : Cell) return Boolean;

function Not,Any(S : Cell)
return Boolean;

Description Returns true if Test is false of every cell of S, false otherwise. Elements
numbered 0, 1, 2, ... are tried in order.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

Details Returns true if Is-End(S) is true.

See also Every, Some, Not-Every

Implementation

To-Be-Done : Cell := S;
begin

while not Is-End(To-Be-Done) and then not Test(To-Be-Done) loop
Advance(To,Be,Done);

end loop;
return Is,End(To,Be,Done) ;

end Not-Any;

7.4. SUBPROGRAMS

7.4.24 Not-Every

Specificat ion

generic
with function Test (X : Cell) return Boolean;

function Not ,Every (S : Cell)
return Boolean;

Description Returns true if Test is false of some cell of S, false otherwise. Elements
numbered 0, 1, 2, ... are tried in order.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

Details Returns false if Is-End(S) is true.

See also Every, Some

Implementation

To-Be-Done : Cell := S;
begin

while not Is -End (To-Be-Done) and then Test (To-Be-Done) loop
Advance(To,Be,Done) ;

end loop;
return not Is,End(To,Be,Done) ;

end Not-Every;

CHAPTER 7. LINKED-LISTALGORITHMS PACKAGE

Specification

function Nth-Rest (N : Integer; S : Cell)
return Cell;

Description Returns a sequence containing the cells of S numbered N, N+ 1, ..., Lengt h(S)-
1.

Time order N

Space order N

Mutative? No

Shares? Yes

Details The numbering of cells begins with 0, hence Nth-Rest (0,s) is the same as S and
NthJtest(Length(S)-1,s) is the same as Last(S). Assumes that N 5 Length(S) - 1. If
N < 0, S is returned.

See also Next, Last

Implementation

To-Be-Done : Cell := S;
I : Integer := N;

begin
while not Is,End(To,Be,Done) and then I > 0 loop
I := I - 1;
Advance(To,Be,Done);

end loop;
return To-Be-Done ;

end Nth-Rest ;

7.4. SUBPROGRAMS

7.4.26 Position

Specificat ion

generic
with function Test(X : Cell) return Boolean;

function Position(S : Cell)
return Integer;

Description If S contains an cell X such that Test(X) is true, then the index of the
leftmost such item is returned; otherwise -1 is returned.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

Details The index of the first item is 0, of the last is length(S)-1.

See also Find, Some, Search

Implementation

To-Be-Done : Cell := S;
I : Integer := 0;

begin
while not Is-End(To-Be-Done) and then not Test(To-Be-Done) loop

I := I + 1;
Advance(To,Be,Done);

end loop;
if Is,End(To,Be,Done) then
return -1 ;

else
return I;

end if;
end Position;

142 CHAPTER 7. LINKED-LISTALGORITHMS PACKAGE

7.4.27 Reverse-Append

Specificat ion

function Reverse-Append(S1, S2 : Cell)
return Cell;

Description Returns a sequence consisting of the cells of S1, in reverse order, followed
by those of S2 in order. S2 is shared.

Time order nl

Space order nl

where nl = length(S 1)

Mutative? No

Shares? Yes

See also Reverse-Concatenate, Append

Implementation

Result : Cell := S2;
To-Be-Done : Cell := S1;

begin
while not Is,End(To,Be,Done) loop

Result := Copy,Cell(To,Be,Done, Result);
Advance(To,Be,Done);

end loop;
return Result ;

end Reverse-Append;

7.4. SUBPROGRAMS

7.4.28 Reverse-Concatenate

Specificat ion

function ~everse,~oncatenate(Si, S2 : Cell)
return Cell;

Description Returns a sequence consisting of the cells of S1, in reverse order, followed
by those of S2 in order. S1 is mutated and S2 is shared.

Time order nl

Space 0

where nl = length(S1)

Mutative? Yes

Shares? Yes

See also ReverseAppend, Append

Implementation

Result : Cell := S2;
To-Be-Done : Cell := S1;
Temp : cell;

begin
while not Is-End(To-BeODone) loop

Temp := To-Be-Done;
Advance(To,Be,Done);
Set ,Next (Temp, Result) ;
Result : = Temp ;

end loop;
return Result ;

end Reverse-Concatenate;

CHAPTER 7. LINKEDLISTALGORITNMS PACKAGE

7.4.29 Search

Specificat ion

generic
with function Test(X, Y : Cell) return Boolean;

function Search(S1, S2 : Cell)
return Cell;

Description Returns the leftmost occurrence of a subsequence in S2 that matches S1
cell for cell, using Test as the the test for cell equality. If no matching subsequence is
found, a sequence S is returned such that Is-End(S) is true.

Time order nrn

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? Yes

See also Position, Find, Some, Search

Implementation

To-Be-Done : Cell := S2;
Tail-1, Tail.2 : Cell;
procedure Mismatch-Aux is new Mismatch(Test);

begin
loop
Mismatch-Awc (S1 , To-Be-Done , Tail.1, Tail-2) ;
if Is-End(Tai1-1) then
return To-Be-Done;

elsif Is-End(Tai1-2) then
return Tail-2 ;

end if;
Advance (To-Be-Done) ;

end loop;
end Search;

7.4. SUBPROGRAMS

7.4.30 Some

Specification

generic
with function Test(X : Cell) return Boolean;

function Some (S : Cell)
return Boolean;

Description Returns true if Test is true of some cell of S, false otherwise. Elements
numbered 0, 1, 2, ... are tried in order.

Time order nm

Space 0

where n = length(S) and m = average(time for Test)

Mutative? No

Shares? No

Details Returns false if Is-End(S) is true.

See also Not-Every, Every, Not-Any

Implementation

To-Be-Done : Cell := S;
begin

while not Is_End(To_Be_Done) and then not Test(To_Be-Done) loop
Advance(To,Be,Done);

end loop;
return not Is,End(To,Be,Done) ;

end Some;

CHAPTER 7. L1lVKEDJ;ISTALGORITHMS PACKAGE

7.4.31 Sort

Specificat ion

generic
Log-Of ,Max,Num : Integer;

Empty : Cell;
with function Test(X, Y : Cell) return Boolean;

function Sort (S : Cell)
return Cell;

Description Returns a sequence containing the same cells as S, but in order as deter-
mined by Test. S is mutated.

Time order (n log n)m

Space 0

where n = length(S) and m = average(time for Test)

Mutative? Yes

Shares? No

Details This is a stable sorting algorithm. See Section 6.1.7 for restrictions on Test and
definition of "in order as determined by Test ."

See also Merge

Implementation

-- Merge-sort algorithm, using ''register addert1 technique
type Table is array(0 .. Log-Of-Max-Num) of Cell;
Register : Table := (others => Empty) ;
I, Maximum-Bit-Position : Integer := 0;
To-Be-Done : Cell := S;
Bit, Carry : Cell;
function Merge-Aux is new Merge,Non,Empty(Test);

begin
while not (Is,End(To,Be,Done)) loop

Carry := To-Be-Done;
Advance (To-Be-Done) ;
Set ,Next (Carry, Empty) ;
I := 0;
loop
Bit := Register(1) ;
exit when Is,End(Bit) ;
Carry : = Merge,Aux(Bit , Carry) ;
Register(1) := Empty;
I := I + 1;

end loop;

7.4. SUBPROGRAMS

Register(1) := Carry;
if Maximum-Bit-Position < I then
Maximum-Bit-Position := I;

end if;
end loop;
Carry := Register(1);
loop

exit when I > Maximum-Bit-Position;
Bit : = Register(1) ;
if not Is,End(Bit) then
Carry : = Merge-Aw (Bit, Carry) ;

end if;
end loop;
return Carry ;

end Sort;

Chapter 8

Using the Packages

8.1 Partially Inst ant iat ed Packages

The purpose of each of these packages, called "PIPS" is to plug together a low-level data
abstraction package with a structural or representational abstraction package, while leaving
the Element type (and perhaps other parameters) generic. Here we only show PIPs obtained
from combining each of the three low-level representations with the Sing1 y-Linked-Lis t s
structural abstraction. (There are twelve PIPs included in this release of the library.)

8.1.1 Using SystemAllocat edsingly-linked

From file sadpip. ad a- -
with System,Allocated,Singly,linked, Singly-Linked-Lists;
generic

type Element is private;
package System,Allocated~Singly~Linked, l is ts is

package Low-Level is new System,Allocated,Singly~Linked(Element);
use Low-Level;

package Inner is
new Singly,Linked,Lists(Element, Sequence, Nil, First, Next,

Construct, Set-First , Set-Next , Free) ;

end System,Allocated,Singly~Linked~Lists;--

8.1.2 Using UserAllocated-Singly-Linked

From file uaslpip.ada--

with User,Allocated,Singly-Linked, Singly-Linked-Lists;
generic

Heap-Size : in Natural;
type Element is private;

package User,Allocated,Singly-Linked-Lists is

8.2. INTEGER INSTANTIATION 149

package Low-Level
is new User-Allocated-Singly-Linked(Heap-Size, Element);

use Low-Level;

package Inner is
new Singly-Linked-Lists(Element, Sequence, Nil, First, Next,

Construct, Set-First, Set-Next, Free);

end User~Allocated~Singly~Linked~Lists;--

8.1.3 Using Aut olteallocat ing-SinglyLinked

From file arslpip. ada--

with Auto-Reallocating-Singly-Linked;
with Singly-Linked-Lists;
generic

Initial-Number-Of-Blocks : in Positive;
Block-Size : in Positive;
Coefficient : in Float;
type Element is private;

package Auto~Reallocating~Singly~Linked~Lists is

package Low-Level is new
~uto~Reallocating~Singly~Linked(Initial~Number~Of -Blocks,

Block-Size, Coefficient, Element);
use Low-Level;

package Inner is
new Singly-Linked-Lists(Element, Sequence, Nil, First, Next,

Construct, Set-First, Set-Next, Free);

end Auto~Reallocating~Singly~Linked~Lists;--

8.2 Integer Instantiation

A PIP can then be used by instantiating the Element type and any other remaining generic
parameters. For example:

with System~Allocated~Singly~Linked~Lists;
package Integer-Linked is
new System~Allocated~Singly~Linked~Lists(Integer);

Note that the Inner package of an instance of a PIP must be used in order to make
available all of the subprogram names and other identifiers of the package without requiring
a prefix, as in

with Integer-Linked;
procedure Application is

use Integer-Linked.Inner;
. . .

CHAPTER 8. USING THE PACKAGES

with Integer-Linked;
package Application is
use Integer-Linked.Inner;

8.3 Test Suite and Output

Using Integer-Linked, a test suite is produced from the test suite package skeleton given
in Chapter 6 and the examples given with each subprogram.

The output that is produced is indicated in the comments in those examples.

	Contents
	1. Introduction
	2. Linear Data Structures
	3. System_Allocated_Singly_Linked Package
	4. User_Allocated_Singly_Linked Package
	5. Auto_Reallocating_Singly_Linked Package
	6. Singly_Linked_Lists Package
	7. Linked_List_Algorithms Package
	8. Using the Packages

