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NAVIGATION STRATEGIES FOR AN AUTONOMOUS VEHICLE 
WITH INCOMPLETE INFORMATION ON THE ENVIRONMENT 

V. Lumelsky and A. Stepanov 

1. INTRODUCTION 
To plan a path for a traveling automaton means to find 

a continuous trajectory leading from the initial position of 
the automaton to its target position. The environment (the 
scene) in which the automaton travels is defined in a (two- 
dimensional) plane. The scene may be filled with obstacles. 
Obstacles may be of any shape and size, with the following 
(rather practical) constraints: 1) each obstacle is a simple 
closed curve; this simply means that the obstacle bor- 
derline is a continuous curve with no self-intersections, 
2) obstacles do not touch each other, 3) any circle of a 
given radius may intersect with only a finite number of ob- 
stacles. 

The existing body of work on path planning may be 
classified into two categories - works dealing with situa- 
tions with complete information on the scene, and works 
that assume that the information on the scene is in- 
complete. 

In path planning with complete in formation, one popu- 
lar version is the "Piano Movers'' problem. Given (in two- 
or three-dimensional space) a solid object of known di- 
mensions, its initial and target position and orientation, 
and a set of obstacles whose shapes, positions and orienta- 
tions in space are known, the task is to find a continuous 
(2-D or 3-D) path for the object from the initial position to 
the target position while avoiding collisions with obstacles 
along the way. 

Schwartz and Sharir 16] solve a two-dimensional case of 
the "Piano Movers" problem with convex obstacles pre- 
sented as polygons; the presented algwithm is shown to 
produce a solution in a polynomial time qn5) where n is 
the number of distinct convex walls of obstacles. 

In a number of works, final dimensions of the solid ob- 
ject are viewed as shrinking to a point, while the obstacles 
are viewed as expanding inversely to the shape of the ob- 
ject. This requires increasing the dimensionality of the in- 
itial space - one extra dimension per each degree of rota- 
tional freedom. Resulting obstacles have non-planar walls 
(even if original obstacles are polyhedra). In order to keep 
the problem manageable, it is typical to impose various 
constraints. For example, Lozano-Perez 18] allows the ob- 
ject to change its orientation only once, if at all, during its 
motion. 

Moravec 1'1 considers a path planning algorithm in two 
dimensiqps, with the object presented as a circle. Brooks, 191 

in his treatment of a two-dimensional path planning prob- 
lem with a convex polygon object and convex polygon ob- 
stacles, uses generalized cylinders presentation of space [lo] 
to reduce the problem to a search on a graph; a generalized 
cylinder is formed by a volume swept by a cross sectioxq (in 
general, of varying shape and size) moving along an axis 
(in general, a spine curve). Reif [Ill solves the two- and 
three-dimensional problems of moving a solid polygon or 
polyhedron object in polynomial time, by direct computa- 
tion of the "forbidden" volumes in spaces of higher 
dimensions d (d = 3 for a two-dimensional "Piano Mover" 
problem, d = 6 for a three-dimensional problem). 

A version of the "Piano Movers" problem, where the 
moving object is allowed to consist of a number of free- 
hinged links, is a more difficult problem. This version was 
started by Pieper and then investigated by Paul [I31 
because of its obvious relation to path generation and 
coordinate transformation problems of multiple-degrees- 
of-freedom robot arms. Schwartz and Sharir [12] gave a 
general (but not polynomial time) algorithm for generating 
a path for a free-hinged object. Reif [I1] showed that gen- 
erating a path for a free-hinged object is, in general, a 
P-space complete problem. Following this conclusion, 
some limited versions of the problem have been consid- 
ered. Hopcroft et al. [I41 gave a polynomial-time path 
planning algorithm for a two-dimensional free-hinged ob- 
ject shaped like a folding carpenter ruler. Even this limited 
two-dimensional problem was shown to become difficult if 
the links of the carpenter's ruler are not of equal length. 

Among works on path planning with incomplete infor- 
mation, in [5] a two-dimensional navigation problem is 
considered. Obstacles are described by polygons, produced 
paths lie along edges of the connectivity graph formed by 
obstacle vertices, the start point, and the target point, with 
an obvious constraint on intersection of the path with 
obstacle polygons. Path planning is limited to the auto- 
maton's immediate surrounding for which information on 
the scene is complete; within this surrounding, the problem 
is actually treated as one with complete information. 

In the work by Bullock et al. [I] on the autonomous 
vehicle control, the input information on the scene comes 
from an image acquistion and understanding module. [2931 
(Techniques for deriving two-dimensional structure of the 
scene from partial snapshots of the 3-D terrain taken by a 
moving observer, have been studied, e.g., by Lavin i49. 
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The work uses knowledge-based techniques and relies 
heavily on canned strategies for typical recurring situations 
(e.g., going around an obstacle from the left). The system 
emphasizes usage of prestored two-dimensional map in- 
formation on the scene. Incoming (visual) sensor informa- 
tion is used for fine tuning of the path. Obstacles are rep- 
resented as polygons; path planning strategy is based on 
search on a connectivity graph. 

- In the work presented here, a continuous model of the 
environment (the scene) and of the automaton operation is 
considered. That is, the automaton may be measuring its 
coordinates and planning its actions continuously. No ap- 
proximation of obstacles (e,g., by polygons) is done, and, 
consequently, no connectivity graphs arise. Since no re- 
duction to a discrete space is done, all the points of space 
(and not only those points that lie along certain subspaces 
- e.g., along edges of a connectivity graph) are available 
for path planning purposes. Due to continuous models, a 
new type of path planning algorithms appears. For these, 
the usually used criteria for measuring their performance 
(such as computational complexity as a function of the 
number of nodes of the connectivity graph, or the time or 
memory required) are no more applicable; hence, new per- 
formance criteria - in particular, those dealing with the 
length of generated paths, as a function of obstacle perim- 
eters - are introduced.* 

A simple traveling automaton (called a minimal 
automaton) will be considered that has no knowledge 
about the scene except its current coordinates and the co- 
ordinates of the target. Its only sensor lets it feel an ob- 
stacle when it hits. Expansion of the approach presented 
here on situations when the automaton has additional 
sources of information (such as vision or prestored maps) 
and additional capabilitities, is a subject of future work. 

First, the model of the environment and of the auto- 
maton is formulated. Then, a universal lower bound (that 
is, one applicable to any theoretically feasible algorithm) 
for the path planning problem is produced. After that, two 
Basic Algorithms for path planning are described, As one 
will see, the algorithms have different characteristics, and, 
depending on the scene, one of them may produce a 
shorter path than the other. For the algorithms, the upper 
bounds on the length of generated paths are established; 
these are compared with the universal lower bound on the 
length of generated paths; also, tests for target reachability 

*Because of incompleteness of information, the path can- 
not be preplanned, and so its global optimality is ruled 
out. Insuad, one can judge on performance of algorithms 
by how optimal algorithms are locally, or how 
"reasonable" they look from the standpoint of a human 
traveler; or how they compare with other existing or 
theoretically feasible algorithms. 

are formulated. This is followed by an improved version 
of the path planning algorithm that combines good sides 
of both Basic Algorithms while not sacrificing much of 
their clarity. In the last section, the performances of the 
algorithms are compared, and an additional insight into 
the algorithms' mechanisms is provided by showing their 
relevance to the maze search problem. 

11. MODEL 
The model to be considered includes two parts: one 

related to the geometry of the scene, and another related to 
the characteristics and actions of the automaton. 

Environment. The scene in which the automaton travels 
is defined in a plane. A scene may contain obstacles, each 
of which is a simple closed curve. Obstacles or their parts 
do not touch each other; that is, a point on an obstacle (or 
on a part of an obstacle) belongs to one and only one 
obstacle (part of an obstacle). A scene may have a locally 
finite number of obstacles. Formally, it means that any cir- 
cle of a limited radius or any straight line segment in the 
plane will intersect with a finite set of obstacles. Any 
obstacle is homeomorphic to a circle; that is, for any 
obstacle there is some continuous topological mapping 
that transforms the obstacle into a circle. 

Automaton. The automaton is a point. This means that 
an opening of any size between two distinct obstacles is 
considered to be passable. (In practice, finite dimensions 
of the automaton will have to be taken into consideration; 
in this work the automaton's size and shape are ignored). 
The minimal automaton has "sensors" that provide it with 
the following information: 1) its current coordinates, 
2) the fact that it hit an obstacle ("force sensor"). It is as- 
sumed that the automaton knows the coordinates of the 
target. The automaton, therefore, may always calculate its 
direction on, and its distance from, the target. 

In terms of its movement, the automaton is capable of 
three actions: 1) move toward the target on a straight line, 
2) move along an obstacle, 3) stop. 

Definition 1. A focal direction is always a decided direc- 
tion of passing around an obstacle. For the two-dimen- 
sional problem, it can be either left or right. 

Because of incompleteness of information, every time a 
minimal automaton hits an obstacle, there is no informa- 
tion or criteria that could help it decide whether it should 
go around the obstacle from the left or from the right, For 
the sake of clarity and without losing generality, assume 
that the local direction of the automaton is always left (as 
in Figure 4). Unless told otherwise, the automaton will be 
assumed to follow the local direction while walking around 
obstacles. 

Definition 2. The automaton defines a Hit point H 
when, while moving along a straight line toward the 
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Target, the automaton hits the point H of an obstacle; it 
defines a Leave point L when it starts moving along a 
straight line from the point L toward the Target. (See, for 
example, Figure 4). 

In the following sections, these notations will be used: 
D is the distance from Start to Target, 
d(A,B) is the distance between any points A and B of 

the scene; thus, d (Start, Target) = D, 
d(Ai,B) signifies the fact that the point A is located 

on the borderline of the i-th obstacle met by the 
automaton on its way to Target, 

d(Ai) is used as a shorthand notation for d(Ai, 
Target), 

P is the total length of the path generated by the 
automaton on its way from Start to Target, 

pi is the perimeter of the i-th obstacle, 
The performance of the algorithms analyzed in the 

following sections will be evaluated using a quantity Zpi 
the sum of perimeters of obstacles met by the automaton 
on its way to Target. This quantity will allow us to com- 
pare various path planning procedures in terms of the 
length of paths they produce. 

111. LOWER BOUND FOR PATH 
PLANNING PROBLEM 

The lower bound determines, within the framework of 
the environment and the automaton models described 
above, what ultimate performance may be expected from 
any path planning algorithm. The lower bound (for- 
mulated in Theorem 1 below) is a powerful means for 
measuring performance of path planning procedures. 

Theorem 1. For any algorithm of path generation, there 
is a scene for which the length P of the generated path will 
obey the relationship 

where P, D, and pi have been defined above, and 6 is any 
constant. 

Proof. This present work attempts to prove that no mat- 
ter what algorithm someone comes up Svith, a scene may 
be designed for which the length of the path generated by 
this yet unknown algorithm (called Algorithm X), will 
satisfy (1). Algorithm X may be deterministic or random; 
its intermediate steps may or may not depend onin-  
termediate results - it may be any; it is assumed to be 
operated by an automaton (AT) and within an environ- 
ment whose models have been described above. 

At the beginning, points Start and Target are defined 
and given to AT. Since AT starts at a distance 
D = d (Start,Target) from Target, it obviously cannot 
avoid the term D in (1). It is necessary to concentrate, 
then, on the second term in (1). We suggest a scheme for 

designing scenes such that for any X the designed scene 
will force X to generate a path not shorter than P in (1). 

The defeating scene is built in two stages. We start with 
aplan of the scene which has in it some maximum obstacle 
- that is, an obstacle parts or all of which (but not more 
than that) will (on the second stage) make actual 
obstacle(s) of the scene. 

Then let AT walk from Start to Target. If, on its way, 
AT hits the maximum obstacle, it will somehow have to go 
around it using its algorithm X. When the path is com- 
plete, the second stage starts; we observe the path and 
designate as parts of actual obstacle(s) only those areas of 
the maximum obstacle that have been touched by AT from 
inside the corridor.* If AT moved along the maximum 
obstacle borderline, this area becomes a part of the actual 
obstacle; if AT only touched the maximum obstacle and 
then bounced back, an area of the length 6 of the obstacle 
around the point of touch becomes a segment of an 
obstacle. The rest of the maximum obstacle can be left out 
because (at least, under the accepted model) the behavior 
of AT does not depend on the areas of obstacle(s) which it 
never touches. Therefore, the resulting scene could have 
been the one in which AT would operate and use its Al- 
gorithm X. This completes the design of the scene. 

Now it is necessary to prove that the AT's path in the 
resulting scene obeys (1). At this point, one may see that 
the main idea behind the described process of designing an 
appropriate scene is that no matter what Algorithm X is, 
under the described process AT will always be forced to 
generate, for each actualized segment of an obstacle, a seg- 
ment of the path at least twice as long. 

Consider a maximum obstacle shown in Figure la: this 
is a corridor of finite width 2 W > 6 and of finite length L,  
with the Start point located in the middle of the "bottom" 
(the closed end) of the corridor, and the axis of the cor- 
ridor going in the direction opposite to the interval 
(Start,Target).** The width of the corridor walls is negligi- 
ble compared to 6. AT's path in the scene may be divided 
into two parts, PI and P2. PI corresponds to AT'S travel 
inside the corridor, and P2 outside the corridor. Both parts 
may be intermixed since, after getting out of the corridor, 
AT may temporarily return into it. It is clear, though, that 
since part P2 start? at the exit point of the corridor, then 
P2 2 L + C where C is the differenoe between the 
hypotenuse and the side in the triangle ATS. As for the 

*With this condition of counting only the inside touching, 
we ensure that for each actualized segment of an 
obstacle, AT will generate at least a twice as long segment 
of the path. 

** It is enough to show that (1) holds for a scene with one 
maximum obstacle. Notice, though, that depending on 
AT's behavior, one or more actual obstacles may be 
created in the scene of Figure 1. 



part PI, there may be various alternatives all of which fall 
in one of three gr0ups.t 

1. Part PI of the path never touches the walls of the cor- 
ridor (Figure la). As a result, no obstacles will be created 
(pi= 0) but a non-zero second term in (1) will appear. 
Therefore, for this kind of X the theorem holds. 
Moreover, at the final evaluation where only actual 
obstacles count, this AT strategy will not look very 
reasonable: it creates an additional path segment (second 
term in (1)) at least equal to (2 .L + C) - in a scene with 
no obstacles! 

2. Part PI of the path is such that one or more of 
disconnected &segments on one or both side walls of the 
corridor (see Figure lb) are actualized. As one can see, this 
kind of strategy is not very wise either: per each &segment 
of an actual obstacle, AT creates a larger segment of the 
path; the length of this path segment depends either on W 
(if the next &segment of the obstacle is located on the wall 
opposite to that of the previous &segment) or/and at least 
on the distance between two sequentially created discon- 
nected &segments (if these are on the same wall of the cor- 
ridor). Thus, the length P of the path exceeds the right side 
in (I), and the theorem holds. 

3. AT closely follows the internal walls of the corridor, 
and then it chooses the shortest path to the Target (see 
Figure lc). Here AT is doing its best in trying to compen- 

"fhe actual path inside the corridor may be as capricious 
as one wishes - for example, it may follow some 
strange curves, or go back and forth, or go in circles, 
etc. Every segment of the path that does not "create" 
an equivalent actualized obstacle segment, makes, from 
the standpoint of (I), the path worse. Three groups 
above capture all possibilities in terms of relationship 
between the path length and the right side in (1). 

Figure 1. Illustration for Theorem 1. ActualhRd segments 
of the maximum obstacle are shown in solid. 
S - Start point, T - Target point. 

sate each segment of its path with an equivalent actual 
obstacle segment. In such a case, the generated path P will 
be equal to 

P = JZTi-F+ ( z p i  - W) 

where there is only one term in Zpi. Since we are free to 
choose the parameters D and W of the scene, they are 
taken such that 

6 2  W + D - w  

and, therefore, (1) is satisfied. Q.E.D. 

IV. FIRST BASIC ALGORITHM: Bugl. 
In this and the next sections, two specific path planning 

algorithms (called Basic Algorithms, or algorithms Bugl 
and Bug2) are presented. Here, the First Basic Algorithm 
(procedure Bugl), the analysis of its characteristics, and a 
test for the target reachability when using Bugl, are dis- 
cussed. 

Procedure 
The procedure Bugl is executed at any point of a con- 

tinuous path. Figure 2 demonstrates the behavior of the 
automaton. The goal is to generate a path from Start to 
Target. When hitting an i-th obstacle, the automaton 
defines a Hit point Hi, i = 1,2,. . . . The automaton leaves 
the i-th obstacle (to continue its travel toward the Target) 

Figure 2. Automaton's path (dotted lines), algorithm 
Bugl. obl, ob2 - obsbdes; ~ l ,  HZ - Hit 
points; Ll, L2 - Leave points. 



from a Leave point Li; Lo= Start. The procedure consists 
of the following steps. 

Step I .  Starting at Li., , the automaton moves toward 
the Target along a straight line until it hits an i-th 
obstacle thus defining a point Hi. Alternatively, it may 
reach Target in which case it stops. 

Step 2. From Hi, the automaton starts moving along 
the obstacle borderline using the accepted local direc- 
tion (as agreed above, this is always left), while looking 
for the point of minimal distance to the Target. By the 
time the automaton makes a full circle around the i-th 
obstacle, it knows the point of minimal distance Li. In 
case the point Li is not unique, only such a point is used 
as Li which corresponds to a shorter path from Hi to 
Li. A shorter path from Hi to Li may correspond now 
to any direction around the obstacle (left or right), and 
not necessarily to the local direction. 

Step 3. Now, the automaton moves around the i-th 
obstacle, along the shorter path, to the point Li. Go to 
Step 1. 

Characteristics of Bugl. 
The characteristics and performance of the algorithm 

Bugl are analyzed in the following statements. 

Lemma 1. Under Bug 1 , after leaving a Leave point of 
an obstacle on its way toward the Target, the automaton 
never returns to this obstacle again. 

The Lemma guarantees that the strategy will never 
create cycles. Also, since, according to the accepted model 
of the environment, on its way to the Target the auto- 
maton may find only a finite number of obstacles (all of 
finite size), the Lemma guarantees convergence of the al- 
gorithm. 
Proof. Assume that on its way from Start to Target, the 

automaton meets some obstacles. Number those obstacles 
in the order in which the automaton meets them. Then, a 
following sequence of distances appears: 

If point Start happened to be on the border of an obstacle 
that occludes the view of Target, then D = d(Hl). 

If the automaton's path touches the i-th obstacle 
tangentially then there is no need to invoke the procedure 
of walking around an obstacle - the automaton just con- 
tinues its straight line walk toward Target. In all other 
cases of hitting an i-th obstacle, a relation will hold, 

This is because, on the one hand, according to the model, 
any straight line (except a line that touches the obstacle 
tangentially) crosses an obstacle at least in two distinct 
points (finite "thickness" of obstacles), and, on the other 

hand, according to the algorithm Bugl, point Leave is the 
closest point from the obstacle to Target. Starting from Li, 
the automaton walks straight to Target until it meets the 
(i + 1)-th obstacle. Since, by the model, obstacles do not 
touch one another, a relation holds: 

d(Li) > d(Hi + (3) 

Therefore, our sequence of distances obeys an inequality, 

m , )  > W , )  > d(H,) > d&,) 
> d(H3) > d(L3) ... (4) 

where d(H1) is or is not equal to D. Since d(Li) is the 
shortest distance from the i-th obstacle to Target, and 
since (3) guarantees that the algorithm Bugl monotonical- 
ly decreases distances to Target, Lemma 1 follows. Q.E.D. 

Corollary. Under Bugl, independent of the geometry of 
an obstacle, the automaton defines on it not more than 
one Hit and not more than one Leave point. 

To produce an upper bound on the length of the paths 
generated by Bugl, an assurance is needed that on its way 
to Target, the automaton always encounters only a finite 
number of obstacles. This is not obvious since, following 
the algorithm Bugl, the automaton may "look" at Target 
from different attitudes (that is, besides moving toward 
Target, it may rotate around Target, see Figure 3) and 
from different distances. 

Lemma 2. Under Bugl, on its way to Target the 
automaton may meet only a finite number of obstacles. 

Figure 3. Algorithm Bugl. Dotted lines indicate straight- 
line segments of the automaton's path. Seg- 
ments around obstacles are not shown; these are 
similar to the ones shown in Figure 2. 



Proof. Although, while walking around an obstacle, the 
automaton may, at some moments, be at distances larger 
than D from Target (see Figure 3), its straight line 
segments are always within the same circle with the center 

I 

I in Target and with the radius D. This is guaranteed by the 

I 
inequality (4). Since, by the model, any circle of finite 
radius may intersect with only a finite number of 
obstacles, the Lemma follows. Q.E.D. 

The following theorem gives an upper bound on the 
length of the path produced by the procedure Bugl. 

Theorem 2. The length of the path produced by the pro- 
cedure Bugl will never exceed the limit 

The Theorem shows (compare (5) and (1)) that even if 
some algorithm better than Bugl does (or will) exist, it 
may not exceed the performance of Bugl (as measured by 
the length of the path) by more than oile third. 

Proof. Any path may be looked at as consisting of two 
parts - straight line segments of the automaton's walk 
toward Tafget (between obstacles), and segments related 
to walking around obstacles. Because of the inequality (4), 
the sum of straight line segments will never exceed D. As 
to the path segments around obstacles, the algorithm Bugl 
requires that in order to define a point Leave on the i-th 
obstacle, the automaton has to make a full circle around it; 

I 
I 

this produces a segment equal to one perimeter, pi, of the 
obstacle. By the time the automaton is prepared to walk 
from Hit to Leave, in order to depart for Target, it knows 
the direction (go left or go right) of the shorter path to 
Leave. Thus, its path segment from Hit to Leave around 
the i-th obstacle will not exceed 0.5 .pi. Summing up all 
the partial estimates for straight line segments of the path 
and for segments around all the obstacles that the auto- 
maton meets on its way to Target produces the upper 
bound (5). Q.E.D. 

Test for Target Reachability by Algorithm Bugl. 
Every time the automaton "studies" a new obstacle it 

defines an L point on it; then it starts moving from L to 
Target along a straight line. If, after having defined the 
point L, the automaton discovers that the straight line 
(L,Target) crosses an obstacle at the point L, it may mean 
only that Target is not reachable - either Start is trapped 
inside the current obstacle, or Target is trapped inside the 
current obstacle. This simple fact is used in the test. 

Test for Target Reachability. If, while using the 
algorithm Bugl, after having defined a point L, the 
automaton discovers that the straight line (L,Target) 
crosses the obstacle at the point L, then Target is not 
reachable. 

V. SECOND BASIC ALGORITHM: Bug2. 
In this section, the procedure Bug2, analysis of its 

characteristics, and a test for target reachability when us- 
ing Bug2, are presented. 

Procedure 
The procedure Bug2 is executed at any point of a con- 

tinuous path. The goal is, again, to generate a path from 
Start to Target. Since, as will be clear, the algorithm does 
not always distinguish between different obstacles, in addi- 
tion to the subscript i to indicate the i-th obstacle, we will 
use the superscript j to indicate the j-th occurrence of the 
Hit or Leave points - on the same or a different obstacle; 
Lo= Start. The behavior of the automaton under Bug2 is 
demonstrated on the example shown in Figure 4. The pro- 
cedure consists of the following steps. 

Step 1. The automaton moves from ~ j - l  along a 
straight line (Start,Target) until it hits an obstacle at 
some point ~ j ,  j = 1,2,. . . (point HI, Figure 4); i t  may 
also reach Target in which case it stops. 

Step 2. Then, the automaton begins moving along 
the obstacle (always using the accepted local direction) 
until it reaches a Leave point, ~ j ,  (point L1, Figure 4) 
which satisfies two requirements: 1) ~j is located on the 
straight line (Start, Target), and 2) the distance from ~j 

to Target is smaller than the distance from Hj to Target, 
d ( ~ j )  > d ( ~ j ) .  Go to Step 1. 

Notice that unlike the algorithm Bugl, more than one 
point Hit and more than one point Leave may be 

Figure 4. Automaton's path (dotted line) under the algo- 
rithm Bug2. 



Figure 5. Automaton's path around a m a d i k e  obstacle 
(in-obstacle position) under the algorithm Bug2. 
In terms of path complexity, both obstacles (a b) 
are the same, whereas for (a) the stmight line 
(S,T) crosses the obstacle 10 times, ni = 10, and 
for (b), ni = 16. At most, the path passes one 
segment (here (H1,Ll)) three times; that is, there 
are at most two local cycles. 

Figure 6. Automaton's path in case of an in-obstacle posi- 
tion; here S is outside the obstacle, and T is in- 
side. 

generated during "processing" of a single obstacle (see, 
for example, Figure 5). Also, notice that dependence be- 

, tween the perimeters of obstacles and the length of the 
path generated by Bug2 is not as clear as in the case of 
Bugl. For some scenes, Bug2 may create shorter paths 
compared to Bugl; often the path around an obstacle will 
be shorter than the obstacle perimeter (compare Figures 2 
and 4). In some more unfortunate cases, when the straight 
line segment of the path meets the obstacle almost tangen- 
tially and the automaton goes around the obstacle in 
a"bad" direction, the path may be actually equal to the 
full perimeter of the obstacle (see Figure 7). Finally, as 
Figures 5 and 6 demonstrate, the situation may get even 
worse, and the automaton may have to pass along some 
segments of a maze-like obstacle even more than once. 

Characteristics of Bug2. 
For the analysis of performance of Bug2, we introduce 

additional definitions. 

Definition 3. For a given local direction, a local cycle is 
created when the automaton has to pass some segment of 
the same obstacle more than once. In the example in 
Figure 7, no cycles are created; in Figures 5 and 6 there are 
some local cycles. 

Definition 4. A case of an in-obstacle refers to such a 
mutual position of the pair of points (Start, Target) and a 
given obstacle where 1) the interval (Start,Target) of the 
corresponding straight line crosses the obstacle borderline 
at least once, and 2) either Start or Target lie inside the 
minimal convex hull of the obstacle. A case of out-obstacle 
refers to such a mutual position of the pair (Start, Target) 
and the obstacle in which both points Start and Target lie 

Figure 7. A case when, under the algorithm Bug2, the 
automaton will have to make almost a full circle 
around a convex obstacle. 



outside the minimal convex hull of the obstacle. For exam- 
ple, in Figure 3 the pair (Start, Target) are located outside 
the obstacles obl, ob2, and inside the obstacle ob3. 

Below, ni is the number of intersections between the 
straight line (Start, Target) and the i-th obstacle; thus, ni is 
a characteristic of the set (scene,Start,Target) and not of a 
specific algorithm. Obviously, for any convex obstacle 
ni= 2. 

If an obstacle is not convex, the situation may still be as 
simple as for convex obstacles, if ni = 2 (Figure 4, obstacle 
ob2). The situation may become more complicated if 
ni > 2. In Figure 5a,b, one can see that, under Bug2, the 
segment of the borderline from H1 to L1, (HI ,Ll), will be 
passed three times; segments (Ll,L2) and (H2,Hl) - two 
times each, and segments (L2,L3) and (H3,H2) - one 
time each. 

Lemma 3. Under Bug2, the automaton will pass any 
segment of the i-th obstacle borderline at most ni/2 times. 

The Lemma, therefore, guarantees that the procedure 
terminates, and gives a limit on the number of generated 
local cycles. 

Proof. Assume that only one obstacle is present so that 
we can drop the index i. For each Hit point, ~ j ,  the pro- 
cedure will make the automaton walk around the obstacle 
until it reaches the corresponding Leave point, Lj; 
therefore, all H and L points appear in pairs, ( ~ j , L j ) .  
Under the accepted model (finite"thickness" of obstacles), 
for each pair ( H j , ~ j )  an inequality holds: d ( ~ j )  > d(Lj). 
After leaving Lj, the automaton walks along a straight line 
to the next Hit point, ~ j + l .  Since, by the model, the 
distance between two segments of obstacle borderline is 
finite, then d(Lj) > d ( ~ j  + I). This produces an inequality 
for all the H and L points, 

Therefore, although each H (or L) point may be passed 
more than once, it will be defined as an H (or L) point only 
once; thus, it may generate only one new passing of the 
same segment of the obstacle perimeter. In other words, 
each pair ( ~ j , L j )  may give rise to only one passing of an 
obstacle borderline segment. Q.E.D. 

Using this Lemma, we can now produce an upper 
bound for the length of the path generated by Bug2. 

Theorem 3. The length of the path produced by the pro- 
cedure Bug 2 will never exceed the limit 

Proof. Any path may be looked at as consisting of two 
parts - straight line segments of the automaton's walk 
toward Target (between obstacles or between parts of the 
same obstacle) along the line (Start, Target), and segments 

related to walking around the obstacle borderline. Because 
of the inequality (6), the sum of straight line segments will 
never exceed D. As to the path segments around obstacles, 
Lemma 3 guarantees for each obstacle met by the auto- 
maton the upper bound-not more than n i/2 walks along 
the same segment of the obstacle borderline. Summing up 
both the straight line walk estimate and estimates for walk- 
ing around all obstacles, produces (7). Q.E.D. 

The following theorem shows that the upper bound 
given by (7) is constructive, in the sense that there exist 

, scenes for which generated paths will be as close to the up- 
). 

per bound (7) as one wishes. The theorem is formqlated 
for one obstacle only; by placing obstacles one 'h ide  
another, one can easily extend its results to any number of b 

obstacles. 

Theorem 4. For any E>O, there exist a scene with just 
one obstacle in it for which the length of the path produc- 
ed by Bug2 will be equal to 

Proof. To prove the theorem, it is enough to give an ex- 
ample of a scene for which the theorem holds. Notice that 
to reach the upper bound (7), the automaton must make a 
full circle around each obstacle maximum number of times 
as suggested by Lemma 3 - namely, n i/2 times. In ac- 
tuality, in its walk around an obstacle, the automaton will 
pass some segments of its perimeter less than ni/2 (these 
are "good" parts of the path) and some other segments of 
the perimeter - exactly ni/ 2 times ("bad" parts of the 
path). To satisfy (8), the "bad" parts of the path have to 
account for at least (1 - E) part of the total path length. 

Consider an example shown in Figure 8. Under Bug2, 
the automaton will have to walk around the comb-like 
segments of the obstacle, (HI ,L1), two times; according to 
Lemma 3, since n = 4, then two is the maximum number of 
passing around a perimeter segment. One can see that, 
without changing any other details of the scene, the length 
of the segment (H1 ,L1) may be made arbitrarily long, and, 
in particular, such that for any specific E > O  the upper 
bound (8) is reached. Q.E.D. 

So far as the performance of the algorithm Bug2 is 
concerned, Theorems 3 and 4 sound rather depressive; 
namely, they suggest that, under Bug2, the automaton 
sometimes may have to go around an obstacle any (large + 
albeit finite) number of times. Because of this, an impor- 
tant question is: How typical are "bad" scenes, and, in 
particular, What characteristics of a scene influence the 
length of the path? The Theorem 5 and the following Cor- 
ollary below address this question. They suggest that, in- 

( 

deed, only in rather special cases will generated paths be as 
long as estimated by (8). Theorem 5 states, in particular, 
that the mutual position of the Start point, Target point, 
and the obstacles is an important characteristics of the 



Figure 8. Illustration for Theorem 4. The part of the path 
corresponding to the comb-like segment 
(Hl,Ll), accounts for (I-€) part of the total path 
length. This part will be passed the maximum 
number of times (here two times, according to 
Lemma 3). 

scene influencing the path length. The Corollary states that 
for convex obstacles the upper bound on the length of the 
paths generated by Bug2 may be improved significantly. 

Theorem 5. Under Bug2, in case of an out-obstacle, the 
automaton will pass the obstacle's perimeter at most once. 

In other words, no matter how "bad" the obstacle is 
in itself, for an outside position (see the definition above) 
the estimate on the length of the path reaches its lower 
bound (I)! 

Proof. Figure 9 illustrates the proof. Shaded areas in 
Figure 9 correspond to one or many obstacles. Dotted lines 
indicate that obstacle borderlines may be any. Consider 
the first point H the automaton defines on its way from 
Start to Target. The automaton reaches this point first 
along the straight line (Start,Target), then turns left and 
starts walking around the obstacle. To form a local cycle, 
the automaton has to return to the point H again. Since a 
point may be defined as an H point only once (see the pro- 
of for Lemma 3), the next time the automaton returns to 
the point H it will be approaching point H from the right 
(see Figure 9), along the obstacle borderline. Therefore, 
after having defined and left point H, in order to approach 
it again (this time from the right), the automaton has to 
cross somehow the straight line (Start,Target). In general, 
there may be two ways of crossing this straight line: 

1) The crossing occurs outside the interval (Start,Target). 
This case corresponds to an in-obstacle position (see 

Figure 9. Illustration for Theorem 5. 

Definition 4 above)-either due to Start point or due to 
Target point. Theorem 5, therefore, does not apply. 

2) Imagine that the crossing occurs inside the interval 
(Start,Target). Now we prove that such crossings of the 
path with the interval (Start,Target) may not result in local 
cycles. Notice that a crossing may not occur anywhere 
within the interval (Start,H) because otherwise H would 
not be the first H point defined. If a crossing occurs within 
the interval (H,Target), then at the point of crossing, the 
automaton, following the algorithm steps, defines a cor- 
responding L point and starts moving along the line 
(Start,Target) toward Target until it defines the next H 
point; therefore, here it cannot reach into the right semi- 
plane (see Figure 9). If, after this maneuver the automaton 
hits another part of an obstacle, the situation repeats itself. 
In other words, for any point within the interval (H,Target) 
the automaton will operate only in the left semiplane of the 
scene plane - this fact prevents it from having a local cy- 
cle. Q.E.D. 

So far, no constraints on the shape of the obstacles have 
been imposed. If one assumes now that all of the obstacles 
are convex, then the upper bound for the length of the 
path may be improved as illustrated by the following state- 
ment. 



Corollary. If all obstaclts met by the automaton are 
convex, then the "average" length of the path produced 
by the procedure Bug2 is 

P = D + 0.5 .Cpi (9) 

and the length of the path produced for the worst scene is 

P = D + 1 .0*cp i  (10) 

Consider a statistically representative number of scenes 
with a random distribution of convex obstacles over each 
scene, a random distribution of points Start and Target 
over the set of scenes, and a fixed local direction as defined 
above. Then the straight line (Start,Target) will cross all 
the obstacles it meets in such a way that for some obstacles 
the automaton will have to walk around them while cover- 
ing the bigger part of their perimeters (as with the obstacle 
obl, Figure 4). For some other obstacles, the automaton 
will cover only a smaller part of their perimeters (as with 
the obstacle ob2, Figure 4). On the average, one would ex- 
pect a path that satisfies (9). As for (lo), Figure 7 presents 
an example of such a bad scene. 

This Corollary assures, therefore, that for a wide range 
of scenes the length of paths generated by the algorithm 
Bug2, will approach the universal lower bound (1). 

Test for Target Reachability 
At this point, a simple test may be defined to check for 

existence of a path between points Start and Target. We 

will use the fact that the automaton may determine, store, 
and later recognize its own coordinates. 
, As Lemma 3 suggests, under Bug2 the automaton may 
pass the same point Hj of the same obstacle more than 
once; in other words, it may make a finite number p of 
local cycles, p = 0,1,2,. . . . It follows from the inequality (6) 
that after having defined a point Hj, the automaton will 
never define this point again as an H or L point. There- 
fore, on each of the subsequent local cycles (if any), point 
Hj will be passed hot along the straight line (Start,Target), 
but along the obstacle borderline. Every time after leaving 
point Hj, the automaton may expect one of the following 
possibilities: 

a) it will not return again to Hj; this happens, for ex- 
ample, if the automaton leaves this obstacle altogether, 
or/and reaches the Target, 

b) it will define at least the first two of the points 
Lj, Hj + l, ... and then return to the point Hj to start a 
new local cycle, 

c) it will come back to the point Hj without having 
defined on the previous cycle a point ~ j ;  this may hap- 
pen only if either the automaton or the Target are being 
trapped inside the current obstacle (see Figure 10). 
Now, the test for Target reachability will be for- 
mulated. 

Test for Target Reachability If, on the p-th local 
cycle, p = 0,1, ..., after having defined a point Hj, the 
automaton returns to this point before it defines at least 
the first two out of the possible set of points 
~ j ,  Hj + l,. . . ,Hk, it means that the automaton has been 
trapped and, hence, that Target is not reachable. 

VI. IMPROVING PERFORMANCE OF 
BASIC ALGORITHMS 

Basic Algorithms Bug1 and Bug2 have each a clear sim- 
ple idea behind them. These ideas helped us prove 
theorems that define the upper and lower bounds on the 
length of generated paths. In the actual implementations 
of the algorithms, improvements can and should be in- 
troduced, which in many situations will make the paths 
shorter. Although the flow of action in such modified ver- 
sions may be not as "clean" as in the Basic Algorithms, 
the bounds on the path length defined in the theorems 
above for the Basic Algorithms may be still applicable. 
Such a version, which actually combines the mechanisms 

a)  b) of both Basic Algorithms, follows; it is called BugMl (for 
"modified"). 

Figure 10. Examples of traps. Although, in general, the algorithm Bug2 is quite effi- 
The path (dotted line) is executed under the cient, in cases of in-obstacles, it may create local cycles (see 
algorithm Bug2. After having defined the Theorem 5). Bug2 will be modified in such a way that the 
point HZ, the automaton return to it before it number of local cycles will never be larger than two. In 
defines any new L point. Therefore, the target other words, the automaton will never pass the same seg- 
is not reachable. ment of the obstacle borderline more than three times. 



The procedure BugM1 is executed at any point of a con- 
tinuous path. It effectively uses a straight line (Lj ,Target) 
where the point Target is permanent, and the point Lj 
changes; j = 1,2,. , . . The procedure consists of the follow- 
ing steps. 

Step 1. The automaton moves from Lj-I (Leave 
point), j = 1,2,. . . , along a straight line (Lj-l ,Target) un- 
til it hits an obstacle at some point ~j (Hit point); alter- 
natively, it may reach Target in which case it stops. 
LO= Start; that is, the first Leave point coincides with 
Start. 

Step 2. From Hj, the automaton begins moving 
along the obstacle (always using the accepted local 
direction) until it defines a point Lj. There may be two 
possibilities: 

a) Moving along the obstacle borderline, the 
automaton crosses the straight line (Lj-1, Target) in- 
side the interval (Lj-',Target); in this case the 
automaton defines a point Lj in such a way that it 
satisfies two requirements: 1) Lj is located on the 
straight line (Lj - ',Target), and 2) the distance from 
Lj to Target is smaller than the distance from Hj to 
Target, d(Lj) < d(Hj). Go to Step 1. 

b) Moving along the obstacle borderline the 
automaton crosses the straight line (Lj, Target) out- 
side the interval (Lj,~arget); in this case the 
automaton defines a point ~j according to the Steps 2 
and 3 of the algorithm Bugl. Go to Step 1. 

Notice that if the scene is such that every time only Step 
2a is executed then the actual flow of the algorithm is that 
of Bug2, and the straight lines (Lj ,Target) always coincide 
with the straight line (Start,Target). No local cycles may be 
created in such situations. 

As Theorem 5 suggests, local cycles appear in cases of 
in-obstacles when the condition accounted for in Step 2b 
of BugM1 is created. Having recognized a danger of multi- 
ple local cycles by the Step 2b condition being satisfied, the 
automaton, instead of risking an uncertain number of 
local cycles it may expect under Bug2 (see Lemma 3), 
"decides" to go to a more conservative but guaranteed up- 
per bound (5) provided by the algorithm Bugl; it does this 
by executing Steps 2 and 3 of Bugl. After at least one ex- 
ecution of Step 2b, the straight line (Lj ,~ar~et) ,  in general, 
no longer coincides with the straight line (Start,Target); in- 
stead, the straight line segments of the path look similar to 
those created by the algorithm Bugl (see Figure 3). 

With such a modification, the automaton will, in 
general, have the efficiency of Bug2 (in the sense that it 
does not have to necessarily walk around the full obstacle 
perimeter) while it will never pass the same segment of the 
obstacle borderline more than three times. 

VII. SOME OBSERVATIONS ON PERFORMANCE 
OF BASIC ALGORITHMS 

From the analysis above, one conclusion is that Basic 
Algorithms guarantee termination. Another conclusion is 
that in no way are the algorithms equivalent. Depending 
on the scene, one of them may produce a path significantly 
shorter than another. The question on when what algo- 
rithm should be used goes beyond a formal analysis. One 
could say, for example, that the algorithm Bugl will, 
probably, appeal to a rather conservative (pessimistic) 
automaton, whereas the algorithm Bug2 may appeal to a 
more optimistic automaton. 

If the automaton wants to minimize the effort (path 
length) for the worst scenes (a pessimistic automaton), 
Bugl provides a guarantee that the path will never exceed 
the limit (5). Unfortunately, Bugl will never produce a 
path as short as the one shown in Figure 4, but, on the 
other hand, it will never create local cycles. 

However, if the automaton wants to minimize the effort 
on simple scenes, or if it has reasons to believe that the 
scene in question will not present any unpleasant surprises 
(an optimistic automaton) then it will use Bug2, which for 
convex and simpler non-convex obstacles, promises paths 
as short as given by (9). 

Another reason for the optimistic automaton to be op- 
timistic, and, thus, to use Bug2 instead of Bugl, is pro- 
vided by Theorem 5, which guarantees that even for the 
most complicated scenes the path will never exceed (10) 
(which is better than (5) for Bugl) if the mutual position of 
Start, Target, and obstacles corresponds to a case of an 
out-obstacle, 

And, of course, the algorithm BugMl provides some 
reasonable compromise between the good and bad sides of 
Basic Algorithms. 

One gets an additional insight into the operation and the 
"area of expertise" of the Basic Algorithms by trying to 
use them in maze search problems. There are a number of 
ways by which the problem of search in an unknown maze 
may be set. In one version (see, e.g., ['el) the automaton, 
started at any cell of the maze, must eventually visit every 
single cell without passing through any barriers (it means, 
of course, that any pair of cells in the maze is connected 
via other cells). Notice that in this version there is no no- 
tion of a Target cell whose coordinates are known; no 
sense of direction is present. Thus, neither of the Basic 
Algorithms can be used. 

In another version of the maze search problem, given a 
Start point in a maze, the automaton is to find an exit 
from the maze; the coordinates of the exit are not known. 
Although no target is presented explicitly, the automaton 
may chose any point (direction) somewhere in infinity and 
then use the Basic Algorithms as usual. With such an oper- 
ation, the exit is guaranteed to be found. 



In still another version of the maze search problem (see, 
e.g., [I7]), the automaton is given coordinates of two 
points (cells) S (Start) and T (Target) in a maze and is 
asked to find a route from S to T. Clearly, this version is 
close to the problem considered in this paper. 

Consider, for example, the behavior of the algorithm 
Bug2 in a maze search problem. As Theorem 3 states (and 
Figure 5 demonstrates), given an unfortunate scene, Bug2 
may be rather inefficient and may create quite a few local 
cycles. On the other hand, as Theorem 5 ascertains, in 

many scenes Bug2 should behave rather efficiently. For a 
maze, the test on the in-obstacle condition relates not to 
the whole maze (as one may first think), but to the in- 
dividual maze barriers which may, or may not, create in- 
obstacles. 

This problem is demonstrated in Figure 11 on a ran- 
domly designed maze with Start and Target points thrown 
randomly in more or less opposite directions of the maze. 
(Since typically maze search algorithms - see, e.g., [I61 - 
use discrete models, Figure 11 presents a discrete version 

Figure 11. Example of a walk in a maze using Algorithm Bug2. (S = Start, T = Target.) Points in 
which the automaton's path (dotted line) crosses the imaginary straight line (S,T) are indicated 
by dots. Maze barriers are shown in thick lines. 



of the co&inuous path planning problem; the automaton 
walks through cells presented by little squares; any cell 
touched by the straight line (S,T) is considered to be lying 
on this line). A quick look at the barriers between S and T 
suggests that the automaton is dealing here with the case of 
an out-obstacle; therefore, Theorem 5 should apply; no 
local cycles sfiould be generated; and the generated path 
may be expected to be relatively short. Indeed, as Figure 1 1 
demonstrates, this is the case. Given the fact that the 
automaton knows nothinglabout the design of the maze, it 
behaves rather reasonably. 
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