

G E N E R A L @ E L E C T R I C TECHNICAL INFORMATION
General Electric Company
Corporate Research and Development

SERIES
Schenectady, New York 12345

AUTHOR

Lumelsky, V
Stepanov, A

SUBJECT

robotics, artificial intelligence

I- Navigation Strategies for an Autonomous Vehicle
with Incomplete Information on the Environment

I oniir~nws
COMPONENT

NO.

84CRD070
DATE

April 1984
6E CLASS 1
NO. PAGES

13
CORPORATE

RESEARCHANOOEVELOPMENT
SCHENECTAOY, N.Y.

SUMMARY

A problem of path planning for an automaton moving in two-dimensional
space filled with obstacles is considered. A new computational model - a con-
tinuous model - for the environment and for the automaton operation is
presented. Information about the environment (the scene) is assumed to be in-
complete except that at any moment the automaton knows the coordinates of its
target as well as its own coordinates. The automaton is presented as a point;
obstacles may be of any shape, with continuous borderline and finite size.
Algorithms guaranteeing reaching the target (if the target is' reachable) by the
automaton are presented. Tests for ensuring that the target is (or is not) reachable
are developed.

Minimum worst case upper bounds are given on the length of paths generated
by the algorithms; these are expressed in terms of perimeters of obstacles in the
scene. Also, a universal lower bound on the path length for the path planning pro-
blem is presented. It is shown that unless the automaton in initially positioned
rather unusually rehtive to the obstacles, one of the presented algorithms guaran-
tees a path whose length reaches the universal lower bound.

I KEY WOllOS
autonomous vehicle, path planning, robotics, navigation strategies,
artificial intelligence, maze traversing

INFORMATION PREPARED FOR

Additional Hard or Microfiche Copies
Available from

Technical Information Exchange
Bldg. 5 Room 321, Schenectady, N.Y. 12345

NAVIGATION STRATEGIES FOR AN AUTONOMOUS VEHICLE
WITH INCOMPLETE INFORMATION ON THE ENVIRONMENT

V. Lumelsky and A. Stepanov

1. INTRODUCTION
To plan a path for a traveling automaton means to find

a continuous trajectory leading from the initial position of
the automaton to its target position. The environment (the
scene) in which the automaton travels is defined in a (two-
dimensional) plane. The scene may be filled with obstacles.
Obstacles may be of any shape and size, with the following
(rather practical) constraints: 1) each obstacle is a simple
closed curve; this simply means that the obstacle bor-
derline is a continuous curve with no self-intersections,
2) obstacles do not touch each other, 3) any circle of a
given radius may intersect with only a finite number of ob-
stacles.

The existing body of work on path planning may be
classified into two categories - works dealing with situa-
tions with complete information on the scene, and works
that assume that the information on the scene is in-
complete.

In path planning with complete in formation, one popu-
lar version is the "Piano Movers'' problem. Given (in two-
or three-dimensional space) a solid object of known di-
mensions, its initial and target position and orientation,
and a set of obstacles whose shapes, positions and orienta-
tions in space are known, the task is to find a continuous
(2-D or 3-D) path for the object from the initial position to
the target position while avoiding collisions with obstacles
along the way.

Schwartz and Sharir 16] solve a two-dimensional case of
the "Piano Movers" problem with convex obstacles pre-
sented as polygons; the presented algwithm is shown to
produce a solution in a polynomial time qn5) where n is
the number of distinct convex walls of obstacles.

In a number of works, final dimensions of the solid ob-
ject are viewed as shrinking to a point, while the obstacles
are viewed as expanding inversely to the shape of the ob-
ject. This requires increasing the dimensionality of the in-
itial space - one extra dimension per each degree of rota-
tional freedom. Resulting obstacles have non-planar walls
(even if original obstacles are polyhedra). In order to keep
the problem manageable, it is typical to impose various
constraints. For example, Lozano-Perez 18] allows the ob-
ject to change its orientation only once, if at all, during its
motion.

Moravec 1'1 considers a path planning algorithm in two
dimensiqps, with the object presented as a circle. Brooks, 191

in his treatment of a two-dimensional path planning prob-
lem with a convex polygon object and convex polygon ob-
stacles, uses generalized cylinders presentation of space [lo]
to reduce the problem to a search on a graph; a generalized
cylinder is formed by a volume swept by a cross sectioxq (in
general, of varying shape and size) moving along an axis
(in general, a spine curve). Reif [Ill solves the two- and
three-dimensional problems of moving a solid polygon or
polyhedron object in polynomial time, by direct computa-
tion of the "forbidden" volumes in spaces of higher
dimensions d (d = 3 for a two-dimensional "Piano Mover"
problem, d = 6 for a three-dimensional problem).

A version of the "Piano Movers" problem, where the
moving object is allowed to consist of a number of free-
hinged links, is a more difficult problem. This version was
started by Pieper and then investigated by Paul [I31
because of its obvious relation to path generation and
coordinate transformation problems of multiple-degrees-
of-freedom robot arms. Schwartz and Sharir [12] gave a
general (but not polynomial time) algorithm for generating
a path for a free-hinged object. Reif [I1] showed that gen-
erating a path for a free-hinged object is, in general, a
P-space complete problem. Following this conclusion,
some limited versions of the problem have been consid-
ered. Hopcroft et al. [I41 gave a polynomial-time path
planning algorithm for a two-dimensional free-hinged ob-
ject shaped like a folding carpenter ruler. Even this limited
two-dimensional problem was shown to become difficult if
the links of the carpenter's ruler are not of equal length.

Among works on path planning with incomplete infor-
mation, in [5] a two-dimensional navigation problem is
considered. Obstacles are described by polygons, produced
paths lie along edges of the connectivity graph formed by
obstacle vertices, the start point, and the target point, with
an obvious constraint on intersection of the path with
obstacle polygons. Path planning is limited to the auto-
maton's immediate surrounding for which information on
the scene is complete; within this surrounding, the problem
is actually treated as one with complete information.

In the work by Bullock et al. [I] on the autonomous
vehicle control, the input information on the scene comes
from an image acquistion and understanding module. [2931
(Techniques for deriving two-dimensional structure of the
scene from partial snapshots of the 3-D terrain taken by a
moving observer, have been studied, e.g., by Lavin i49.

Manuscript received March 1 6, 1 984 1

The work uses knowledge-based techniques and relies
heavily on canned strategies for typical recurring situations
(e.g., going around an obstacle from the left). The system
emphasizes usage of prestored two-dimensional map in-
formation on the scene. Incoming (visual) sensor informa-
tion is used for fine tuning of the path. Obstacles are rep-
resented as polygons; path planning strategy is based on
search on a connectivity graph.

- In the work presented here, a continuous model of the
environment (the scene) and of the automaton operation is
considered. That is, the automaton may be measuring its
coordinates and planning its actions continuously. No ap-
proximation of obstacles (e,g., by polygons) is done, and,
consequently, no connectivity graphs arise. Since no re-
duction to a discrete space is done, all the points of space
(and not only those points that lie along certain subspaces
- e.g., along edges of a connectivity graph) are available
for path planning purposes. Due to continuous models, a
new type of path planning algorithms appears. For these,
the usually used criteria for measuring their performance
(such as computational complexity as a function of the
number of nodes of the connectivity graph, or the time or
memory required) are no more applicable; hence, new per-
formance criteria - in particular, those dealing with the
length of generated paths, as a function of obstacle perim-
eters - are introduced.*

A simple traveling automaton (called a minimal
automaton) will be considered that has no knowledge
about the scene except its current coordinates and the co-
ordinates of the target. Its only sensor lets it feel an ob-
stacle when it hits. Expansion of the approach presented
here on situations when the automaton has additional
sources of information (such as vision or prestored maps)
and additional capabilitities, is a subject of future work.

First, the model of the environment and of the auto-
maton is formulated. Then, a universal lower bound (that
is, one applicable to any theoretically feasible algorithm)
for the path planning problem is produced. After that, two
Basic Algorithms for path planning are described, As one
will see, the algorithms have different characteristics, and,
depending on the scene, one of them may produce a
shorter path than the other. For the algorithms, the upper
bounds on the length of generated paths are established;
these are compared with the universal lower bound on the
length of generated paths; also, tests for target reachability

*Because of incompleteness of information, the path can-
not be preplanned, and so its global optimality is ruled
out. Insuad, one can judge on performance of algorithms
by how optimal algorithms are locally, or how
"reasonable" they look from the standpoint of a human
traveler; or how they compare with other existing or
theoretically feasible algorithms.

are formulated. This is followed by an improved version
of the path planning algorithm that combines good sides
of both Basic Algorithms while not sacrificing much of
their clarity. In the last section, the performances of the
algorithms are compared, and an additional insight into
the algorithms' mechanisms is provided by showing their
relevance to the maze search problem.

11. MODEL
The model to be considered includes two parts: one

related to the geometry of the scene, and another related to
the characteristics and actions of the automaton.

Environment. The scene in which the automaton travels
is defined in a plane. A scene may contain obstacles, each
of which is a simple closed curve. Obstacles or their parts
do not touch each other; that is, a point on an obstacle (or
on a part of an obstacle) belongs to one and only one
obstacle (part of an obstacle). A scene may have a locally
finite number of obstacles. Formally, it means that any cir-
cle of a limited radius or any straight line segment in the
plane will intersect with a finite set of obstacles. Any
obstacle is homeomorphic to a circle; that is, for any
obstacle there is some continuous topological mapping
that transforms the obstacle into a circle.

Automaton. The automaton is a point. This means that
an opening of any size between two distinct obstacles is
considered to be passable. (In practice, finite dimensions
of the automaton will have to be taken into consideration;
in this work the automaton's size and shape are ignored).
The minimal automaton has "sensors" that provide it with
the following information: 1) its current coordinates,
2) the fact that it hit an obstacle ("force sensor"). It is as-
sumed that the automaton knows the coordinates of the
target. The automaton, therefore, may always calculate its
direction on, and its distance from, the target.

In terms of its movement, the automaton is capable of
three actions: 1) move toward the target on a straight line,
2) move along an obstacle, 3) stop.

Definition 1. A focal direction is always a decided direc-
tion of passing around an obstacle. For the two-dimen-
sional problem, it can be either left or right.

Because of incompleteness of information, every time a
minimal automaton hits an obstacle, there is no informa-
tion or criteria that could help it decide whether it should
go around the obstacle from the left or from the right, For
the sake of clarity and without losing generality, assume
that the local direction of the automaton is always left (as
in Figure 4). Unless told otherwise, the automaton will be
assumed to follow the local direction while walking around
obstacles.

Definition 2. The automaton defines a Hit point H
when, while moving along a straight line toward the

2

Target, the automaton hits the point H of an obstacle; it
defines a Leave point L when it starts moving along a
straight line from the point L toward the Target. (See, for
example, Figure 4).

In the following sections, these notations will be used:
D is the distance from Start to Target,
d(A,B) is the distance between any points A and B of

the scene; thus, d (Start, Target) = D,
d(Ai,B) signifies the fact that the point A is located

on the borderline of the i-th obstacle met by the
automaton on its way to Target,

d(Ai) is used as a shorthand notation for d(Ai,
Target),

P is the total length of the path generated by the
automaton on its way from Start to Target,

pi is the perimeter of the i-th obstacle,
The performance of the algorithms analyzed in the

following sections will be evaluated using a quantity Zpi
the sum of perimeters of obstacles met by the automaton
on its way to Target. This quantity will allow us to com-
pare various path planning procedures in terms of the
length of paths they produce.

111. LOWER BOUND FOR PATH
PLANNING PROBLEM

The lower bound determines, within the framework of
the environment and the automaton models described
above, what ultimate performance may be expected from
any path planning algorithm. The lower bound (for-
mulated in Theorem 1 below) is a powerful means for
measuring performance of path planning procedures.

Theorem 1. For any algorithm of path generation, there
is a scene for which the length P of the generated path will
obey the relationship

where P, D, and pi have been defined above, and 6 is any
constant.

Proof. This present work attempts to prove that no mat-
ter what algorithm someone comes up Svith, a scene may
be designed for which the length of the path generated by
this yet unknown algorithm (called Algorithm X), will
satisfy (1). Algorithm X may be deterministic or random;
its intermediate steps may or may not depend onin-
termediate results - it may be any; it is assumed to be
operated by an automaton (AT) and within an environ-
ment whose models have been described above.

At the beginning, points Start and Target are defined
and given to AT. Since AT starts at a distance
D = d (Start,Target) from Target, it obviously cannot
avoid the term D in (1). It is necessary to concentrate,
then, on the second term in (1). We suggest a scheme for

designing scenes such that for any X the designed scene
will force X to generate a path not shorter than P in (1).

The defeating scene is built in two stages. We start with
aplan of the scene which has in it some maximum obstacle
- that is, an obstacle parts or all of which (but not more
than that) will (on the second stage) make actual
obstacle(s) of the scene.

Then let AT walk from Start to Target. If, on its way,
AT hits the maximum obstacle, it will somehow have to go
around it using its algorithm X. When the path is com-
plete, the second stage starts; we observe the path and
designate as parts of actual obstacle(s) only those areas of
the maximum obstacle that have been touched by AT from
inside the corridor.* If AT moved along the maximum
obstacle borderline, this area becomes a part of the actual
obstacle; if AT only touched the maximum obstacle and
then bounced back, an area of the length 6 of the obstacle
around the point of touch becomes a segment of an
obstacle. The rest of the maximum obstacle can be left out
because (at least, under the accepted model) the behavior
of AT does not depend on the areas of obstacle(s) which it
never touches. Therefore, the resulting scene could have
been the one in which AT would operate and use its Al-
gorithm X. This completes the design of the scene.

Now it is necessary to prove that the AT's path in the
resulting scene obeys (1). At this point, one may see that
the main idea behind the described process of designing an
appropriate scene is that no matter what Algorithm X is,
under the described process AT will always be forced to
generate, for each actualized segment of an obstacle, a seg-
ment of the path at least twice as long.

Consider a maximum obstacle shown in Figure la: this
is a corridor of finite width 2 W > 6 and of finite length L,
with the Start point located in the middle of the "bottom"
(the closed end) of the corridor, and the axis of the cor-
ridor going in the direction opposite to the interval
(Start,Target).** The width of the corridor walls is negligi-
ble compared to 6. AT's path in the scene may be divided
into two parts, PI and P2. PI corresponds to AT'S travel
inside the corridor, and P2 outside the corridor. Both parts
may be intermixed since, after getting out of the corridor,
AT may temporarily return into it. It is clear, though, that
since part P2 start? at the exit point of the corridor, then
P2 2 L + C where C is the differenoe between the
hypotenuse and the side in the triangle ATS. As for the

*With this condition of counting only the inside touching,
we ensure that for each actualized segment of an
obstacle, AT will generate at least a twice as long segment
of the path.

** It is enough to show that (1) holds for a scene with one
maximum obstacle. Notice, though, that depending on
AT's behavior, one or more actual obstacles may be
created in the scene of Figure 1.

part PI, there may be various alternatives all of which fall
in one of three gr0ups.t

1. Part PI of the path never touches the walls of the cor-
ridor (Figure la). As a result, no obstacles will be created
(pi= 0) but a non-zero second term in (1) will appear.
Therefore, for this kind of X the theorem holds.
Moreover, at the final evaluation where only actual
obstacles count, this AT strategy will not look very
reasonable: it creates an additional path segment (second
term in (1)) at least equal to (2 .L + C) - in a scene with
no obstacles!

2. Part PI of the path is such that one or more of
disconnected &segments on one or both side walls of the
corridor (see Figure lb) are actualized. As one can see, this
kind of strategy is not very wise either: per each &segment
of an actual obstacle, AT creates a larger segment of the
path; the length of this path segment depends either on W
(if the next &segment of the obstacle is located on the wall
opposite to that of the previous &segment) or/and at least
on the distance between two sequentially created discon-
nected &segments (if these are on the same wall of the cor-
ridor). Thus, the length P of the path exceeds the right side
in (I), and the theorem holds.

3. AT closely follows the internal walls of the corridor,
and then it chooses the shortest path to the Target (see
Figure lc). Here AT is doing its best in trying to compen-

"fhe actual path inside the corridor may be as capricious
as one wishes - for example, it may follow some
strange curves, or go back and forth, or go in circles,
etc. Every segment of the path that does not "create"
an equivalent actualized obstacle segment, makes, from
the standpoint of (I), the path worse. Three groups
above capture all possibilities in terms of relationship
between the path length and the right side in (1).

Figure 1. Illustration for Theorem 1. ActualhRd segments
of the maximum obstacle are shown in solid.
S - Start point, T - Target point.

sate each segment of its path with an equivalent actual
obstacle segment. In such a case, the generated path P will
be equal to

P = JZTi-F+ (z p i - W)

where there is only one term in Zpi. Since we are free to
choose the parameters D and W of the scene, they are
taken such that

6 2 W + D - w

and, therefore, (1) is satisfied. Q.E.D.

IV. FIRST BASIC ALGORITHM: Bugl.
In this and the next sections, two specific path planning

algorithms (called Basic Algorithms, or algorithms Bugl
and Bug2) are presented. Here, the First Basic Algorithm
(procedure Bugl), the analysis of its characteristics, and a
test for the target reachability when using Bugl, are dis-
cussed.

Procedure
The procedure Bugl is executed at any point of a con-

tinuous path. Figure 2 demonstrates the behavior of the
automaton. The goal is to generate a path from Start to
Target. When hitting an i-th obstacle, the automaton
defines a Hit point Hi, i = 1,2,. . . . The automaton leaves
the i-th obstacle (to continue its travel toward the Target)

Figure 2. Automaton's path (dotted lines), algorithm
Bugl. obl, ob2 - obsbdes; ~ l , HZ - Hit
points; Ll, L2 - Leave points.

from a Leave point Li; Lo= Start. The procedure consists
of the following steps.

Step I . Starting at Li., , the automaton moves toward
the Target along a straight line until it hits an i-th
obstacle thus defining a point Hi. Alternatively, it may
reach Target in which case it stops.

Step 2. From Hi, the automaton starts moving along
the obstacle borderline using the accepted local direc-
tion (as agreed above, this is always left), while looking
for the point of minimal distance to the Target. By the
time the automaton makes a full circle around the i-th
obstacle, it knows the point of minimal distance Li. In
case the point Li is not unique, only such a point is used
as Li which corresponds to a shorter path from Hi to
Li. A shorter path from Hi to Li may correspond now
to any direction around the obstacle (left or right), and
not necessarily to the local direction.

Step 3. Now, the automaton moves around the i-th
obstacle, along the shorter path, to the point Li. Go to
Step 1.

Characteristics of Bugl.
The characteristics and performance of the algorithm

Bugl are analyzed in the following statements.

Lemma 1. Under Bug 1 , after leaving a Leave point of
an obstacle on its way toward the Target, the automaton
never returns to this obstacle again.

The Lemma guarantees that the strategy will never
create cycles. Also, since, according to the accepted model
of the environment, on its way to the Target the auto-
maton may find only a finite number of obstacles (all of
finite size), the Lemma guarantees convergence of the al-
gorithm.
Proof. Assume that on its way from Start to Target, the

automaton meets some obstacles. Number those obstacles
in the order in which the automaton meets them. Then, a
following sequence of distances appears:

If point Start happened to be on the border of an obstacle
that occludes the view of Target, then D = d(Hl).

If the automaton's path touches the i-th obstacle
tangentially then there is no need to invoke the procedure
of walking around an obstacle - the automaton just con-
tinues its straight line walk toward Target. In all other
cases of hitting an i-th obstacle, a relation will hold,

This is because, on the one hand, according to the model,
any straight line (except a line that touches the obstacle
tangentially) crosses an obstacle at least in two distinct
points (finite "thickness" of obstacles), and, on the other

hand, according to the algorithm Bugl, point Leave is the
closest point from the obstacle to Target. Starting from Li,
the automaton walks straight to Target until it meets the
(i + 1)-th obstacle. Since, by the model, obstacles do not
touch one another, a relation holds:

d(Li) > d(Hi + (3)

Therefore, our sequence of distances obeys an inequality,

m ,) > W ,) > d(H,) > d&,)
> d(H3) > d(L3) ... (4)

where d(H1) is or is not equal to D. Since d(Li) is the
shortest distance from the i-th obstacle to Target, and
since (3) guarantees that the algorithm Bugl monotonical-
ly decreases distances to Target, Lemma 1 follows. Q.E.D.

Corollary. Under Bugl, independent of the geometry of
an obstacle, the automaton defines on it not more than
one Hit and not more than one Leave point.

To produce an upper bound on the length of the paths
generated by Bugl, an assurance is needed that on its way
to Target, the automaton always encounters only a finite
number of obstacles. This is not obvious since, following
the algorithm Bugl, the automaton may "look" at Target
from different attitudes (that is, besides moving toward
Target, it may rotate around Target, see Figure 3) and
from different distances.

Lemma 2. Under Bugl, on its way to Target the
automaton may meet only a finite number of obstacles.

Figure 3. Algorithm Bugl. Dotted lines indicate straight-
line segments of the automaton's path. Seg-
ments around obstacles are not shown; these are
similar to the ones shown in Figure 2.

Proof. Although, while walking around an obstacle, the
automaton may, at some moments, be at distances larger
than D from Target (see Figure 3), its straight line
segments are always within the same circle with the center

I

I in Target and with the radius D. This is guaranteed by the

I
inequality (4). Since, by the model, any circle of finite
radius may intersect with only a finite number of
obstacles, the Lemma follows. Q.E.D.

The following theorem gives an upper bound on the
length of the path produced by the procedure Bugl.

Theorem 2. The length of the path produced by the pro-
cedure Bugl will never exceed the limit

The Theorem shows (compare (5) and (1)) that even if
some algorithm better than Bugl does (or will) exist, it
may not exceed the performance of Bugl (as measured by
the length of the path) by more than oile third.

Proof. Any path may be looked at as consisting of two
parts - straight line segments of the automaton's walk
toward Tafget (between obstacles), and segments related
to walking around obstacles. Because of the inequality (4),
the sum of straight line segments will never exceed D. As
to the path segments around obstacles, the algorithm Bugl
requires that in order to define a point Leave on the i-th
obstacle, the automaton has to make a full circle around it;

I
I

this produces a segment equal to one perimeter, pi, of the
obstacle. By the time the automaton is prepared to walk
from Hit to Leave, in order to depart for Target, it knows
the direction (go left or go right) of the shorter path to
Leave. Thus, its path segment from Hit to Leave around
the i-th obstacle will not exceed 0.5 .pi. Summing up all
the partial estimates for straight line segments of the path
and for segments around all the obstacles that the auto-
maton meets on its way to Target produces the upper
bound (5). Q.E.D.

Test for Target Reachability by Algorithm Bugl.
Every time the automaton "studies" a new obstacle it

defines an L point on it; then it starts moving from L to
Target along a straight line. If, after having defined the
point L, the automaton discovers that the straight line
(L,Target) crosses an obstacle at the point L, it may mean
only that Target is not reachable - either Start is trapped
inside the current obstacle, or Target is trapped inside the
current obstacle. This simple fact is used in the test.

Test for Target Reachability. If, while using the
algorithm Bugl, after having defined a point L, the
automaton discovers that the straight line (L,Target)
crosses the obstacle at the point L, then Target is not
reachable.

V. SECOND BASIC ALGORITHM: Bug2.
In this section, the procedure Bug2, analysis of its

characteristics, and a test for target reachability when us-
ing Bug2, are presented.

Procedure
The procedure Bug2 is executed at any point of a con-

tinuous path. The goal is, again, to generate a path from
Start to Target. Since, as will be clear, the algorithm does
not always distinguish between different obstacles, in addi-
tion to the subscript i to indicate the i-th obstacle, we will
use the superscript j to indicate the j-th occurrence of the
Hit or Leave points - on the same or a different obstacle;
Lo= Start. The behavior of the automaton under Bug2 is
demonstrated on the example shown in Figure 4. The pro-
cedure consists of the following steps.

Step 1. The automaton moves from ~ j - l along a
straight line (Start,Target) until it hits an obstacle at
some point ~ j , j = 1,2,. . . (point HI, Figure 4); i t may
also reach Target in which case it stops.

Step 2. Then, the automaton begins moving along
the obstacle (always using the accepted local direction)
until it reaches a Leave point, ~ j , (point L1, Figure 4)
which satisfies two requirements: 1) ~j is located on the
straight line (Start, Target), and 2) the distance from ~j

to Target is smaller than the distance from Hj to Target,
d (~ j) > d (~ j) . Go to Step 1.

Notice that unlike the algorithm Bugl, more than one
point Hit and more than one point Leave may be

Figure 4. Automaton's path (dotted line) under the algo-
rithm Bug2.

Figure 5. Automaton's path around a m a d i k e obstacle
(in-obstacle position) under the algorithm Bug2.
In terms of path complexity, both obstacles (a b)
are the same, whereas for (a) the stmight line
(S,T) crosses the obstacle 10 times, ni = 10, and
for (b), ni = 16. At most, the path passes one
segment (here (H1,Ll)) three times; that is, there
are at most two local cycles.

Figure 6. Automaton's path in case of an in-obstacle posi-
tion; here S is outside the obstacle, and T is in-
side.

generated during "processing" of a single obstacle (see,
for example, Figure 5). Also, notice that dependence be-

, tween the perimeters of obstacles and the length of the
path generated by Bug2 is not as clear as in the case of
Bugl. For some scenes, Bug2 may create shorter paths
compared to Bugl; often the path around an obstacle will
be shorter than the obstacle perimeter (compare Figures 2
and 4). In some more unfortunate cases, when the straight
line segment of the path meets the obstacle almost tangen-
tially and the automaton goes around the obstacle in
a"bad" direction, the path may be actually equal to the
full perimeter of the obstacle (see Figure 7). Finally, as
Figures 5 and 6 demonstrate, the situation may get even
worse, and the automaton may have to pass along some
segments of a maze-like obstacle even more than once.

Characteristics of Bug2.
For the analysis of performance of Bug2, we introduce

additional definitions.

Definition 3. For a given local direction, a local cycle is
created when the automaton has to pass some segment of
the same obstacle more than once. In the example in
Figure 7, no cycles are created; in Figures 5 and 6 there are
some local cycles.

Definition 4. A case of an in-obstacle refers to such a
mutual position of the pair of points (Start, Target) and a
given obstacle where 1) the interval (Start,Target) of the
corresponding straight line crosses the obstacle borderline
at least once, and 2) either Start or Target lie inside the
minimal convex hull of the obstacle. A case of out-obstacle
refers to such a mutual position of the pair (Start, Target)
and the obstacle in which both points Start and Target lie

Figure 7. A case when, under the algorithm Bug2, the
automaton will have to make almost a full circle
around a convex obstacle.

outside the minimal convex hull of the obstacle. For exam-
ple, in Figure 3 the pair (Start, Target) are located outside
the obstacles obl, ob2, and inside the obstacle ob3.

Below, ni is the number of intersections between the
straight line (Start, Target) and the i-th obstacle; thus, ni is
a characteristic of the set (scene,Start,Target) and not of a
specific algorithm. Obviously, for any convex obstacle
ni= 2.

If an obstacle is not convex, the situation may still be as
simple as for convex obstacles, if ni = 2 (Figure 4, obstacle
ob2). The situation may become more complicated if
ni > 2. In Figure 5a,b, one can see that, under Bug2, the
segment of the borderline from H1 to L1, (HI ,Ll), will be
passed three times; segments (Ll,L2) and (H2,Hl) - two
times each, and segments (L2,L3) and (H3,H2) - one
time each.

Lemma 3. Under Bug2, the automaton will pass any
segment of the i-th obstacle borderline at most ni/2 times.

The Lemma, therefore, guarantees that the procedure
terminates, and gives a limit on the number of generated
local cycles.

Proof. Assume that only one obstacle is present so that
we can drop the index i. For each Hit point, ~ j , the pro-
cedure will make the automaton walk around the obstacle
until it reaches the corresponding Leave point, Lj;
therefore, all H and L points appear in pairs, (~ j , L j) .
Under the accepted model (finite"thickness" of obstacles),
for each pair (H j , ~ j) an inequality holds: d (~ j) > d(Lj).
After leaving Lj, the automaton walks along a straight line
to the next Hit point, ~ j + l . Since, by the model, the
distance between two segments of obstacle borderline is
finite, then d(Lj) > d (~ j + I). This produces an inequality
for all the H and L points,

Therefore, although each H (or L) point may be passed
more than once, it will be defined as an H (or L) point only
once; thus, it may generate only one new passing of the
same segment of the obstacle perimeter. In other words,
each pair (~ j , L j) may give rise to only one passing of an
obstacle borderline segment. Q.E.D.

Using this Lemma, we can now produce an upper
bound for the length of the path generated by Bug2.

Theorem 3. The length of the path produced by the pro-
cedure Bug 2 will never exceed the limit

Proof. Any path may be looked at as consisting of two
parts - straight line segments of the automaton's walk
toward Target (between obstacles or between parts of the
same obstacle) along the line (Start, Target), and segments

related to walking around the obstacle borderline. Because
of the inequality (6), the sum of straight line segments will
never exceed D. As to the path segments around obstacles,
Lemma 3 guarantees for each obstacle met by the auto-
maton the upper bound-not more than n i/2 walks along
the same segment of the obstacle borderline. Summing up
both the straight line walk estimate and estimates for walk-
ing around all obstacles, produces (7). Q.E.D.

The following theorem shows that the upper bound
given by (7) is constructive, in the sense that there exist

, scenes for which generated paths will be as close to the up-
).

per bound (7) as one wishes. The theorem is formqlated
for one obstacle only; by placing obstacles one 'h ide
another, one can easily extend its results to any number of b

obstacles.

Theorem 4. For any E>O, there exist a scene with just
one obstacle in it for which the length of the path produc-
ed by Bug2 will be equal to

Proof. To prove the theorem, it is enough to give an ex-
ample of a scene for which the theorem holds. Notice that
to reach the upper bound (7), the automaton must make a
full circle around each obstacle maximum number of times
as suggested by Lemma 3 - namely, n i/2 times. In ac-
tuality, in its walk around an obstacle, the automaton will
pass some segments of its perimeter less than ni/2 (these
are "good" parts of the path) and some other segments of
the perimeter - exactly ni/ 2 times ("bad" parts of the
path). To satisfy (8), the "bad" parts of the path have to
account for at least (1 - E) part of the total path length.

Consider an example shown in Figure 8. Under Bug2,
the automaton will have to walk around the comb-like
segments of the obstacle, (HI ,L1), two times; according to
Lemma 3, since n = 4, then two is the maximum number of
passing around a perimeter segment. One can see that,
without changing any other details of the scene, the length
of the segment (H1 ,L1) may be made arbitrarily long, and,
in particular, such that for any specific E > O the upper
bound (8) is reached. Q.E.D.

So far as the performance of the algorithm Bug2 is
concerned, Theorems 3 and 4 sound rather depressive;
namely, they suggest that, under Bug2, the automaton
sometimes may have to go around an obstacle any (large +
albeit finite) number of times. Because of this, an impor-
tant question is: How typical are "bad" scenes, and, in
particular, What characteristics of a scene influence the
length of the path? The Theorem 5 and the following Cor-
ollary below address this question. They suggest that, in-

(

deed, only in rather special cases will generated paths be as
long as estimated by (8). Theorem 5 states, in particular,
that the mutual position of the Start point, Target point,
and the obstacles is an important characteristics of the

Figure 8. Illustration for Theorem 4. The part of the path
corresponding to the comb-like segment
(Hl,Ll), accounts for (I-€) part of the total path
length. This part will be passed the maximum
number of times (here two times, according to
Lemma 3).

scene influencing the path length. The Corollary states that
for convex obstacles the upper bound on the length of the
paths generated by Bug2 may be improved significantly.

Theorem 5. Under Bug2, in case of an out-obstacle, the
automaton will pass the obstacle's perimeter at most once.

In other words, no matter how "bad" the obstacle is
in itself, for an outside position (see the definition above)
the estimate on the length of the path reaches its lower
bound (I)!

Proof. Figure 9 illustrates the proof. Shaded areas in
Figure 9 correspond to one or many obstacles. Dotted lines
indicate that obstacle borderlines may be any. Consider
the first point H the automaton defines on its way from
Start to Target. The automaton reaches this point first
along the straight line (Start,Target), then turns left and
starts walking around the obstacle. To form a local cycle,
the automaton has to return to the point H again. Since a
point may be defined as an H point only once (see the pro-
of for Lemma 3), the next time the automaton returns to
the point H it will be approaching point H from the right
(see Figure 9), along the obstacle borderline. Therefore,
after having defined and left point H, in order to approach
it again (this time from the right), the automaton has to
cross somehow the straight line (Start,Target). In general,
there may be two ways of crossing this straight line:

1) The crossing occurs outside the interval (Start,Target).
This case corresponds to an in-obstacle position (see

Figure 9. Illustration for Theorem 5.

Definition 4 above)-either due to Start point or due to
Target point. Theorem 5, therefore, does not apply.

2) Imagine that the crossing occurs inside the interval
(Start,Target). Now we prove that such crossings of the
path with the interval (Start,Target) may not result in local
cycles. Notice that a crossing may not occur anywhere
within the interval (Start,H) because otherwise H would
not be the first H point defined. If a crossing occurs within
the interval (H,Target), then at the point of crossing, the
automaton, following the algorithm steps, defines a cor-
responding L point and starts moving along the line
(Start,Target) toward Target until it defines the next H
point; therefore, here it cannot reach into the right semi-
plane (see Figure 9). If, after this maneuver the automaton
hits another part of an obstacle, the situation repeats itself.
In other words, for any point within the interval (H,Target)
the automaton will operate only in the left semiplane of the
scene plane - this fact prevents it from having a local cy-
cle. Q.E.D.

So far, no constraints on the shape of the obstacles have
been imposed. If one assumes now that all of the obstacles
are convex, then the upper bound for the length of the
path may be improved as illustrated by the following state-
ment.

Corollary. If all obstaclts met by the automaton are
convex, then the "average" length of the path produced
by the procedure Bug2 is

P = D + 0.5 .Cpi (9)

and the length of the path produced for the worst scene is

P = D + 1 .0*cp i (10)

Consider a statistically representative number of scenes
with a random distribution of convex obstacles over each
scene, a random distribution of points Start and Target
over the set of scenes, and a fixed local direction as defined
above. Then the straight line (Start,Target) will cross all
the obstacles it meets in such a way that for some obstacles
the automaton will have to walk around them while cover-
ing the bigger part of their perimeters (as with the obstacle
obl, Figure 4). For some other obstacles, the automaton
will cover only a smaller part of their perimeters (as with
the obstacle ob2, Figure 4). On the average, one would ex-
pect a path that satisfies (9). As for (lo), Figure 7 presents
an example of such a bad scene.

This Corollary assures, therefore, that for a wide range
of scenes the length of paths generated by the algorithm
Bug2, will approach the universal lower bound (1).

Test for Target Reachability
At this point, a simple test may be defined to check for

existence of a path between points Start and Target. We

will use the fact that the automaton may determine, store,
and later recognize its own coordinates.
, As Lemma 3 suggests, under Bug2 the automaton may
pass the same point Hj of the same obstacle more than
once; in other words, it may make a finite number p of
local cycles, p = 0,1,2,. . . . It follows from the inequality (6)
that after having defined a point Hj, the automaton will
never define this point again as an H or L point. There-
fore, on each of the subsequent local cycles (if any), point
Hj will be passed hot along the straight line (Start,Target),
but along the obstacle borderline. Every time after leaving
point Hj, the automaton may expect one of the following
possibilities:

a) it will not return again to Hj; this happens, for ex-
ample, if the automaton leaves this obstacle altogether,
or/and reaches the Target,

b) it will define at least the first two of the points
Lj, Hj + l, ... and then return to the point Hj to start a
new local cycle,

c) it will come back to the point Hj without having
defined on the previous cycle a point ~ j ; this may hap-
pen only if either the automaton or the Target are being
trapped inside the current obstacle (see Figure 10).
Now, the test for Target reachability will be for-
mulated.

Test for Target Reachability If, on the p-th local
cycle, p = 0,1, ..., after having defined a point Hj, the
automaton returns to this point before it defines at least
the first two out of the possible set of points
~ j , Hj + l,. . . ,Hk, it means that the automaton has been
trapped and, hence, that Target is not reachable.

VI. IMPROVING PERFORMANCE OF
BASIC ALGORITHMS

Basic Algorithms Bug1 and Bug2 have each a clear sim-
ple idea behind them. These ideas helped us prove
theorems that define the upper and lower bounds on the
length of generated paths. In the actual implementations
of the algorithms, improvements can and should be in-
troduced, which in many situations will make the paths
shorter. Although the flow of action in such modified ver-
sions may be not as "clean" as in the Basic Algorithms,
the bounds on the path length defined in the theorems
above for the Basic Algorithms may be still applicable.
Such a version, which actually combines the mechanisms

a) b) of both Basic Algorithms, follows; it is called BugMl (for
"modified").

Figure 10. Examples of traps. Although, in general, the algorithm Bug2 is quite effi-
The path (dotted line) is executed under the cient, in cases of in-obstacles, it may create local cycles (see
algorithm Bug2. After having defined the Theorem 5). Bug2 will be modified in such a way that the
point HZ, the automaton return to it before it number of local cycles will never be larger than two. In
defines any new L point. Therefore, the target other words, the automaton will never pass the same seg-
is not reachable. ment of the obstacle borderline more than three times.

The procedure BugM1 is executed at any point of a con-
tinuous path. It effectively uses a straight line (Lj ,Target)
where the point Target is permanent, and the point Lj
changes; j = 1,2,. , . . The procedure consists of the follow-
ing steps.

Step 1. The automaton moves from Lj-I (Leave
point), j = 1,2,. . . , along a straight line (Lj-l ,Target) un-
til it hits an obstacle at some point ~j (Hit point); alter-
natively, it may reach Target in which case it stops.
LO= Start; that is, the first Leave point coincides with
Start.

Step 2. From Hj, the automaton begins moving
along the obstacle (always using the accepted local
direction) until it defines a point Lj. There may be two
possibilities:

a) Moving along the obstacle borderline, the
automaton crosses the straight line (Lj-1, Target) in-
side the interval (Lj-',Target); in this case the
automaton defines a point Lj in such a way that it
satisfies two requirements: 1) Lj is located on the
straight line (Lj - ',Target), and 2) the distance from
Lj to Target is smaller than the distance from Hj to
Target, d(Lj) < d(Hj). Go to Step 1.

b) Moving along the obstacle borderline the
automaton crosses the straight line (Lj, Target) out-
side the interval (Lj,~arget); in this case the
automaton defines a point ~j according to the Steps 2
and 3 of the algorithm Bugl. Go to Step 1.

Notice that if the scene is such that every time only Step
2a is executed then the actual flow of the algorithm is that
of Bug2, and the straight lines (Lj ,Target) always coincide
with the straight line (Start,Target). No local cycles may be
created in such situations.

As Theorem 5 suggests, local cycles appear in cases of
in-obstacles when the condition accounted for in Step 2b
of BugM1 is created. Having recognized a danger of multi-
ple local cycles by the Step 2b condition being satisfied, the
automaton, instead of risking an uncertain number of
local cycles it may expect under Bug2 (see Lemma 3),
"decides" to go to a more conservative but guaranteed up-
per bound (5) provided by the algorithm Bugl; it does this
by executing Steps 2 and 3 of Bugl. After at least one ex-
ecution of Step 2b, the straight line (Lj ,~ar~et) , in general,
no longer coincides with the straight line (Start,Target); in-
stead, the straight line segments of the path look similar to
those created by the algorithm Bugl (see Figure 3).

With such a modification, the automaton will, in
general, have the efficiency of Bug2 (in the sense that it
does not have to necessarily walk around the full obstacle
perimeter) while it will never pass the same segment of the
obstacle borderline more than three times.

VII. SOME OBSERVATIONS ON PERFORMANCE
OF BASIC ALGORITHMS

From the analysis above, one conclusion is that Basic
Algorithms guarantee termination. Another conclusion is
that in no way are the algorithms equivalent. Depending
on the scene, one of them may produce a path significantly
shorter than another. The question on when what algo-
rithm should be used goes beyond a formal analysis. One
could say, for example, that the algorithm Bugl will,
probably, appeal to a rather conservative (pessimistic)
automaton, whereas the algorithm Bug2 may appeal to a
more optimistic automaton.

If the automaton wants to minimize the effort (path
length) for the worst scenes (a pessimistic automaton),
Bugl provides a guarantee that the path will never exceed
the limit (5). Unfortunately, Bugl will never produce a
path as short as the one shown in Figure 4, but, on the
other hand, it will never create local cycles.

However, if the automaton wants to minimize the effort
on simple scenes, or if it has reasons to believe that the
scene in question will not present any unpleasant surprises
(an optimistic automaton) then it will use Bug2, which for
convex and simpler non-convex obstacles, promises paths
as short as given by (9).

Another reason for the optimistic automaton to be op-
timistic, and, thus, to use Bug2 instead of Bugl, is pro-
vided by Theorem 5, which guarantees that even for the
most complicated scenes the path will never exceed (10)
(which is better than (5) for Bugl) if the mutual position of
Start, Target, and obstacles corresponds to a case of an
out-obstacle,

And, of course, the algorithm BugMl provides some
reasonable compromise between the good and bad sides of
Basic Algorithms.

One gets an additional insight into the operation and the
"area of expertise" of the Basic Algorithms by trying to
use them in maze search problems. There are a number of
ways by which the problem of search in an unknown maze
may be set. In one version (see, e.g., ['el) the automaton,
started at any cell of the maze, must eventually visit every
single cell without passing through any barriers (it means,
of course, that any pair of cells in the maze is connected
via other cells). Notice that in this version there is no no-
tion of a Target cell whose coordinates are known; no
sense of direction is present. Thus, neither of the Basic
Algorithms can be used.

In another version of the maze search problem, given a
Start point in a maze, the automaton is to find an exit
from the maze; the coordinates of the exit are not known.
Although no target is presented explicitly, the automaton
may chose any point (direction) somewhere in infinity and
then use the Basic Algorithms as usual. With such an oper-
ation, the exit is guaranteed to be found.

In still another version of the maze search problem (see,
e.g., [I7]), the automaton is given coordinates of two
points (cells) S (Start) and T (Target) in a maze and is
asked to find a route from S to T. Clearly, this version is
close to the problem considered in this paper.

Consider, for example, the behavior of the algorithm
Bug2 in a maze search problem. As Theorem 3 states (and
Figure 5 demonstrates), given an unfortunate scene, Bug2
may be rather inefficient and may create quite a few local
cycles. On the other hand, as Theorem 5 ascertains, in

many scenes Bug2 should behave rather efficiently. For a
maze, the test on the in-obstacle condition relates not to
the whole maze (as one may first think), but to the in-
dividual maze barriers which may, or may not, create in-
obstacles.

This problem is demonstrated in Figure 11 on a ran-
domly designed maze with Start and Target points thrown
randomly in more or less opposite directions of the maze.
(Since typically maze search algorithms - see, e.g., [I61 -
use discrete models, Figure 11 presents a discrete version

Figure 11. Example of a walk in a maze using Algorithm Bug2. (S = Start, T = Target.) Points in
which the automaton's path (dotted line) crosses the imaginary straight line (S,T) are indicated
by dots. Maze barriers are shown in thick lines.

of the co&inuous path planning problem; the automaton
walks through cells presented by little squares; any cell
touched by the straight line (S,T) is considered to be lying
on this line). A quick look at the barriers between S and T
suggests that the automaton is dealing here with the case of
an out-obstacle; therefore, Theorem 5 should apply; no
local cycles sfiould be generated; and the generated path
may be expected to be relatively short. Indeed, as Figure 1 1
demonstrates, this is the case. Given the fact that the
automaton knows nothinglabout the design of the maze, it
behaves rather reasonably.

REFERENCES
B. Bullock, D . Keirsey , J . Mitchell, T . Nussmeier ,
D. Tseng, Autonomous Vehicle Control: An Over-
view of the Hughes Project., Proceedings of IEEE
Computer Society Conference "Trends and Applica-
tions, 1983: Automating Intelligent Behavior,"
Gaithersburg, Maryland, May 1983.
R.A. Brooks, R. Greiner, T.O. Binford, The
ACRONYM Model-Based Vision System, Proceed-
ings: I JCAI-6, Tokyo, Japan, August 1979.
B. bullock, G.R. Edwards, D.M. Keirsey, D.Y.
Tseng, F.M. Vilnrotter, D. Close, J.F. Bogdano-
wicz, E.P. Preyss, H.A. Parks, D.R. Partridge, Im-
age Understanding Application Project: Implemen-
tation Progress Report. Proceedings of IEEE Com-
puter Society Conference "Trends and Applications,
1983: Automating Intelligent Behavior, "
Gaithersburg, Maryland, May 1983.
M.A. Lavin, Analysis of Scenes From a Moving
Viewpoint. In "Art ficial Intelligence: an MIT Per-
spective, " The MIT Press, Cambridge, 1980.
A.M. Thompson, The Navigation System of the
JPL Robot. Proceedings of 5th Joint International
Conf. on Artificial Intelligence, Cambridge, Massa-
chusetts, August 1977.
J.T. Schwartz, M. Sharir, On the "Piano Movers"
Problem. I. The Case of a Two-Dimensional Rigid
Polygonal Body Moving Amidst Polygonal Barriers.

Dept. of Computer Science, New York University,
Tech. Report No. 39, October 1981.
H .P . Moravec, Obstacle Avoidance and Navigation
in the Real World by a Seeing Robot Rover, Stan-
ford AIM-340, Sept . 1980.
T. Lozano-Perez, M. Wesley, An Algorithm for
Planning Collision-Free Paths Among Polyhedral
Obstacles. CACM 22 (1979).
R.A. Brooks, Solving the Find-Path Problem by
Representing Free Space as Generalized Cones.
MIT, Artificial Intelligence Laboratory, AI Memo
No. 674, May 1982. .e

T.O. Binford, Visual Perception by Computer.
IEEE Systems Science and Cybernetics Conference,
Miami, December 197 1,
J. Reif, Complexity of the Mover's Problem and
Generalizations. Proc . 20th Symposium of the
Foundations of Computer Science, 1979.
J.T. Schwartz, M. Sharir, On the "Piano Movers"
Problem.11. General Techniques for Computing
Topological Properties of Real Algebraic Manifolds.
Dept. of Computer Science, New York University,
Tech. Report No. 41, February 1982.
R. Paul, Modelling Trajectory Calculation and
Servoing of a Computer Controlled Arm. Ph.D
Thesis, Stanford University, November 1972.
J. Hopcroft, D. Joseph, S. Whitesides, On the
Movement of Robot Arms in 2-Dimensional
Bounded Regions. Proc. of the IEEE Foundations
of Computer Science Conference, Chicago,
November 1982.
D.L. Pieper, The Kinematics of Manipulators Under
Computer Control. PhD Thesis, Stanford Univers-
ity, October 1968.
M. Blum, D. Kozen, On the Power of the Compass
(or, Why Mazes are Easier to Search than Graphs).
Proc. of the 19th Annual Symposium on Founda-
tion of Computer Science, Ann Arbor, Michigan,
October 1978.
W. Lipski, F.P. Preparata, Segments, Rectangles,
Contours. Journal of Algorithms, 2, 198 1.

