
G E N E R A L  @ E L E C T R I C  TECHNICAL INFORMATION 
General Electric Company 
Corporate Research and Developrnent 

SERIES 
Schenectady, New York 12345 

I 

M L E  I GE CLASS -p 

AUTHOR Kapur, D 
Musser, DR 
Stepanov, AA 

Operators and Algebraic Structures 
NO. PAGES t+ 

SUBJECT 

functional programming 

O R 1 6 M l M  

CoM*NENT Automation and Contro1 Laboratory 

No' 81CRD114 

August 1981 

CORPORAT E 
RESEARCH ANO OEVELOPMENT 

SCHENECTAOV. N.V. 

SUMMARY 

Operators in functional languages such as APL and FFP are a useful 
programming concept. However, this concept cannot be fully exploited 
in these languages because of certain constraints. It is proposed that an 
operator should be associated with a structure having the algebraic 
properties on which the operator's behavior depends. This is illustrated 
by introducing a language that provides mechanisms for defining struc- 
tures and operators on them. Using this language, it is possible to 
describe algorithms abstractly, thus emphasizing the algebraic properties 
on which the algorithms depend. The role that forma1 representation of 
mathematical knowledge can play in the development of programs is 
illustrated through an example. An approach for associating complexity 
measures with a structure and operators is also suggested. This 
approach is useful in analyzing the complexity of algorithms in an 
abstract setting. 

KEY WOIOS 

algebraic structures, operators, functional 
programming, functional languages, algorithm design, 

algorit hmic complexity, verification, specification 

INFORMATION PREPARED FOR 

Additional Hard or Microfiche Copies 
Available from 

Technical Information Exchange 
Bldg. 81 Room A133, Schenectady, N.Y. 12345 



OPERATORS AND ALGEBRAIC STRUCTURES 

I). Kapur, D.R. Musser, and A.A. Stepanov 

1. INTRODUCTION 

One of the most important notions which makes functional languages different from 

conventional programming languages is the notion of operator or functional form. Along with 
a notion of abstract data types, it constitutes the most interesting development in programming 

languages since the early sixties. We are going to make some suggestions about further 

development of these two notions and their possible merger. Our main thesis will be that 

operators should be defined within the context of the algebraic structures to which they natur- 

ally belong. We shall describe a fragment of a programming language that supports the descrip- 

tion of algebraic structures and their operators, and illustrate the role that forma1 representation 

of mathematical knowledge can play in the development of programs. 

Operators were systematically introduced into programming by Kenneth Iverson.c7) His 

APL language is a widely used programming language which contains a rich set of operators. 

According to Iverson, "an operator is an object which applies to a function or functions to pro- 

duce a related function" (Ref. 7, p. 161). However, the use of operators in APL is limited by 

the fact that it is impossible to apply operators to user-defined functions. 

Let us consider reduction, a commonly used operator in APL. It is monadic, which means 

that it takes one function as an argument. The reduction operator applied to the function 

"plus", for instance, produces the "summation" function. Reduction takes as its argument 

any primitive binary scalar function. Since user-defined functions do not have types, the APL 

system cannot distinguish between scalar and vector user-defined functions. Another property 

of the function which the reduction operator must know is the existence of left and right identi- 

ty elements (Ref. 4, p. 19). Yet there is no way to specify such elements for user-defined func- 

tions in APL. 

Another problem with operators in APL is that it is impossible for the user to define new 

operators, since APL functions do not take functions as their arguments. 

John Backus in his Forma1 System for Functional Programming (FFP) attempted to resolve 

both of these problems.(*) The problem of defining the types of user-defined functions is elimi- 

nated because there is no typing in FFP. Any function can be applied to any element of the 

universal domain of objects. The problem of specifying properties of the user-defined functions 

still remains. For example, the "insert" functional form, which is the FFP analog of the APL 

reduction operator, utilizes the existence of a unique right identity element, but there is no fa- 

cility in the language for defining the right identity of a function. 

The problem of defining a new functional form is resolved by representing functions as ob- 

jects of the same universal domain, and then defining new functional forms as functions which 
operate on representations of other functions. But by doing so, FFP loses one of its nove1 

Manuscript received May 4, 198 1. l 

_ _ _ I - - - .  ----P 
- _ .  _._.___ _ _ _ _ - _ _ . - .  - -  



features: association between functional forms and algebraic laws for them. It is impossible to 

specify laws associated with a user-defined functional form (Ref. 2, p. 633). 

If we consider the use of reduction operator in APL, it will become apparent that in many 

cases, such as "plus", "times", "and", "or", "minimum", and "maximum", the result is in- 

dependent of the order in which the reduction is performed. This property of the reduction 

operator applied to these functions becomes important for parallel computers. We shall call this 

case of the reduction operator the parallel reduction operator. As it will be shown later, even in 

the case of sequential computation it can provide a basis for organizing programs and obtaining 

more efficient algorithms. Al1 functions for which the reduction can be executed in an arbitrary 

order share the same two properties: associativity and commutativity. An algebraic structure 

with an associative and commutative operation is called a commutative semigroup. So the 

parallel reduction operator is applicable in the algebraic structure of a commutative semigroup. 

A structure on a finite family of sets is defined as a finite number of operations satifying a 

system of axioms. If any two structures satisfying a system of axioms are isomorphic, then the 

theory generated by the system of axioms is said to be univalent; otherwise, the theory is said to 

be multivalent. We will also call structures satisfying a univalent theory as univalent structures 

and structures satisfying a a multivalent theory as multivalent structures. For example, struc- 

tures of "integers", "rea1 numbers", and "group of order 3" are univalent. On the other 

hand, structures of "semigroup", "ring", and "group of order 4" are multivalent (Ref. 1 
p. 385). (If we were to restrict ourselves to first order theories, "rea1 number," for example, 

would be multivalent as non-standard models exist; however, we make no such restriction. 

The theorem that "any two completely ordered fields are isomorphic" may be found in any ad- 

vanced calculus text.) We have decided to use the old-fashioned formalism of Bourbaki instead 

of the category theoretic formalism used by Burstall and Goguen,(') because we believe that it 

is much less esoteric. 

On any structure we can define new operations with the help of the set of primitive opera- 

tions. In the case of univalent structures, these new operations correspond to user-defined 

functions in APL or FFP. But in the case of multivalent structures, they correspond to opera- 

tors or functional forms. It is, thus, reasonable to incorporate the notion of structure into the 

framework of functional languages. 

In the next section, we shall build a language to illustrate how it can be done. We will 

describe it informally, omitting many details and illustrating undefined metavariables with ex- 

amples. This language is a part of a very high-leve1 language Tecton ("builder") for describing 

software systems which is being developed at the Genera1 Electric Research and Development 

Center. 

Before continuing, we remark that the subject of structures in programming languages is 

under active investigation by a number of other authors. We note particularly the work of Gut- 

tag,(6) Zilles,(13) and the ADJ g r ~ u p ( ~ )  on abstract data types, of Burstall and ~ o g u e n ( "  and 

Nakajima et al.(") on hierarchical specification languages, and the efforts to formally describe 

computer algebra systems by ~enks,(*)  Winkler,('*) and zippel.(14) 



2. STRUCTURES IN TECTON 

The description of a structure includes its conjiguration, which is the list of structures from 

which the described structure is built and the list of primitive operations defined on these struc- 
tures. Examples of configurations are: 

module( G:abelian group, R :ring; *: R *G - G) 

The first member of the list of structures is called the "base structure" of the configuration (G 
is the base structure of the configuration for module). In the list of operations we write 
*: R *G - G to mean that * is a binary infix operation whose domain is R x G and whose range 

is G. (If * were to be used as a prefix operation, we would write *:R,G -. G.) 

A structure description may also include a set of axioms and theorems known about the 

structure and a set of secondary operators, defined in terms of the primitive ones. The axioms 
and theorems may include a description of properties of tne complexity of primitive and secon- 

dary operations, as will be discussed in Section 4. 

These parts of the description are introduced by constructs of Tecton which permit creating 
new structures from existing ones and modifying existing structures. The most important are: 

create, enrich, in form, pro vide, instantiate, implement, and represent. 
The .create construct adds a new element to the domain of structures. Its format is: 

create < configuration> [with < properties> 1 

(Brackets enclose parts of the construct that can be omitted.) For example, if we have a struc- 
ture "set", then we can add a structure "group": 

create group(S:set; +:S+S - S, inv:S -. S, O: S)  

with associativity: x+(y+z) = (x+y)+z, 
leftidentity: O +  x - x, 

leftinverses: inv (x) + x = 0; 

By convention, the symbols x,y, and z that appear in the properties are variables that are of the 
type of the base structure (S in  this case). When variables of other types are needed, they will 

be explicitly typed. The names of the properties can be omitted; they merely provide an extra 

way of referring to the properties. 
The enrich construct allows us to add a new structure to the domain of structures by means 

of adding new axioms to an existing structure. Its format is: 

enrich < structure name> [into < structure name> 1 with < properties> 

For example, having created "group" we can introduce a structure "abelian group": 

enrich group into abelian group 

with x+y = y+x; 

As another example, a "group with al1 elements of order 2" can be introduced by: 



enrich group 

with al1 elements of order 2: x+x = 0; 

The instantiate construct replaces the forma1 parameters of a configuration with actual pa- 

rameters, giving an instance of one structure within another. Its format is: 

instantiate < structure name> of < structure name> 

[as < name> 1 [< plugged interface> 1 

For example, if, in addition to the previously defined structures, we have in the domain of 

structures the structure of "integers" with the configuration 

integers(1:set; +:I+ I- I, negate: I- I, 0:- I )  

then we can 

instantiate abelian group of integers 

(S = I, + = +, inv = negate,O = 0); 

We did not give any name to the structure we just created, so we can reference it only as 

"abelian group of integers". 
The inform construct allows us to add new theorems to an existing structure. Its format is: 

inform < structure name> that < properties> 

For example, we can add some useful properties to the structure of "group": 

inform group that x+O = x, x+inv(x) = 0; 

Note that this does not produce a new structure, since these properties are provable from the 

axioms of "group". 

The provide construct allows us to define additional operators on the already defined struc- 

tures. Its format is: 

provide < name> with < operator definitions> 

For example, we can now define a subtraction operator on the "group" structure: 

provide group with -: x-y - x+inv(y); 

From now on we can use the subtraction operation with any instance of "group". 

The implement construct allows us to specify some special ways in which operators can be 

implemented on those instances of a structure which possess some particular set of properties. 

Its format is: 



implement < operator name> [on< structure name> 1 [with < properties> ] 

as < implementation > 

For example, on groups with al1 elements of order 2, it is possible to simplify the subtraction 

operator: 

implement - on group with al1 elements of order 2 

as x+y; 

In this example we used a property of the structure, but another possibility is to refer to a prop- 

erty of the particular inputs to the operator, as will be illustrated in Section 4. 

The final construct of Tecton we shall discuss is the represent construct: 

represent < structure name> as < structure name> 

using < representation function> 

and < abstraction function> 

This allows introduction of a mapping from one structure to another as an aid to defining opera- 

tions or expressing their implementations. The abstraction function is required to be a 

homomorphism from the second structure back to the first, and is included as a way of guaran- 

teeing that operations on the second structure preserve those of the first. For example, if we 

have a structure of complex numbers we can introduce their polar representation, which is use- 

fu1 for many algorithms. 

We have given only a sketch of some of the main constructs describing structures in Tecton. 

We shall now attempt to illustrate the main ideas with an example. 

3. PROGRAMMING USING STRUCTURES 

The first observation which can be made is that it is impossible to program in Tecton as we 

have described it, since it does not contain any primitive structures from which other structures 

can be constructed. As an initial set of structures for our exercise in programming, we shall 

use the structures "set", "multiset", and "sequence" with many different operations and 

operators defined on them, which will be seen in context. As a theme for the exercise, we shall 

select one of the most classica1 of al1 programming problems: sorting. 

First, we need the notion of a totally ordered set: 

create ordered set(S:set; relation < : S< S) 
with x< x, 

x< y and y <  z implies x< z ,  

x < y and y < x implies x=y ; 

enrich ordered set into totally ordered set 

with x< y o r  y<  x ;  



Then we need to have something to sort: 

create orderable sequences (sequences of totally ordered set); 

and a way to distinguish sorted sequences: 

create ordered sequences (0rdSeq:subset of orderable sequences 

such that for al1 u and for al1 x,y in u, 

x precedes y in u if and only if x < y). 

Now we can write our first program: 

provide ordered sequences with 

merge:x,y - 
if x = null or y = null then x cat y 

else if head(x) head(y) 

then < head(x) > cat merge(tail(x),y) 

else < head(~)  > cat merge(x,tail (Y) ); 

It is easy to see that the null sequence is an identity element for the merge function and that 

merge is both commutative and associative. Thus we may: 

inform ordered sequences that 

merge (nul1,x) = x = merge(x,null), 

merge (x,y) = merge (y,x), 

merge (merge (x,y).z) = merge (x,merge (y.2) ); 

This makes it reasonable to make use of some additional structures: 

create semigroup (S:set; + : S+ S - S) 

with associativity: x+(y+z) = (x+y)+z ; 

create monoid(S:semigroup; 0: -* S )  

with O+x = x+O = x ;  

enrich monoid into abelian monoid 

with commutativity: x+y = y+x;  

and to introduce an operator reduction: 

provide sequences of monoid with 

reduction: x - if x =  null then O 

else head(x) + reduction(tail(x)); 

Thus there is an instance of an abelian monoid in ordered sequences: 

instantiate abelian monoid of ordered sequences . 
as merge(S= OrdSeq, + = merge, O = null) 

Here we have used the function name "merge" also as the name of the instantiated structure. 

We shall refer to it as the "merge monoid". When we use an operator such as "reduction" 



defined in the monoid structure, we will denote the corresponding operator in the merge 

monoid as "reduction of merge". Thus we can use "reduction of merge" on sequences of or- 

dered sequences to merge them into one. 

The next step is to recognize that sequences under "cat" also form a monoid: 

inform sequences that 

null cat x = x cat null = x , 
(xcat (ycat z)) = ((xcat y) cat z); 

instantiate monoid of sequences 

as cat ( S  = sequences, + = cat, O = null) ; 

Our purpose with this step is to define an abstraction function for the following representation. 

represent orderable sequences as sequences of ordered sequences 

using seqrep 

and seqabs: x - reduction of cat(x); 

We have only given the representation function a name, "seqrep", without defining it. The 

reason for this will be seen in a moment, but now we can write our program for sorting as 

provide orderable sequences with 

sort: x - reduction of merge(seqrep(x)); 

This is a generic algorithm for two reasons. One is that different implementations of the reduc- 

tion operator will give different algorithms, a point we shall study in the next section. The 

other reason is that we can instantiate "seqrep" in various ways. One possibility is: 

provide sequences with 

oneify: x - 
if x = null then null 

else CC head(x) >> cat oneify(tail(x)); 

instantiate sort as sort l (seqrep = oneify); 

Thus o n e i f y k  a,, a* ,..., a,,> ) = C< ai> ,C a2> ,..., < a,>>. Another possibility would be a 

function "runify" that keeps runs of increasing elements in the same sequence; e.g., 

This would be useful when it is known that long runs are likely to exist, i.e., when the input to 

"sort" is known to be almost sorted. 



4. ALGEBRAIC OPTIMIZATION 

As we have thus far defined "sort", it is not very efficient. Because of the way we defined 

the reduction operator to perform leftmost reductions, we are using the merge operation on or- 

dered sequences merely to do insertions of a single element into an ordered sequence. Thus 

the algorithm we have obtained is essentially "insertion sort", an order n2 algorithm. Let us 

now see how a simple redefinition of reduction has the consequence that our already given sort 

program becomes an order (n log n) algorithm. 

In making this new definition of reduction, we do not want to simply replace the current 

definition, since the current definition may in fact be more efficient in other applications. The 

key idea we want to demonstrate now is that more than one definition of an operator can exist 

and the decision as to which one to use in a particular application should be made on the basis 

of complexity properties of the structures involved in the application. 

For studying the complexity of the implementations of secondary operators associated with a 

structure, it is necessary to specify complexity information with the primitive operations and 

the base structure in its configuration. Every structure is assumed to have an implicit real- 

valued nonnegative function length defined on the elements of the base structure of its 

configuration, and each operation, operator, and implementation of an operator is assumed to 

have an implicit real-valued nonnegative function cost associated with it. The enrich and inform 

operations can be used to add axioms and theorems expressing complexity properties in terms 

of length and cost. 

The discussion of the complexity analysis in this report will be very sketchy because of the 

scope of this report. We will only introduce a few concepts to illustrate some ideas in compar- 

ing different implementations of the reduction operator. 

Our first task is to add some complexity properties to abelian monoids. 

enrich abelian monoid into Huffman monoid with 

length (x+y) = length(x) + length (y) 

cost of + of (x,y) = order(length(x1 + length(y1); 

The 

and 

it is 

name of this structure derives from D. Huffman's algorithm (Ref. 9, Vol. 1, pp. 402-405 

Vol. 3, p. 365) for finding a tree with minimum weighted path length. With this definition, 

possible to show that the merge monoid can be made into a Huffman monoid. 

inform ordered sequences that 

additive length: length (merge(xly)) = length(x) + length (y) 

linear cost: cost of merge of (x,y) = order(length(x) + length(y1) 

Now it makes sense to 

implement reduction on sequences of Huffman monoid as 

huff (makemultiset (x)) 

where "huf f  is an operation on multisets that, as in Huffman's algorithm, chooses a pair of 

elements to be combined based on minimality of their length: 



provide multisets with 

huff: s - if s = empty then O 

else if singleton? (s) then u where u : s 

else huff( ( s  - {u,v}) u { u + v } )  

where u, v: s and minimalLength( u,s) 

and minimallength ( v,s -{ v } ) ;  

We now see that, since the merge monoid is a Huffman monoid, our sort program will be able 

to use this implementation. Thus it becomes the well-known merge sort algorithm, whose cost 

is order ( n  log n). 

With an additional property of the input, we can simplify the Huffman implementation of 

reduction. 

provide sequences with 

relation equallengths: x - for al1 u, v inx, lengthb) = length ( v);  

provide sequences of Huffman monoid with 

huff l : x - if x = null then O 

else if singleton? (x) then head(x) 

else huff l ( tail (tail (x)) 

cat < head(x) + head(tail(x)) > ) 

implement reduction on sequences of Huffman monoid 

with equallengthdx) as huff l (x); 

This implementation would be used by sortl, since the instance "oneify" of "seqrep" produces 

sequences satisfying the "equalLengthsW relation. 

In closing this discussion of optimization, let us now consider briefly how the reduction 

operator introduced in Section 2 relates to the parallel reduction operator discussed in the Intro- 

duction. In Section 2, the definition of reduction is given recursively in terms of primitive 

operations "head" and "tail" on sequences. This permits a simple definition, but also implies 

a commitment to sequential computation. With a different set of primitive operations on 

sequences we can express the definition of reduction in a way that naturally implies parallel 

computation. We will thereby obtain the possibility of parallel computation in al1 applications of 

reduction that obey the necessary algebraic laws, such as our sort program. 

Let us suppose that operations on sequences of monoid include an operator "pairs" that 

takes a sequence < xl ,  ... , xn> into a sequence of two element sequences << x,,x,>, 

< x3,x4>, ... > , where the last pair is < xn,O> if n is odd; and that there is a primitive operator 
"mapall" that applies a function " f" to each element of a sequence, producing the sequence 

of the results. We could, of course, define these with Tecton, e.g., 

provide sequences of domain of function f with 

mapall: x - if x =  null then null 

else < f (head(x)) > cat mapall(tail(x)); 



but instead we assume "mapall" Isi wlready Implernented In ai way thar peirnh parallel computa- 
tion, so that it may be used to implement other parallel operaters, Por example, we may now 

provide sequences of monoid with 
addpair: x - headx)  + head(tail(x)), 
parallelReduction: x - if x = null then O 

else if singleton ? (x) then head(x) 
else parallelReduction (mapall of addpair(pairs(x))); 

If we now 

implement reduction as parallelReduction; 

we obtain a parallel version of any algorithm that uses reduction, such as our "sort" program. 
We note that "mapall" could also have been used to define the function "oneify", which was 
defined recursively in the previous section. 

5. CONCLUSION 

By combining the notion of operators as used in languages such as APL and FFP with the 

ideas of algebraic structures, we have proposed mechanisms to define structures and associate 

operators with structures in a functional setting. This allows us to describe algorithms abstractly 
and without committing to any particular mode1 of computation, thus emphasizing the algebraic 
properties they depend on for their functional behavior. We have also suggested an abstract 

way to associate complexity measures with a structure and its operators. Below, we briefly dis- 

cuss some topics closely related to the ideas presented in the paper which need further 
investigation. 

We used the structures "set", "multiset", and "sequences" for illustrating various 

language constructs. There is a need to identify other structures useful in describing systems 
and develop their theory. Like the reduction operator on a monoid, other operators on a 

monoid and other algebraic structures like group, semi-ring, ring, etc., should be investigated 
within the proposed language framework. We believe that the proposed language constructs, 

when used with a library of judiciously chosen structures and operators, can be highly expres- 
sive and useful in describing complex systems. 

An important topic not discussed in the paper is the role of computer-assisted theorem 

proving. in relating various structures and operators and deriving properties about structures 
and operators, as well as about their complexity. An example is for the computer to assist in 

checking that the monoid structure can be instantiated into sequences by associating the 

configuration of the monoid with that of sequences and by deducing the monoid properties 
from the axioms and theorems of sequences. Another example is to prove, using the com- 

puter, that the merge monoid discussed in Section 4 is a Huffman monoid by showing that the 

merge operator is length additive and its cost function is linear. Deducing such information can 

help in developing efficient implementations of the algorithms. We also need to identify prob- 

lem domain-independent properties of structures such as univalency, multivalency, consistency, 



completeness of axioms, etc., and develop algorithms for checking these properties. In the 

study of these questions, we will draw heavily upon our experience with the capabilities of the 

AFFIRM ~ y s t e m ( ~ )  for theorem proving and analysis of algebraic specifications. 

Without giving any details, we have alluded to an abstract way of associating complexity 

with structures and operators. This approach also seems to provide a unified framework for dis- 

cussing complexity in both a parallel and a sequential environment. However, much work 

needs to be done toward developing such an approach as a basis for constructing new algo- 

rithms and analyzing their complexity. 

One of the main considerations for the design of Tecton is to identify abstraction mecha- 

nisms that aid in describing systems in a natura1 way. The abstraction mechanisms should also 

be amenable to forma1 reasoning so that the computer can assist in applying them. In this re- 

port, we have introduced severa1 constructs for communicating knowledge of algebraic struc- 

tures in a way that facilitates the development and selection of algorithms. Besides these con- 

structs, Tecton has constructs for manipulating objects other than structures, which will be dis- 

cussed in forthcoming reports. 

ACKNOWLEDGMENTS L 

We would like to thank John Guttag, Chuck Fiduccia, and Jim Thatcher for many valuable 

comments on the first draft of this paper. We would also like to acknowledge John Hutchison's 

participation in the initial stage of this research. 



REFERENCES 

1. Bourbaki, N., Theory of Sets, Chapter IV, "Structures" and Summary of Resu 

"Scales of Sets. Structures," Addison-Wesley, 1968. 

2. Backus, J., "Can Programming Be Liberated from the von Neumann Style? 

Style and Its Algebra of Programs," CACM 8 (211, August 1978. 

h, Section 8, 

A Functional 

3. Burstall, R.M., Goguen, J.A., "Putting Theories Together to Make Specifications," Fifth 

International Joint Conference on Artificial Intelligence, Cambridge, MA, August 1977. 

4. Falkoff, A.D. and Orth, D.L., "Development of an APL Standard," RC 7542, IBM Tho- 

mas J. Watson Research Center, Yorktown Heights, NY, February 1979. 

5. Goguen, J.A., Thatcher, J.W., Wagner, E.W., "Initial Algebra Approach to the 

Specification, Correctness, and Implementation of Abstract Data Types" in Current Trends 

in Programming Methodology, Vol. IV, Data Structuring (R.T. Yeh, ed.), Prentice Hall, En- 

glewood Cliffs, NJ, 1978. 

6 .  Guttag, J.V., "Abstract Data Types and the Development of Data Structures," CACM 20 

(6), pp. 396-404, June 1977.. 

7. Iverson, K.E., "Operators," TOPLAS 1(2), October 1979. 

8. Jenks, R.D., Trager, B.M., "A Language for Computational Algebra," Proceedings of the 

1981 ACM Symposium on Symbolic and Algebraic Computation, Snowbird, August 198 1. 

9. Knuth, D.E. The Art of Computer Programming, Vol. 1, Vol. 3 ,  Addison-Wesley, 1968, 

1973. 

10. Musser, D.R., "Abstract Data Types in the AFFIRM System," IEEE TSE 1(6), January 

1980. 

1 1. Nakajima, R., Nakahara, H., Honda, M., "Hierarchical Program Specification and 

Verification - A Many Sorted Logica1 Approach," preprint RIMS 256, November 1978. 

12. Winkler, F., "A Language for Specifying Algebraic Structures," unpublished manuscript, 

Fa11 1979. 

13. Zilles, S.N., "An Introduction to Data Algebra," Draft Working Paper, IBM San Jose 

Research Laboratory, September 1975. 

14. Zippel, R., private communication, March l98 1. 


