
Notes on the Foundations of Programming
Volume II

Alexander A. Stepanov
Matthew A. Marcus

Draft of April 6, 2005

Disclaimer: These notes are a work in progress and do not constitute a book. In particular,
most of the current effort is directed towards writing up new material. As a consequence
little time remains for structuring, refinement, or clean up, so please be patient. Nev-
ertheless, suggestions, comments and corrections are welcomed. Please reply to mmar-
cus@adobe.com and stepanov@adobe.com.

What thou lovest well remains,
the rest is dross

—Ezra Pound, Cantos

Contents

Part 1. Basic Algorithms 3

Chapter 1. The Machine Model 5
1.1. The Significance of Memory 5
1.2. Generic Algorithms 7

Chapter 2. Introductory Algorithms 9
2.1. Iterators 9
2.2. copy 10
2.2.1. Iterator Categories 11
2.2.2. copy_n and Loop Unrolling 13
2.3. distance and Compile Time Dispatching 15
2.4. Analyzing a Program 20
2.5. Implementing an Iterator 23
2.6. Type Functions 28
2.6.1. The Limitations of Object-Oriented Programming 28

Part 2. Permutation Algorithms 33

Chapter 3. Introduction to Permutation Algorithms 35

Chapter 4. Position Based Permutation Operations 37
4.1. reverse 37
4.1.1. reverse for Bidirectional and Random Access Iterators 37
4.1.2. Sketch of Reverse for Forward Iterators 38
4.1.3. Towards Efficient Divide and Conquer Algorithms 39
4.1.4. Memory Adaptive Algorithms 42
4.1.5. reverse for Node Based Iterators 44
4.2. rotate 45
4.2.1. rotate for Bidirectional Iterators 46
4.2.2. rotate for Forward Iterators 48
4.2.2.1. Analysis of Gries-Mills 49
4.2.2.2. Implementation of Gries-Mills 50
4.2.3. rotate for Random Access Iterators 52

Part 3. Appendices and Back Matter 53

Appendix A. Minimum Number of Assignments Needed to Implement a Cycle 55

Bibliography 57

1

Part 1

Basic Algorithms

CHAPTER 1

The Machine Model

1.1. The Significance of Memory

In the first part of the course we spent a lot of time trying to convince you that com-
puter science is fundamentally mathematics. But computer scientists are not just rehashing
old material. The primary contribution of computer science to mathematics is the notion
of memory. The people who invented the notion of memory were mathematicians. A com-
puter with memory is often referred to as a Von Neumann computer. We would be hard
pressed to find a programmer nowadays who is not familiar with the notion of memory.
In this part of the course is we will figure out what memory really is. From this we will
obtain iterators and different kinds of memories. We will begin by discussing the history
of the notion of memory in computer science. Some people in computer science, e.g. func-
tional programmers, would like to get rid of all state – we will demonstrate why this idea
is wrong.

The notions of address and pointer took some time to develop. Memories used to
be very small – machines had no pointers at all. Originally, on many machines, the in-
structions were structured with an op-code followed by several fields which would be:
address1, address2, address3. (Sometimes there was even address4. When present, the
fourth address was used for branching. Some machines had drum memory. While one
instruction was being executed the drum would rotate past the next instruction. Clever
people would optimize their code so that the next instruction would be located exactly on
the right part of the drum. The fourth address would contain its address. The fourth address
also eliminated goto.) Using three addresses allowed instructions like a = b + c. Three
address architectures were common. Such architectures were possible because the address
space was small and the word size was large. In fact there was no notion of bytes – just
words. The word size was determined by the number of bits needed to hold floating point
numbers, for example 60 bits. This allowed sufficient room for instructions to contain the
three address fields.

Note that the only way of iterating through an array of values at that time was to
modify the address fields of the instruction. Self modifying code was considered to be an
essential part of programming. People had not yet discovered index registers. Pointers
were not really needed from the hardware perspective, but they gradually evolved because
they simplified the programming process.

An understanding of computer architecture is a required part of a programmer’s core
knowledge. We recommend one and a half books. First, Hennessy and Patterson’s book [5]
is the best way to come up to speed on modern computer architectures. In fact, we suggest
rereading it every time a new edition is published. The other half-book is the second part
of Blaauw and Brooks [2]. They call it "A Computer Zoo". It catalogues many of the
historically important computer architectures, helping the reader gain an understanding of
why things are the way they are today. Brooks led the development of OS/360 and Blaauw

5

6 1. THE MACHINE MODEL

was responsible for the instruction set of the IBM 360. It is also worth reading the Mythical
Man Month [3] where Brooks wittily describes the process of developing the OS and how
things could go wrong.

People started to discover that the notion of an address as a separate object was a good
idea. The first computers did not have pointers, nor did the first programming language:
Fortran. Nor did the "improved" Fortran: Algol 60. You could easily implement a linked
list in these languages. Programmers had to use, for example, indices into an array. (How
would one implement a linked list in a language which had neither pointers nor record
types with arrays being the only aggregation mechanism?) It became clear that index
registers were needed, although originally they were not necessarily big enough to hold a
whole address. The push for addressability/pointers was coming from application writers.
This made life harder for compilers, introducing aliasing problems (preventing reordering
optimizations, etc.). Compiler writers had an easier time with Fortran since there were no
pointers at all and it was designed to facilitate optimization.

As people moved from processing numbers to also processing data, architectural ques-
tions arose concerning the appropriate minimum unit of addressability. Not all machines
offered (the relatively expensive) byte addressability. Apparently, when Hennessy was de-
signing the first MIPS computer he wanted to make it only word addressable, in the full
spirit of RISC. (Originally the answer to such questions was not clear, for example, why
not have bit addressability? The IBM Stretch architecture offered bit addressability. People
gradually realized that this would make the address space too large and it would require
expensive hardware. By trimming things at the bottom of the tree you could save a lot of
address space machinery.) In any case, Unix and C required byte addressability. By about
1970, the idea that we call the Common Machine Architecture, or the C machine model was
established. This assumes the presence of byte addressability, pointers, and two kinds of
numbers: reals (floating point – support for automatically dealing with mantissa, exponent)
as well as fixed point (integers). The IBM 360 established the standard that everything was
(8-bit) byte addressable. At the time people thought that all characters could fit into 8 bits.
Prior to that there were attempts to have 6 bit byte (this worked well with 36, or 60 bit
words). Powers of two were not native to computer science. One of the great computer
architecture of all time, Seymour Cray’s Control Data 6600, used a word size of 60, with
no byte addressability. Instruction words were divided into four 15-bit chunks. It could be
viewed as a form of VLIW since in some sense it went in parallel. Eventually, 8-bit bytes
became the norm.

Another attempted architecture was to simplify instructions by offering, say, a single
hardware ’+’ instruction that would work both for fixed and floating point numbers. The
idea behind these so-called tagged architectures, such as Bob Barton’s Burroughs 5500,
which used an Algol-60 instruction set, was that sets of bits in memory would be tagged
with a data type. This resembles the notion of a finite/closed dynamically typed system.
Of course such an idea is not extensible; it breaks down once a language supports record
types.

Parallel arrays were used instead of record types – every field of a record would be
distributed into a different array. A record would be a united across all of the arrays by a
common index. Even though we now have record types we shouldn’t discount this tech-
nique since it still has uses today. For example, if we are just looking at the first field,
parallel arrays can be better since we the rest of the record does not need to be dragged
into the cache. In the 1960s people eventually figured out that we could have record types
where types could be aggregated. Record types, or structs, require byte addressability

1.2. GENERIC ALGORITHMS 7

since thus allows natural representation. Also remember that records are generally padded.
Words are loaded by word boundary even though we have byte addressability.

There is an old philosophical problem going back to the 14th century (see for example
Copleston’s History of Philosophy): Given two things of the same form what makes them
different? It is not the particular value of the thing. In the middle ages the best answer
was probably that developed by Duns Scotus who said that there was a mysterious thing
called “haecceitas” or “thisness”. In order to distinguish between different things, it is
not sufficient that the attributes are the same, but there is some notion of thisness, or in
computers, an address. While we can change an object’s attributes, its address stays the
same.

What are the minimal mathematical properties of an address – what can we do with an
address? We need to be able to test for equality. An address has to also allow access to data,
or a dereferencing operation. An address serves the same role as a name in philosophy:
something which stands for something else, something which can be dereferenced. But
there is another requirement. It is not enough to refer to someone as, say, "the fat Russian
guy with 9 different recordings of Wagner’s Ring", even if that would uniquely identify
him. Addresses also need to offer a "fast" form of access to the value. Fast is not very
easy to define in this context. For example memory access is not in fact constant time – in
hardware memory access is typically logarithmic in the length of the address. So we will
just require the fastest class of access for a given context.

1.2. Generic Algorithms

John Backus, the father of programming languages, came up with a grand vision that
the problems with memory could be solved by introducing what he calls functional pro-
gramming. Though we will refute a number of the ideas, his Turing award [1] lecture is
brilliant and instructive and must be considered required reading. There he introduced the
language FP, and a second order language FFP. He upheld the idea of dealing with com-
putation without memory/state. Instead of having global storage, programs copy it around.
For example, to change one element of a sequence, a new sequence with the changed ele-
ments must be generated. The problem with this approach is that it is very expensive. The
notion of an address is in fact quite useful.

Ken Iverson’s APL inspired John Backus’s FP work. Iverson became an assistant
professor at Harvard, somewhere around 1959-1960. He realized that very often we work
on large objects such as matrices. He asked why have to write loop to work with them?
He decided to create a language based on vectors and matrices. His great contribution was
the idea of introducing an operator (e.g. higher order function) that could be applied to
one function to create another. For example, the reduction operator ’/’, when applied to the
binary ’+’ function in APL, produces a new function that +/ which adds all the elements in
a vector, e.g. +/1234 yields 10. ∗/1234 gives 24. His operators were later referred to by
Backus as "functional forms". In STL they are called generic algorithms. In APL it is not
possible for users to define new functional forms.

In 1961 Iverson published a book called "A Programming Language" (APL). How-
ever, he did not publish enough and was denied tenure at Harvard, so he moved to IBM
research. Lots of physicists learned APL. Iverson convinced the hardware guys to use APL
as their hardware description language. They defined the semantics of the IBM 360 series
in APL. This was probably the first example of a formal definition of a real computer sys-
tem. This is why Brooks and Blaauw use APL as a hardware description language in their
book. Eventually he left IBM and went to I.P. Sharp, a Canadian time sharing company

8 1. THE MACHINE MODEL

that sold a lot of APL to financial analysts. APL always remained a small cultish language.
He also tried to use APL as an instructional language in several somewhat misguided but
brilliant books to teach high school algebra. He received a Turing award in 1979.

There are two fundamental ideas in Backus besides the idea of abolishing state. One
is the idea of functional forms, that were later called generic algorithms. Though Iverson
recognized this idea, Backus really brought it out. Functional forms are higher order func-
tions, that is, they take a function and produce a new function. Go back and think about
power – it is a functional form. The second idea is that functional forms are associated with
mathematical laws. For example, reverse followed by reduction is the same as reduction
followed by reverse (assuming an associative and commutative function).

The problem with APL and FP is that they do not support user-defined functional
forms. We need to have a way of creating new ones. And we still don’t have a way of
describing their mathematical properties. For example, said that power only makes sense
when operation is associative, but we cannot ask the compiler to check this. So if we
take functional programming, keep the functional forms and the algebraic laws, but add
extensibility, and allow state together with a generalized notion of addresses we end up
with generic programming.

EXERCISE 1.1. Read Iverson’s papers [7] and [6].
Read Backus’s paper [1]

CHAPTER 2

Introductory Algorithms

2.1. Iterators

We don’t like the term iterator since, for example, trivial iterators don’t have any abil-
ity to iterate – navigation is a separate notion. Coordinate, position or address would be
preferable. Historically speaking, iterators were a difficult discovery, especially coming
from the functional programming perspective which prohibited addresses. Addresses were
desirable, not for efficiency, but because it was impossible to describe things conceptu-
ally without them, e.g. what does something like find return, particularly when it doesn’t
succeed? Lisp can return a universal bottom marker, NIL. But there is no such thing in a
strongly typed language. In functional programming, to replace a node in a list we need
the address of the field in the node, not the address of the value.

Many people tried to solve this problem. They wanted to be able to write a find (they
called it position) that would operate on both vectors and lists. In Common Lisp they
introduced the notion of a sequence that could be either a list or a vector. Their position
function returned an integer index. This works fine if the sequence happened to be a vector
but it is quite inefficient in case the sequence is a list (since indexes do not provide constant
time access to the elements in a linked list). They also tried to figure out how to specify
a subsequence (e.g. with two integers). The reason that they failed was that they tried to
come up with a type-less (uniform) way of indicating both subsequences and positions for
all of types of sequences (Lisp doesn’t have overloading).

The notion of iterators arose when we realization that iterators for vectors didn’t have
to be of the same type as iterators for lists, and also that it was OK for some types of
iterators could be more powerful then others. The first idea was to introduce a notion called
"coordinates" or "positions". Every data structure S would have an associated position
type P such that there was a function dereference taking the pair to the value type, e.g.
dereference: (S , P) → V . You can see these ideas in [8]. Then we tried to look at the
universe of C (after working in Ada). It became clear that very often a data structure is not
available to an algorithm, e.g. it was necessary to also support pointers as iterators. Then,
running quickly through five years worth of ideas, he realized that you could combine
the pair of types into single type known as a position. It is straightforward to combine a
pair of types S , P into a new type I so that dereference would be a function of a single
argument. This strategy opens the door to using other lone types, for example non-pairs
such as pointer types, as iterators too.

For a long time it was hard to figure out for how to write a generic copy algorithm.
One reason for this was that at the time we were working in Ada. Ada has arrays that
can be indexed by integral types. Ada also allows programmers to use a restricted integral
type, for example integers in the range of 1 to 5. The difficulty was caused by the fact that
an Ada array can be indexed by a restricted type containing exactly as many indices in the
range as there are elements in the array. This prevented copy from working, and it even

9

10 2. INTRODUCTORY ALGORITHMS

find from working. The range needs to be 1 larger than the number of elements. It was
impossible to write find since there was no way of returning a position to indicate that an
element was not found. Starting with 1 there are six possible subranges in an array of five
elements, since we must account for the empty sub-range. So we need 1 more position
than we have elements. Since Ada did not allow this find’s had to also return a boolean.

C guarantees that for every array there is a valid pointer past the end. This doesn’t
mean that it can be dereferenced. The fact that iterators need one extra position has noth-
ing to do with STL, C or C++. It is a mathematical necessity. For example partition a
sequence of two elements, (A B), into good and bad elements. There are three possible
partition points, not two: either only A good, A and B are good or none are good. How
many possible points about which to rotate? 3. How many possible insertion points? 3.
Operations on sequences of n elements require n + 1 positions. Even in Microsoft Word
there are n + 1 cursor positions in a buffer of n characters.

2.2. copy

We will develop the generic copy algorithm and it will gradually lead us through much
that we need to know. It will also relate back to architecture.

whi le (f i r s t != l a s t) /∗ we don ’ t use < s i n c e i t may n o t even e x i s t
f o r o u t i t e r a t o r t y p e ∗ /

We also use ++ for moving forward. While this is regrettable it is necessary since it is
important to be consistent when extending a language. The idioms for pointers needed to
still work. That is, copy continues with

∗ r e s u l t ++=∗ f i r s t ++;

We would rather have written dereference() then * – we are not particularly fond of
post-increment. That is we would like to write, say

a s s i g n (f i r s t , r e s u l t) ;
advance (f i r s t) ;
advance (r e s u l t) ;

The idea of adding functions such as the above to the library was considered, but
rejected because code needed to look like C. That was one of the difficult design decisions.
At some point one has to take the host language seriously. We still regret using member
functions in STL. For example one obtains the size of a vector via v.size() – it would have
been better to say size(v), for two reasons. The minor reason is that it saves typing one
character. But more important, the first form cannot be used uniformly for STL sequences
and built-in C arrays. But in those days object-orientedness was king on the standards
committee and it would not have been possible to get approval for the second form.

Now copy will need arguments of some type for first, last, and result. But what do we
return from copy? We must return the updated value of result. Philosophically we never
want to throw away any possibly useful information that the algorithm computed. Inside
copy we advance result and it might be useful to the caller to know where it ended up. So
we end up with

t empla te <typename I , / / I models I n p u t I t e r a t o r
typename O> / / O models Outpu t I t e r a t o r

O copy (I f i r s t , I l a s t , O r e s u l t) {
whi le (f i r s t != l a s t) ∗ r e s u l t ++=∗ f i r s t ++;
re turn r e s u l t ;

2.2. COPY 11

}

Unfortunately this is not as fast as it might be. To figure out why we mark all the places
where we do work. The assignment is the most important operation, because it actually
does the work. There is no way to reduce the number of assignments when copying n
elements. The dereferencing operation also does some work. The rest is overhead, like
the test to see whether we have reached the end of the range. If we could somehow block
things together, and also avoid testing for the end all of the time, we could optimize things.
There is one other thing to consider, and it serves as an example of why it is important to
know about computer architecture. If we know that the memory latency is 8 cycles, it is
tempting to say that it will take 16 cycles to move an item from one location to another.
This can be avoided through a technique known as software pipelining. Unless we assist
the compiler it will not be able to pipeline, and even then there are problems which may
prevent it from taking place.

Blocking is connected with loop unrolling. It is worth noting that genericity can poten-
tially affect performance. If we assume that we have at most have input iterators we can’t
unroll because there is no way to avoid checking for the end of range after every operation.
So we want to eventually have a language with category dispatch where we can first write
the function copy defined for input iterators, then write another version of copy defined for
random access iterators, and so on. The compiler would pick the strongest possible version
for the given category of iterator. Since such a mechanism does not exist in C++ we had to
invent an ugly hack for STL.

2.2.1. Iterator Categories. We will discuss five kinds of iterator; Input Iterators,
Forward Iterators, Bidirectional Iterators, Random Access Iterators, and Output Iterators,
together with their relationships. We will introduce each category of iterator by providing
a minimal model that satisfies the necessary requirements. We will also indicate some of
the axioms that must be satisfied in each case.

We begin with Input Iterators. For our model we consider a slightly unusual form of
singly linked list:

0
↑
b

→ 0→ . . .→ 0→ ×
↑
e

The illustration above is meant to indicate that the Input Iterator b refers to the beginning
of a list, each element of the list has a pointer to its successor, and the last element of the
list points to an (invalid) element just past the end, as does the Input Iterator e. In our
list, as long as it does not point past the end, b can be (repeatedly) dereferenced, written
as ∗b, to get the value of the first element. It is important to require that the iterator
must be dereferenceable multiple times. Otherwise we couldn’t write a useful generic find
algorithm that: 1) works on the weakest possible kind of Input Iterators and 2) returns
an iterator to the found element. For our implementation would have to dereference the
iterator internally when searching. But without the guarantee that it was safe to dereference
an iterator multiple times the caller wouldn’t be able to reliably dereference the returned
iterator. In addition to the ability to dereference, we need to be able to advance b to the
next element, which we write as ++b. As soon as b is advanced, however, we assume that
the element previously referred to by b is destroyed (e.g. garbage collected). For example,
if we make the assignment a = b then advance b via ++b we cannot even safely write
the expression a == b; whatever b referred to and all other iterators that referred to the
same place might be completely invalidated by advancing b. So algorithms that can work
with any form of Input Iterator, including the weakest possible kind, must be single pass
algorithms. Such algorithms are also referred to as online algorithms – they look only at

12 2. INTRODUCTORY ALGORITHMS

local data. For, once an iterator is advanced through the sequence, the elements no longer
exist.

We introduce Forward Iterators to support algorithms that may need more than one
(forward) pass. To allow for multiple passes, Forward Iterators must meet the requirements
of Input Iterators, but the right to destroy elements after navigating past them is forfeited.
The usual model of a structure supporting Forward Iterators is a traditional singly linked
list.

Starting with Forward Iterators it becomes possible to introduce a general notion of
iterator equality. We know that i == j =⇒ ∗i == ∗ j. Though not an axiom, it will also
often be true that i == j =⇒ & ∗ i = & ∗ j. In many cases, we could go so far as to define
iterator equality in terms of the latter identity.

An interesting question arose in the design of iterators: should an iterator be required
to know when it can be safely incremented? The answer is no. Given a single iterator we
don’t know if it can be dereferenced or incremented. But given a pair of iterators, we can
define the notion of a valid range. For a valid range [i, j) we know that i , j =⇒ ∗i, that is,
if i not equal to j then i can be dereferenced. Also for such a valid range we have the law
that i , j =⇒ + + i, that is, if i is not equal to j then i can be incremented. We can keep
incrementing and dereferencing the beginning iterator of a valid range until it becomes
empty. The validity of the range will not be harmed. Nor will it be affected by copying
the range. So it becomes possible to argue about algorithm correctness. Valid ranges come
from containers via the begin() and end() functions. Of course mutating a container, by
inserting an element for example, will in general invalidate a range.

In addition to providing all of the capabilities of Forward Iterators, Bidirectional It-
erators must support backward navigation, which we write as –b. Bidirectional Iterators
can typically be supported by data structures such as doubly linked lists. It is important to
connect the new capability (decrement) of Bidirectional Iterators to the exisiting capabili-
ties of Forward Iterators. We do so by introducing the following law i == j && + +i =⇒
j == − − (+ + i). That is, if i == j and if it is legitimate to increment i, then the result
of incrementing then decrementing i will still be equal to j. As a theorem (consequence of
the axioms) we claim that [i, j)&&i , j =⇒ − − j.

Random Access Iterators add to Bidirectional Iterators the ability to calculate the
(signed) distance between two iterators i and j, which we write as j − i. The model of
a data structure that supports random access iterators is, essentially, a chunk of memory
with the following caveats: we cannot assume that memory exists on either side of the
chunk. That is, we may assume valid addresses exist only from the beginning to the ele-
ment one past the end. Even the address two past the end is not guaranteed to exist. As a
result we have to be careful with calculations. For iterator i and integers m and n we can’t
just write: i + m − n, instead need to write i + (m − n). Random access iterators must also
support the addition a (signed) distance. These capabilities are subject to the following
connecting laws (when all quantities are defined)

(i + m) + n = i + (m + n)

j = i + 1 =⇒ j == + + i

(2.1) i + (j − i) == j

None of these operations may consume more than constant time. It is worth underscoring
that the key capability added by Random Access Iterators is the ability to efficiently cal-
culate distance. The ability to jump doesn’t help if you don’t know whether i + m would

2.2. COPY 13

be past the end. One more law is necessary for Random Access Iterators in order to as-
sure compatibility with C pointer idioms: i + n == &i[n]. Of course j == i + 1 does not
guarantee that & ∗ j == (& ∗ i) + 1 (consider std::deque. That is, consecutive iterators do
not necessarily refer to values at consecutive addresses. Nor does i == j necessarily imply
that + + i == + + j. But for dereferencing it holds, i.e. i == j&& ∗ i =⇒ ∗i == ∗ j.

EXERCISE 2.1. Show why the axiom in Equation 2.1 is necessary by coming up with
an example of an absurd or undesirable definition of iterator subtraction that would be
allowed in the absence of this law.

EXERCISE 2.2. Why do we define the ability to subtract iterator i from iterator j for
Random Access iterators? Would it be useful to have, say, Semi Random Access Iterators
that supported addition of (signed) integers, but not iterator subtraction?

Many normal axioms (axioms that hold for the other types of iterators that we have
discussed so far) break for Input Iterators. For Input Iterators it is not true that i ==
j&& + +i =⇒ + + i == + + j. When thinking about iterator categories, it is most helpful
to keep the minimal models presented above in mind.

We briefly mention the strange beasts known as Output Iterators. Output Iterators
support only two (equivalent) expressions concerning navigation and dereferencing: ∗i +
+ = (equivalently ∗i =followed by + + i). This is rather awkward to state linguistically,
but the point is that the expression ∗i is only valid on the left hand side of an assignment
statement – it has no meaning in and of itself. It is not valid to assign to ∗i twice without
an intervening increment. The model for a structure supporting Output Iterators is a pipe,
or an output stream.

2.2.2. copy_n and Loop Unrolling. We return to the problem of producing faster
versions of copy that take advantage of loop unrolling. If we know the distance, n, between
first and last, we can dispense with last and rewrite copy as follows as copy_n

t empla te <typename I , / / I models I n p u t I t e r a t o r
typename O, / / O models Outpu t I t e r a t o r
typename N> / / N models I n t e g e r

O c o p y _ n _ v e r s i o n 1 (I f i r s t , N n , O r e s u l t) {
whi le (−−n) ∗ r e s u l t ++=∗ f i r s t ++;
re turn r e s u l t ;

}

The profound point is that if we can obtain n we can move toward loop unrolling, even
for Input Iterators. We haven’t actually made things much faster yet – in the next version
we will try to unroll the loop by a factor of 4. Typically people unroll by for or 8 but not
more. The main reason that people don’t go beyond 8 has to do with the law of diminishing
returns. The point of loop unrolling is to gain a decent percent improvement in the ratio
loop overhead to overall code. Starting with, say 30% loop overhead, unrolling by a factor
of 4 leaves us with about 8% overhead. Unrolling by a factor of 8 brings it down to a 4%
overhead. Overhead below 4% is commonly viewed as noise – results could vary from
CPU to CPU, etc. In research we do unroll loops – 30% does not matter when we only
want to demonstrate feasibility. But when it is time to transfer code to real applications
then unrolling can be worth considering (only after fixing algorithms). Here is an unrolled
version of copy_n

t empla te <typename I , / / I models I n p u t I t e r a t o r
typename O, / / O models Outpu t I t e r a t o r

14 2. INTRODUCTORY ALGORITHMS

typename N> / / N models I n t e g e r
O c o p y _ n _ v e r s i o n 2 (I f i r s t , N n , O r e s u l t) {

whi le (n >= 4) {
∗ r e s u l t ++=∗ f i r s t ++;
∗ r e s u l t ++=∗ f i r s t ++;
∗ r e s u l t ++=∗ f i r s t ++;
∗ r e s u l t ++=∗ f i r s t ++;
n−=4;

}
sw i t ch (n) {
case 3 : ∗ r e s u l t ++=∗ f i r s t ++;
case 2 : ∗ r e s u l t ++=∗ f i r s t ++;
case 1 : ∗ r e s u l t ++=∗ f i r s t ++;
d e f a u l t :
}
re turn r e s u l t ;

}

(Note the use of the C language feature that makes break statements optional). We
have removed some loop overhead but the code is still not optimal. Unfortunately, we are
doing 4 increments of the iterators. We may avoid the incrementing code by indexing. This
gives the compiler the opportunity to hard-wire the displacements into the instructions and
also to take advantage of possible parallelism.

t empla te <typename I , / / I models Random A c ce s s I t e r a t o r
typename O, / / O models Random A c ce s s i t e r a t o r
typename N> / / N models I n t e g e r

O c o p y _ n _ v e r s i o n 3 (I f i r s t , N n , O r e s u l t) {
whi le (n >= 4) {

r e s u l t [0] = f i r s t [0] ;
r e s u l t [1] = f i r s t [1] ;
r e s u l t [2] = f i r s t [2] ;
r e s u l t [3] = f i r s t [3] ;
n−=4; f i r s t +=4; r e s u l t +=4;

}
sw i t ch (n) {
case 3 : r e s u l t [2] = f i r s t [2] ;
case 2 : r e s u l t [1] = f i r s t [1] ;
case 1 : r e s u l t [0] = f i r s t [0] ;
d e f a u l t :
}
re turn r e s u l t ;

}

EXERCISE 2.3. Test all versions of copy and see which is the fastest. Compare the
performance of the copy, the loop-unrolled versions of copy_n with unroll factor 4 vs. 8,
with variations using ++’s in the body vs. versions using indices. Do all 5 of the above
tests for arrays/pointers and for vectors/iterators, for a total of 10 tests.

Try to produce a decent framework for measurement – we will use it for other algo-
rithms in the future. The framework should have several parameters that can be varied: One

2.3. DISTANCE AND COMPILE TIME DISPATCHING 15

parameter should control the number of elements in the container; one parameter should
control the number of times the test should be repeated; one (compile-time) parameter
should control the type of the elements. We will need to be able to experiment with, say,
ints, bytes, and structs containing N doubles. Don’t forget to use high optimization settings
when compiling.

When copying an array of 800 bytes would it even make sense to unroll the loop?
We can estimate the number of cycles needed to copy 800 bytes as: 800÷(2×bus-width),
since data needs to pass through the bus twice, when copying. Assuming a bus width of
32 we can assume that copying the data will take at least 12 cycles. The loop overhead for
copy_n, consisting of a single comparison, is not worth trying to optimize away when the
body does so much work, since the expectation is that on modern CPUs it will be executed
in parallel with the other instructions.

Note that copy_n is very easy for compilers to unroll. It is also useful to know whether
our compiler has the ability unroll loops in the case when it doesn’t know n. In many
cases it cannot. We hope that eventually the compiler will optimize all cases that today
require hand unrolling, hand software pipelining, or hand blocking. Besides the fact that
it would be nice to avoid unnecessary work, successful use of these techniques require the
programmer to have knowledge of instruction ordering, parallelism, relative latencies and
so on. But advances in CPU technology make it difficult to accurately evaluate and predict
performance, especially across CPU releases. It is common knowledge that advances in
compiler technology that will eliminate the need for such techniques, is "just around the
corner". Unfortunately, such knowledge has been common since the 1960s, so we still
need to know a little bit about low level optimization.

We discovered that changing copy to copy_n allows us to unroll. It fundamentally
works with the same requirements as regular copy (Input Iterator, Output Iterator) since
the inclusion of the n parameter solves the problem of when to stop . Could we replace
every call to copy with a call to copy_n? No, since we need to know the length of the
range. The algorithm std::distance(i, j) calculates this for us this with the precondition that
[i, j) is a valid range. (This precondition is so common that we will no longer mention
it.) Of course distance might have the side-effect of destroying the range. Why don’t we
have a function is_valid _range(i, j)? Because if we don’t know whether the range is valid
then we can’t even know whether it is safe to advance i, or whether advancing i would ever
cause it to reach j; a loop with such a test may never even terminate. This is very important
to remember. So we must always be careful to keep track of valid ranges.

In fact, in C++ < (less than) is not even defined for void*. This is unfortunate since
this prohibits us keeping void* pointers in a set (sets require that elements are comparable).
We believe that it is desirable for all types (including structs) to provide comparison and
equality operations. But even if this was so, we still wouldn’t be able to determine if two
pointers constituted a valid range, since memory is not necessarily contiguous. Since we
can’t check range validity at runtime, we have to make sure at coding time to preserve
iterator range validity.

2.3. distance and Compile Time Dispatching

In order to be able to call copy_n, we need to calculate the distance between first and
last. We want the implementation of distance to be as fast as possible for a given iterator
category. For Input Iterators we won’t be able to do better than writing a loop. However,
a single subtraction will suffice for Random Access Iterators. C++ doesn’t provide direct
support for selecting the best implementation on the basis of Iterator category. As far

16 2. INTRODUCTORY ALGORITHMS

as the compiler is concerned, the notion of Iterator category doesn’t even exist – it is
simply a naming convention that we use when naming template parameters. So we can’t
just write different overloaded versions of distance to achieve the efficiency that we want.
We illustrate how to write a version of distance that will use compile-time dispatch on
the Iterator category to select the most efficient implementation. distance is very simple
algorithmically, so we can focus on the techniques needed for compile-time dispatching in
C++.

Our requirement is that the library will provide a single function template, distance,
that will in turn select and call the appropriate helper function template based on the Iterator
category. For Input Iterators the body of the helper function implementation will look
something like

whi le (f i r s t != l a s t) { ++n ; ++ f i r s t ; }
re turn n ;

When STL was first being written, it was not at all clear what the function signature
could be. Clearly, distance needs to return some kind of integer type. But what it needs
to return depends on the type of iterator. For iterators that happen to be implemented as
classes it is reasonable to write

t empla te <typename I t e r a t o r >
typename I t e r a t o r : : d i f f e r e n c e _ t y p e
d i s t a n c e (I t e r a t o r f i r s t , I t e r a t o r l a s t) ;

That is, we can require that the author of any iterator class provide a nested typedef
called difference_type that indicates the correct type for n. But such a signature will not be
of much use in cases when the iterator is a pointer.

In the development of STL when exploring possible solutions to the problems pre-
sented by distance, we came up with a related algorithm, advance_by in which the caller
is required to supply the type of n:

t empla te <typename T1 , / / T1 models I n c r e m e n t a b l e
typename T2> / / T2 models I n c r e m e n t a b l e

T2 advance_by (T1 f i r s t , T1 l a s t , T2 n) {
whi le (f i r s t != l a s t){++ n ; ++ f i r s t ; }
re turn n ;

}

The problem of specifying the return type is avoided by asking the caller to supply the
type T2 in advance_by. Very often we can simplify interfaces and avoid complicated dis-
patching tricks, like those demonstrated below, by extending the set of types in a function
template signature. Many times, after introducing the additional type(s) we find other uses
for them. Here T2 was added to avoid having to determine a return type. But the introduc-
tion of the additional parameter turned out to provide additional benefits. It is possible to
call advance_by for types T2 which don’t come equipped with a zero element, since the
caller can supply the initial value.

Iverson’s paper helps build up nomenclature for the important techniques that we can
use in code. The APL notation doesn’t matter, but it is important to be able to recog-
nize and communicate about reduction, for example. In the case of advance_by we need
a better name, but the idea is the point. We replaced Input Iterator with Incrementable
in advance_by since we noticed that we didn’t actually require the ability to dereference.
Recall that PeanoTypes had only local zeros. These ideas aren’t born full grown off the
top of our head. Fragments of code that recur when working on algorithms are identified

2.3. DISTANCE AND COMPILE TIME DISPATCHING 17

and evolved. We work to find the right name for the idea. We cannot afford, as a field, to
have proprietary abstractions. The hope is that eventually we will work from a common
set of abstractions and nomenclature. STL succeeded to a small degree, though people still
fail to understand the abstractions. (Even the SGI STL documentation exhibits a misun-
derstanding of the requirements on < and ==.) Computer science needs to have common
nomenclature in order to rise above the level of while statements.

While the implementation of distance (respectively: advance_by) given above might
suffice for most classes of iterator, it would be a terrible implementation for Random Ac-
cess Iterators (respectively: Incrementable types equipped with + and -) because, as we
mentioned above, we could use a more efficient one-line subtraction instead. We return to
our goal of writing to write a single piece of code, that can figure out the fastest possible
implementation to call (at compile time). If we had concepts in C++, we could do a very
simple thing:

/∗ i g n o r i n g r e t u r n t y p e f o r t h e moment ∗ /
d i s t a n c e (I n p u t I t e r a t o r f i r s t , I n p u t I t e r a t o r l a s t)
{ whi le (f i r s t != l a s t) { /∗ . . . ∗ / }}

/∗ i g n o r i n g r e t u r n t y p e f o r t h e moment ∗ /
d i s t a n c e (R a n d o m A c c e s s I t e r a t o r f i r s t , R a n d o m A c c e s s I t e r a t o r l a s t)
{ re turn l a s t − f i r s t ; }

We can’t do this in C++ since InputIterator and RandomAccessIterator are just words
as far as the compiler is concerned. This is a major limitation of C++. concepts only exist
in our minds. We simulate them with templates.

The first simulation technique employed when developing the STL was to extend the
signature of distance with a third parameter to carry an iterator tag. We predefine tag
classes, one for each iterator category, for example

s t r u c t I n p u t I t e r a t o r _ t a g { } ;
s t r u c t F o r w a r d I t e r a t o r _ t a g : p u b l i c I n p u t I t e r a t o r _ t a g { } ;
/ / . . .

We use inheritance since we want algorithms that require an Input Iterator to accept,
say, a Forward Iterator in case there is no more efficient version of the algorithm available.
This is one of the few legitimate uses of inheritance in C++. (We will have more to say
about inheritance later.) We add the additional parameter to the distance helper function
templates to indicate which category of iterator is being supplied. In this way the best
implementation can be selected. For example

t empla te <typename I > / / I models I n p u t I t e r a t o r
i n l i n e /∗ r e t u r n t y p e d i s c u s s e d l a t e r ∗ /
d i s t a n c e (I f i r s t , I l a s t , I n p u t I t e r a t o r _ t a g)
{ /∗ . . . ∗ / ; whi le (f i r s t != l a s t) { /∗ . . . ∗ / } ; /∗ . . . ∗ / ; }

t empla te <typename R> / / R models Random A c ce s s
i n l i n e /∗ r e t u r n t y p e d i s c u s s e d l a t e r ∗ /
d i s t a n c e (R f i r s t , R l a s t , R a n d o m A c c e s s I t e r a t o r _ t a g)
{ re turn l a s t − f i r s t ; }

The tag type has no meaning at runtime. In fact the value passed as the third parameter
is ignored – we use it only as a mechanism to drive the type system to select the appropriate
implementation. The top level distance will arrange for the appropriate helper to be called

18 2. INTRODUCTORY ALGORITHMS

by supplying a tag value as the third parameter. In order to determine the tag value from
a given iterator type, we define a function template iterator_category that returns return a
value of the type of its iterator category tag. Note that this style leads to a lot of glue code
that occupies many lines but doesn’t generate a single instruction.

t empla te <typename T>
i n l i n e R a n d o m A c c e s s I t e r a t o r _ t a g i t e r a t o r _ c a t e g o r y (T∗)
{ re turn R a n d o m A c c e s s I t e r a t o r _ t a g () ; }

This is just an ugly way of writing that "all pointers are random access iterators". iter-
ator_category can be implemented for iterator classes by requiring that all iterator classes
supply their category as a nested typedef named iterator_category. Of course nested type-
defs are just another C++ embarrassment since what is really needed are type functions. In
any case, we can now write our function as

t empla te <typename I >
i n l i n e typename I : : i t e r a t o r _ c a t e g o r y i t e r a t o r _ c a t e g o r y (I)
{ re turn typename I : : i t e r a t o r _ c a t e g o r y () ; }

We can use these same dispatching techniques to calculate the return type for distance
at compile time. We can’t directly use the iterator_category function. Instead we create a
function named difference_type that will indicate the type to be returned by the distance
algorithm for a given iterator. For pointer types this will be ptrdiff_t:

t empla te <typename T>
i n l i n e p t r d i f f _ t ∗ d i f f e r e n c e _ t y p e (T∗)
{ re turn (p t r d i f f _ t ∗) 0 ; }

We actually return a pointer to the distance type for technical reasons (to avoid the
cost of construction and copying). STL requires that all iterator classes supply the differ-
ence_type typedef inside so that it is possible to implement difference_type as follows

t empla te <typename I >
i n l i n e typename I : : d i f f e r e n c e _ t y p e ∗ d i f f e r e n c e _ t y p e (I)
{ re turn (typename T : : d i f f e r e n c e _ t y p e ∗) 0 ; }

We can sketch the complete implementation of distance

t empla te <typename I , / / I models I n p u t I t e r a t o r
typename D> / / D models I n t e g e r

D d i s t a n c e (I f i r s t , I l a s t , I n p u t I t e r a t o r _ t a g , D∗)
{D n =0; /∗ . . . ∗ / }

t empla te <typename R , / / I models Random A c ce s s I t e r a t o r
typename D> / / D models I n t e g e r

D d i s t a n c e (R f i r s t , R l a s t , R a n d o m A c c e s s I t e r a t o r _ t a g , D∗)
{ re turn l a s t − f i r s t ; }

The top level distance originally looked something like

t empla te <typename I , / / I models I n p u t I t e r a t o r
typename D> / / D models I n t e g e r

i n l i n e void d i s t a n c e (I f i r s t , I l a s t , D& n) {
n = d i s t a n c e (f i r s t , l a s t ,

i t e r a t o r _ c a t e g o r y (f i r s t) ,
d i f f e r e n c e _ t y p e (f i r s t)) ;

2.3. DISTANCE AND COMPILE TIME DISPATCHING 19

}

EXERCISE 2.1. Without looking at an STL implementation, complete the implement
a distance function template that dispatches to an appropriate helper algorithm for each
iterator category. Complete and make use of the iterator_category and difference_type
function templates that we sketched above.

Unfortunately, because of the lack of uniformity between user-defined and built-in
types in C++, the above techniques were not sufficient to allow us to write distance with
the desired signature – we needed a way to calculate the return type. In particular, it
was not possible to use the difference_type function template to specify a return type for
distance. So in the next solution the iterator_category and difference_type functions were
replaced by iterator_traits. For every type of iterator, I (iterator class or pointer), it is
possible to instantiate the traits class std::iterator_traits<I>. The role of the traits class
is to provide the necessary typedefs for all of the types associated to the iterator I. Then,
finally, it becomes possible to write the Input Iterator form of distance as

t empla te < c l a s s I > / / I models I n p u t I t e r a t o r
i n l i n e typename i t e r a t o r _ t r a i t s <I > : : d i f f e r e n c e _ t y p e
d i s t a n c e (I f i r s t , I l a s t) {

re turn d i s t a n c e (f i r s t , l a s t ,
typename i t e r a t o r _ t r a i t s <I > : : i t e r a t o r _ c a t e g o r y ()) ;

}

Here is an implementation of iterator_traits for iterator classes

t empla te <typename I >
s t r u c t i t e r a t o r _ t r a i t s {

t y p e d e f typename I : : d i f f e r e n c e _ t y p e d i f f e r e n c e _ t y p e ;
t y p e d e f typename I : : v a l u e _ t y p e v a l u e _ t y p e ;
t y p e d e f typename I : : r e f e r e n c e r e f e r e n c e ;
t y p e d e f typename I : : p o i n t e r p o i n t e r ;
t y p e d e f typename I : : i t e r a t o r _ c a t e g o r y i t e r a t o r _ c a t e g o r y ;

} ;

One of the principal motivations for adding partial specialization to C++ was to allow
iterator_traits to work for pointers too

t empla te <typename T>
s t r u c t i t e r a t o r _ t r a i t s <T∗> {

t y p e d e f p t r d i f f _ t d i f f e r e n c e _ t y p e ;
t y p e d e f T v a l u e _ t y p e ;
t y p e d e f T& r e f e r e n c e ;
t y p e d e f T∗ p o i n t e r ;
t y p e d e f s t d : : r a n d o m _ a c c e s s _ i t e r a t o r _ t a g i t e r a t o r _ c a t e g o r y ;

} ;

EXERCISE 2.2. Complete the implementation of a distance function template that
dispatches to an appropriate helper algorithm for each iterator category. This version of
distance should return its value instead of taking a reference parameter to hold its result.
Make use of the iterator_traits class templates provided above. You will need to slightly
modify the signature and implementation of the distance helper routines from the previous
exercise.

20 2. INTRODUCTORY ALGORITHMS

EXERCISE 2.3. Implement copy using the same techniques. For Random Access
Iterators it should dispatch to copy_n.

EXERCISE 2.4. Implement the advance algorithm using the same techniques.

2.4. Analyzing a Program

In the first section of the book we assigned as one of the problems a task of writing a
program to determine if a sequence is a derangement. Now we will use a solution of this
program given by one of our strong students as a way to discuss how to evolve a piece of
code.

The solution given to us was:

t empla te <typename T>
bool i s _ d e r a n g e m e n t (c o n s t T∗ s t a r t , c o n s t T∗ end)
{

T pos = 0 ;
whi le (s t a r t != end) {

i f (∗ s t a r t ++ == pos ++)
re turn f a l s e ;

}
re turn true ;

}

Let us be clear about it, this code is good; it is an adequate solution for the problem
and there is often no need to touch it. We, however, love rewriting code. As a matter
of fact, we believe that what distinguishes a born programmer, a programmer for whom
programming is not just a job, but a calling, is love for code rewriting. Anybody can enjoy
writing code, but only a born programmer loves rewriting code for no particular reason.

Let us start with a couple of trivial issues. There is certain unnecessary flamboyance
in the choice of variable names. We always use [first, last)to describe an input range.
While it might seem to be irrelevant, changing the boring [first, last) to [start, end) might
cause some unneeded wonderment. Is it just a different way of naming things, or is there
some desire to indicate that the range is not just a regular range? In general, we try to
use names in a consistent way. While it is perfectly legal to have a floating point variable
called n, it is confusing since a reader of the code will promptly forget the declaration and
assume that n is an integer. While there is a distinguished programming tradition at MIT to
name all variables foo, bar, baz, honoze, etc, we should admire them for producing some
amazing programming artifacts, but we should not imitate their peculiar habits. It is also
good to avoid abbreviations: we can use the time at the keyboard to think about what we
are writing. So, we rewrite and obtain:

t empla te <typename T>
bool i s _ d e r a n g e m e n t (c o n s t T∗ f i r s t , c o n s t T∗ l a s t)
{

T p o s i t i o n = 0 ;
whi le (f i r s t != l a s t) {

i f (∗ f i r s t ++ == p o s i t i o n ++)
re turn f a l s e ;

}
re turn true ;

}

2.4. ANALYZING A PROGRAM 21

Now, we observe that our template type parameter is called T . What do we mean
by it? Could we instantiate this function with any type T? It appears not to be the case,
since not every type would allow us to do a post-increment on it and to initialize it with 0.
Though C++ does not allow us to say it formally, we better indicate our intent:

t empla te <typename T> / / T models I n t e g e r
bool i s _ d e r a n g e m e n t (c o n s t T∗ f i r s t , c o n s t T∗ l a s t)
{

T p o s i t i o n = 0 ;
whi le (f i r s t != l a s t) {

i f (∗ f i r s t ++ == p o s i t i o n ++)
re turn f a l s e ;

}
re turn true ;

}

Requiring a type to be an integer type is, of course, an overkill. We could have spec-
ified Peano Integer as our constraint since only 0 and successor are really required. But
then we would be suffering from premature over-generalization. We do not know of any
important type that is a Peano Integer, yet not a full Integer. And, as we shall eventually
see, a far better type interface will become evident.

Here we need to ask a question about 0. Do we really need 0? What if our future client
decides to index their permutations from 1? Couldn’t we accommodate them? Indeed a
simple trick of letting initial position be an argument solves this problem:

t empla te <typename T> / / T models I n t e g e r
bool i s _ d e r a n g e m e n t (c o n s t T∗ f i r s t ,

c o n s t T∗ l a s t ,
T p o s i t i o n)

{
whi le (f i r s t != l a s t) {

i f (∗ f i r s t ++ == p o s i t i o n ++)
re turn f a l s e ;

}
re turn true ;

}

Now we observe that we do not need T to be an Integer. The only condition on T now
is that it is Incrementable:

t empla te <typename T> / / T models I n c r e m e n t a b l e
bool i s _ d e r a n g e m e n t (c o n s t T∗ f i r s t ,

c o n s t T∗ l a s t ,
T p o s i t i o n)

{
whi le (f i r s t != l a s t) {

i f (∗ f i r s t ++ == p o s i t i o n ++)
re turn f a l s e ;

}
re turn true ;

}

22 2. INTRODUCTORY ALGORITHMS

For example, now we can encode our permutations as an array of pointers into the
array itself. (We will need to wrap pointer into a structure; doing so makes for a good C++
exercise. This could even be done with iterators into a container. We can define a container
of structures that contain iterators to the container. Try doing it.)

This forces us to consider why we need to deal with pointers. Since we are working
with a single pass, forward moving algorithm, we can rewrite it as:

t empla te <typename I t , / / I t models I n p u t I t e r a t o r
typename T> / / T models I n c r e m e n t a b l e

/ / d e f i n e d : I t i ; T x ; ∗ i == x ;
bool i s _ d e r a n g e m e n t (I t f i r s t ,

I t l a s t ,
T p o s i t i o n)

{
whi le (f i r s t != l a s t) {

i f (∗ f i r s t ++ == p o s i t i o n ++)
re turn f a l s e ;

}
re turn true ;

}

It is not necessary for the return type of the dereferencing of the iterator to be the
incrementable type. It is only required to be equality comparable.

Now let us consider what our code is doing. It is finding the first place in a sequence
that, in some sense, is pointing to itself. But what we return is just a Boolean value that
indicates whether such an element exists. Our interface loses valuable information! What
if we want to find an average distance to a first fixed point in a permutation? Our Boolean
value will not help at all. Here we need to remember the following general rule: behind
every “is?” there is “find.” (We do not believe in the existence of things that can never be
found.) It is almost always important to expose such find to the user:

t empla te <typename I t , / / I t models I n p u t I t e r a t o r
typename T> / / T models I n c r e m e n t a b l e

/ / d e f i n e d : I t i ; T x ; ∗ i == x ;
I t f i n d _ d e r a n g e m e n t (I t f i r s t , I t l a s t , T p o s i t i o n)
{

whi le (f i r s t != l a s t && ∗ f i r s t != p o s i t i o n) {
++ f i r s t ; ++ p o s i t i o n ;

}
re turn f i r s t ;

}

Now our new function returns the rightmost iterator into the sequence such that a range
from first to it is a derangement. It is of course possible to provide a convenient shortcut:

t empla te <typename I t , / / I t models I n p u t I t e r a t o r
typename T> / / T models I n c r e m e n t a b l e

/ / d e f i n e d : I t i ; T x ; ∗ i == x ;
i n l i n e
bool i s _ d e r a n g e m e n t (I t f i r s t , I t l a s t , T p o s i t i o n) {

re turn l a s t ==
f i n d _ d e r a n g e m e n t (f i r s t , l a s t , p o s i t i o n) ;

2.5. IMPLEMENTING AN ITERATOR 23

}

If we look at our find_derangement function we observe that it looks remarkably like
the well known STL function mismatch. As an exercise, we will ask you to find a way to
unify these two algorithms. But first, we will take some time to completely implement an
iterator.

2.5. Implementing an Iterator

EXAMPLE 2.1. We implement a relatively simple iterator called value_iterator. We
would like to be able to fill a destination with the consecutive integers from 5 to 25 by
writing copy(value_iterator<int>(5), value_iterator<int>(25), result). We could imple-
ment this by maintaining an underlying vector of 20 elements, keeping an iterator into it,
but we would be wasting memory. Instead, we implement an iterator with no underlying
container to generate these sequences for any type that has the notion of a successor (i.e.
a type that defines ++, a model of Incrementable). We begin by naming four of the five
associated types:

t empla te <typename T> / / T models I n c r e m e n t a b l e
c l a s s v a l u e _ i t e r a t o r {

p u b l i c :
t y p e d e f T v a l u e _ t y p e ;

t y p e d e f c o n s t T∗ p o i n t e r ;
/∗ c o n s t s i n c e t h e s e are g e n e r a t e d v a l u e s t h e y are n o t mu tab le ∗ /
t y p e d e f c o n s t T& r e f e r e n c e ;
t y p e d e f s t d : : f o r w a r d _ i t e r a t o r _ t a g i t e r a t o r _ c a t e g o r y ;

Why not use a stronger iterator category? We don’t have any indication that we will
need random access for this kind of iterator – we won’t be sorting these things. We might
occasionally want to have a bidirectional iterator, but it is important to consider the usage
context so as to avoid adding unnecessary machinery. We view it is a generalized iota
(from APL), where, for example, we my not always want to start with 1.

We get stuck when we try to supply the typedef for difference_type. We have no way
to know the appropriate type to use, so we must ask the user to supply it. When T is an
int we can just use T , but this won’t work when T is, say, a pointer type. In that case we
would want difference_type to be ptrdiff_t. So we rewrite:

t empla te <typename T , / / T models I n c r e m e n t a b l e
typename D=T> / / D models I n t e g e r

c l a s s v a l u e _ i t e r a t o r {
p u b l i c :

t y p e d e f T v a l u e _ t y p e ;
t y p e d e f c o n s t T∗ p o i n t e r ;
t y p e d e f c o n s t T& r e f e r e n c e ;
t y p e d e f D d i f f e r e n c e _ t y p e ;
t y p e d e f s t d : : f o r w a r d _ i t e r a t o r _ t a g i t e r a t o r _ c a t e g o r y ;

Now that we have defined these five typedefs we will use them in the implementation
with no further mention of T or D.

p r i v a t e :
v a l u e _ t y p e v a l u e ;

24 2. INTRODUCTORY ALGORITHMS

We place the private section in between two public sections because it is better for
a reader to be able to understand the code in a single pass. As in C we try to show each
variable declaration before it is used. We believe that such considerations outweigh the
need for "hiding" the private declarations at the end of the class. Defining the inline func-
tions out of the body of the class would not help either. Moving such functions out of the
class body triples the code size. It is important to keep code as short as possible, unless we
do something algorithmically important. C++ is already verbose enough so we don’t use
information hiding that causes one-line functions to occupy many extra lines. Information
hiding can be useful for large body of code, but not for simple abstractions.

Now we need some constructors. It is important to support the ability for clients of our
library to write T a; a = b; This is possible for built-in types and should also be possible
for user-defined types. We need to be able to express the idea that "it does not matter what
the value is". We don’t ignore the semantics of C – Ritchie was very smart. So we allow
for default constructed iterators, but we cannot rely on others providing such a facility for
us to use. We will also need a copy constructor, but we don’t need to write it (nor must
we write a destructor or an assignment) since the compiler-generated versions will suffice.
We do need to provide a default constructor implementation, since the compiler will not
generate one if we write any other constructors. Go figure. Continuing with constructors
in the code:

p u b l i c :

Note that it is more efficient to directly initialize the variable than it is to use a default
construction followed by assignment. Also take note of our use of the explicit keyword to
inhibit automatic conversions. Dennis Ritchie came up with the C type conversion rules as
a sort of "poor man’s substitute" for numeric genericity. This is one of the few cases where
we believe that he made a bad compromise. The use of explicit will protect programmers
from mistakes, like when they inadvertently pass a value of type T to a function that expects
an argument of type value_iterator<T>. A more compelling example of the need for
explicit occurs with std::vector. There, before C++ supported explicit constructors it was
possible to pass an int to a function that expected a vector with no complaint from the
compiler – the int would be implicitly converted into a vector using the single argument
int constructor. When programmers first start using explicit constructors they are often
confused by the following issue. Consider:

T x ;
U y=x ; /∗ I f T and U are d i f f e r e n t t y p e s t h e n t h i s l i n e ∗ /
U z (x) ; /∗ can have a d i f f e r e n t meaning from t h i s l i n e ∗ /

The first line means: implicitly construct an (anonymous) value of type U from the
value x of type T , then assign it to y. The second line says to construct the value z of
type U directly from the value x of type T . In case the T -conversion constructor of class
U is marked as explicit, the first form above should generate an error, since the implicit
construction is disallowed.

A long time ago Abelson & Sussman wrote the classic book "Structure and Inter-
pretation of Computer Programs". Though it teaches a number of incorrect things, it is
nevertheless a very great book. We strongly urge you to read it, no matter how long you
have been programming. In the book they introduce the notion of a "first class object" (this
has nothing to do with object-oriented programming). We don’t believe that they got it
completely right, but they were on the right track. The idea is that a first class object is
something that can be: passed to a function, returned from a function, and stored/retrieved

2.5. IMPLEMENTING AN ITERATOR 25

from a data structure. Every object in the language of the book, Scheme, is a first class ob-
ject. Scheme has the very nice property that functions are first class objects, unlike in C++.
In C++ arrays can not be passed to, or returned from a function. Our notion of regular type
is an attempt to extend this idea of "first class objects". In particular, regular types must
have a default constructor – otherwise we can not have an array of elements of these types.
We want to write things which will work seamlessly within the entire language framework.

Now we need to create the six operators: *, ++ (two versions), operator->, opera-
tor==, operator!=. (By the way, we believe that C++ needs to always define operator!=
as !operator==.)

r e f e r e n c e operator ∗ () c o n s t { re turn v a l u e ; }
r e f e r e n c e operator − >() c o n s t { re turn &t h i s −>operator ∗ () ; }

It is useful to define operator-> in case the value type is a struct like complex and
clients want to use the -> syntax to access members of the struct. We use the above im-
plementation of operator-> because it will work no matter how operator* is implemented.
That is, the code has the advantage of being paste-able into other contexts. Note that there
are two versions of operator++ in the final version of the class below. The post-increment
version takes a dummy argument of type int. Also we implement binary operators as
friends to preserve symmetry.

t empla te <typename T , / / T models I n c r e m e n t a b l e
typename D = T> / / D models I n t e g e r

c l a s s v a l u e _ i t e r a t o r {
p u b l i c :
t y p e d e f s t d : : f o r w a r d _ i t e r a t o r _ t a g i t e r a t o r _ c a t e g o r y ;
t y p e d e f T v a l u e _ t y p e ;
t y p e d e f D d i f f e r e n c e _ t y p e ;
t y p e d e f c o n s t T& r e f e r e n c e ;
t y p e d e f c o n s t T∗ p o i n t e r ;
p r i v a t e :
v a l u e _ t y p e v a l u e ;
p u b l i c :
v a l u e _ i t e r a t o r () { }
e x p l i c i t
v a l u e _ i t e r a t o r (c o n s t v a l u e _ t y p e& v) :

v a l u e (v) { }
r e f e r e n c e operator ∗ () c o n s t {

re turn v a l u e ;
}
p o i n t e r operator − >() c o n s t {

re turn &(operator ∗ ()) ;
}
v a l u e _ i t e r a t o r& operator ++() {

++ v a l u e ;
re turn ∗ t h i s ;

}
v a l u e _ i t e r a t o r operator ++(i n t) {

v a l u e _ i t e r a t o r tmp = ∗ t h i s ;
++∗ t h i s ;

26 2. INTRODUCTORY ALGORITHMS

re turn tmp ;
}
i n l i n e f r i e n d
bool operator ==(c o n s t v a l u e _ i t e r a t o r& x ,

c o n s t v a l u e _ i t e r a t o r& y) {
re turn ∗x == ∗y ;

}
i n l i n e f r i e n d
bool operator ! = (c o n s t v a l u e _ i t e r a t o r& x ,

c o n s t v a l u e _ i t e r a t o r& y) {
re turn ! (x == y) ;

}
} ;

We offer the following criterion: a class is fully defined if the public interface of a class
allows us to implement equality. If we need access to private data to implement equality
then there is something wrong with the class.

EXAMPLE 2.2. We now extend value_iterator to work for Regular Types. Instead of
using operator++ we parameterize value_iterator to accept a function object to do the
incrementing. That is, we weaken the requirement on the value type from Incrementable
to Regular Type and require that a function object is passed in at runtime whose role is
to advance to the next value. We will also need a good default value for the function
object so that our clients will not have to do extra work in case the value type is already
Incrementable. We begin by defining the default function object.

t empla te <typename T> / / T models i n c r e m e n t a b l e
s t r u c t advance {

T& operator () (T& x) c o n s t { re turn ++x ; }
f r i e n d i n l i n e
bool operator ==(c o n s t advance& x , c o n s t advance& y) {

re turn true ;
}

} ;

We did not provide typedef s for argument type or result since we are not intending
that advance will be used with bind1st. Even if we did, bind1st does not work correctly
with reference return types. We return a reference from operator() to support the ad-
vance(advance(x)) idiom. In a moment, we will explain why we took the trouble to make
advance into a Regular Type by providing the equality operator.

t empla te <typename T , / / T models I n c r e m e n t a b l e
typename D=T , / / D models I n t e g e r
typename F=advance <T> > / / F models Muta tor

c l a s s v a l u e _ i t e r a t o r { /∗ f u n c t i o n a l programmers c a l l t h i s a s t r e am
∗ /

p u b l i c :
t y p e d e f T v a l u e _ t y p e ;
t y p e d e f c o n s t T& r e f e r e n c e ;
t y p e d e f c o n s t T∗ p o i n t e r ;
t y p e d e f D d i f f e r e n c e _ t y p e ;

2.5. IMPLEMENTING AN ITERATOR 27

t y p e d e f s t d : : f o r w a r d _ i t e r a t o r _ t a g i t e r a t o r _ c a t e g o r y ;
p r i v a t e :

v a l u e _ t y p e v a l u e ;
F fun ;

p u b l i c :
v a l u e _ i t e r a t o r () : v a l u e (v a l u e _ t y p e ()) { }
e x p l i c i t
v a l u e _ i t e r a t o r (c o n s t v a l u e _ t y p e& va lue , F f =F ()) :
v a l u e (v a l u e) , fun (f) { }
r e f e r e n c e operator ∗ () c o n s t {

re turn v a l u e ;
}
p o i n t e r operator − >() c o n s t {

re turn &(operator ∗ ()) ;
}
v a l u e _ i t e r a t o r& operator ++() {

fun (v a l u e) ;
re turn ∗ t h i s ;

}
v a l u e _ i t e r a t o r operator ++(i n t) {

v a l u e _ i t e r a t o r tmp = ∗ t h i s ;
fun (v a l u e) ;
re turn tmp ;

}
i n l i n e f r i e n d
bool operator ==(c o n s t v a l u e _ i t e r a t o r& x ,
c o n s t v a l u e _ i t e r a t o r& y) {

re turn ∗x == ∗y && x . fun == y . fun ;
}
i n l i n e f r i e n d
bool operator ! = (c o n s t v a l u e _ i t e r a t o r& x ,
c o n s t v a l u e _ i t e r a t o r& y) {

re turn ! (x == y) ;
}

} ;

When implementing equality for this version of value_iterator, it is not sufficient to
check for equality of the corresponding value members. If incrementing is allowed (that is,
if we are not at the end of a valid range) then the axiom i==j=⇒++i==++j must hold. An
instance of value_iterator that uses a fun which advances by 2 is not equal to an instance of
value_iterator which advance by 3, even if their values are currently the same. So we take
fun into account when implementing value_iterator::operator==. This is why we needed
to supply operator== for advance.

Now we return to the problem posed at the end of Section 2.4.

EXERCISE 2.3. Use value_iterator to generate a sequences of odd numbers.

EXERCISE 2.4. Use value_iterator to unify mismatch and find_derangement.

28 2. INTRODUCTORY ALGORITHMS

2.6. Type Functions

We want to be clear that we do not like constructs like iterator_traits. They are
necessary because C++ does not allow us to treat built-in types and user defined types
in a uniform manner. At a deeper level, we are trying to establish certain fundamental
relationships between types. To do so we require the fundamental notion of a type function.
This takes some getting used to for C++ programmers since they are more familiar with
functions that take values as parameters and return a value. A type function takes types
as parameters and returns a type. The value_type of an iterator is really a type function:
given an iterator type we somehow need to find its value type. Since type functions don’t
exist in C++ we are forced to write expressions like value_type: std::vector<int>::iterator
instead of value_type(iterator_type(vector_iterator<int>)) .

There are five types affiliated with each iterator. (In many respects this is three too
many. iterator_category is not really desirable as a type. In a language that properly
supported generic programming, dispatch to the appropriate function would not require
anything like iterator_category.) Ignoring C++ for the moment, what are the two type
functions that we really need to apply to an iterator type? For a given iterator type, we
need to calculate the return type for operator*. This is fundamental – it is not about C++.
We have a very simple operation, the dereference operation, whose return type varies based
on the type of iterator. Dereferencing takes a value of an iterator type I to a value of its
associated value type V . Actually, we don’t quite want V to be a value type – we want it
to be a reference type. From a reference type it is possible to calculate a value type and
a pointer type; these two calculations did not come into being because of anything having
to do with iterators. They exist partly as a result of an over-ambitious attempt to support
multiple different pointer and reference types. (At the time compilers offered, for example:
int*, int far*, and int long*, two different 32-bit pointer types that worked differently. For
one of them the carry would never cross the 16-bit boundary under operator++ !) We
attempted to accommodate this in an abstraction called an allocator (combining memory
and allocation). It couldn’t possibly work, largely because & can not be overloaded, at
least for built-in types. This is the reason that we have pointer and reference typedefs in
iterators. Once again, although we would like to be able to write reference(I) to recover the
reference type from an iterator of type I, in C++ we are forced to use the nested typedef
idiom so we usually end up writing something like typename iterator_traits<I>::reference
instead.

2.6.1. The Limitations of Object-Oriented Programming. An iterator consists of
a main type, let’s call it I, together with two associated types: the type resulting from the
dereference operation, R, and the distance type, D. That is, we view an iterator as a triple
of types {I,R,D}. A number of algorithms depend on more than one of these types. When
code depends on multiple types object-oriented-programming breaks down. The idea of
object-oriented programming is to cluster pieces of code around a single type. Clustering
is a wonderful idea, but we discovered that it needs to happen around multiple types, not
just one. A typical kind of example that object-oriented people love to use is, say, to start
with Semigroup from which they then derive Group, followed by Ring – then they stop.
They forget to continue as far as Vector Space. This one is not derivable. A Vector Space
requires a pair of types {V, S }, where V is the type of the Vectors (which, incidentally, must
form a Group) and S is the type of the Scalars (which form a Field), and where certain
other laws (such as the distributive law) must hold. The signatures of the operations upon
a Vector Space are expressed in terms of both S and V.

2.6. TYPE FUNCTIONS 29

V and S types do not enjoy equal status in a Vector Space. The Vectors are clearly
more important. We argue that the axioms for Vector Spaces are of secondary importance.
To abstract, we insist on starting from a particular thing such as Socrates, then abstracting
to a type, Human, finally to a concept (Genus) Animal. The same approach works in
mathematics: we start with 5, we abstract to the type int and from there we abstract to the
Concept of Number. Fundamentally, a model of a Vector Space is a particular collection of
Vectors. The crucial consequence of this is that the type of the Vector uniquely determines
the type of the Scalar. The type of an Animal uniquely determines the type of food that
the animal eats. The reverse is not true. There will always be one principal type for an
abstraction, usually accompanied by several auxiliary types. We need the ability to include
as part of our abstractions the type functions that let us recover these auxiliary types. Our
Vector Space abstraction needs to include a type function scalar which can recover the
type S from the type V, e.g. scalar(V)=S. Then, for a generic algorithm like inner product,
we use the scalar type function to produce the signature scalar(V) inner_product(const
V& a, const V& b).

Object-oriented programming works fine in the case of interfaces where only one type
varies. For example, if Cow is derived from Mammal we might declare the virtual member
function void Mammal::sleep(). We would have no problem overriding sleep in the derived
class: void Cow::sleep(). We can depict this in the commutative diagram below:

Mammal
sleep
→ void

↓ ↓

Cow
sleep
→ void

Now we consider the binary function mate. What we want is Mammal Mammal::mate(Mammal)
and Cow Cow::mate(Cow), visualized as:

Mammal×Mammal
mate
→ Mammal

↓ ↓

Cow×Cow
mate
→ Cow

But the object-oriented paradigm only allows for variation in the first parameter. Even with
covariant return types, the best that we can do is Mammal Mammal::mate(Mammal) and
Cow Cow::mate(Mammal). It goes without saying that this could be rather awkward for
the cow. We illustrate these interfaces below:

Mammal×Mammal
mate
→ Mammal

↓ ↓

Cow×Mammal
mate
→ Cow

This is not just a fluke. The most important kind of operation, the binary operation, is
not properly supported under the usual object-oriented single-dispatch model. Addition,
multiplication, division are all binary operations, but they can’t work in an object-oriented
hierarchy!

There are further difficulties. Let us consider another function on our hierarchy: eat.
A Mammal will eat MammalFood and a Cow will eat CowFood. Under our object-oriented
decomposition, the best we might hope for would be:

Mammal×MammalFood
eat
→ void

↓ ↓

Cow×MammalFood
eat
→ void

30 2. INTRODUCTORY ALGORITHMS

But cows don’t want any old mammal food, they want cow food, e.g. hay. Even multi-
methods won’t help us here. The problem is that only cows know what they eat. There is
a type dependency. We really need:

Mammal× food(Mammal)
eat
→ void

↓ ↓

Cow× food(Cow)
eat
→ void

where food is a type function. We are not aware of any existing object-oriented languages
that support the ability to include type functions as a component of our abstractions. We
tried for many years to come up with an object-oriented way of defining iterators, integers,
or sequences. Everyone said it should be possible with object-orientation. Then we re-
alized that the problem arose from the attempt to decompose things in an object-oriented
manner. (Nowadays, object-orientation is equated with "good". We are not against good.
When we refer to object-orientation we refer to existing languages and the specific tech-
niques defined by proponents in certain books – we are not criticizing "what could be".)
Such a strategy cannot work except in the case of single argument operations – the para-
digm breaks down for general binary operations.

Today systems tend to be built using a number of different languages. One rarely
sees activities such as scripting carried out in a language such as C++. We don’t believe
that there is any good reason why a single well-designed programming language couldn’t
support all programming tasks. Sadly there is not much interesting activity in program-
ming language research nowadays. Even at the well-known POPL conference people are
working on theoretical languages for which there are no programmers. A programming
language must have users – graduate students writing type checkers for a language do not
count. We want to be able to state everything we know about our program in our pro-
gramming language. For example we would like to be able to state that an operation is
commutative. Our ideal language would not have //-style comments. We want comments
to be structured in a formal mathematical notation, and we them to be semantically checked
by the compiler (to the extent that this is possible).

In C++ we are not even really faking it. We write copy with the words with InputIter-
ator, OutputIterator. But we never define these things. We could globally replace the first
with the word "Apple" and the second with the word "Orange" without changing the behav-
ior of the program. These words only carry meaning in our mind – iterators are figments
of our imagination in C++. This a huge problem. Consider the following situation.:

t empla te <typename I n p u t I t e r a t o r ,
typename O u t p u t I t e r a t o r >

O u t p u t I t e r a t o r buggy_copy (I n p u t I t e r a t o r f i r s t ,
I n p u t I t e r a t o r l a s t ,
O u t p u t I t e r a t o r r e s u l t) {

whi le (f i r s t < l a s t) ∗ r e s u l t ++=∗ l a s t ++;
re turn r e s u l t ;

}

This will compile. It may even run for test cases that happen to use types for which < is
be defined. In fact, this event is quite likely since people don’t usually bother to test their al-
gorithms against a minimal model. Instead they try only something like buggy_copy<int*>.
Eventually, the person who wrote the above code will leave the company to work for
Google. Another programmer will come along and instantiate buggy_copy for a list it-
erator (or some other iterator that is not Random Access). They will get an indecipherable

2.6. TYPE FUNCTIONS 31

thirty page long error message. STL works provided that it is used correctly. Otherwise
the error messages are awful. The whole thing is done with smoke and mirrors.

There are some important techniques that we can use to test our algorithms against
minimal models. One such technique is to create minimal model adaptors.

EXERCISE 2.1. Write adaptors for each iterator category that will help algorithm au-
thors test the correctness of their iterator category requirements. For example, ForwardIt-
eratorAdaptor<I> should have a restricted interface that only exposes the operations re-
quired to be provided by all Forward Iterators. Instantiate the faulty version of buggy_copy
on ForwardIteratorAdaptor<int*>. InputIteratorAdaptor is far from trivial since ideally
we would like its use to cause a compilation error when supplied to a two pass algorithm.
But it is an open question whether it is even possible to for a class to detect two-pass al-
gorithms at compile time. OutputIteratorAdaptor is hard, but not as hard. The others are
straightforward.

EXERCISE 2.2. To get an idea of how the use of these adaptors impacts performance
repeat the performance measurements from Question 2.3 replacing the types that you were
using with their restricted/adapted versions. Do not alter any of the flavors of your copy
algorithm.

The STL flaws that we encounter in C++ would be alleviated in a language that sup-
ported concepts. In particular, concepts allow us to declare that an iterator is something
that comes equipped with some operations and a collection of type functions (associated
types) all of which obey certain semantic constraints. We will have more to say about
concepts later.

We will move on to more interesting algorithms momentarily, but first we note a few
important facts about copy. One problem is that the version that we have been working
with requires that result is not between first and last. When the ranges overlap, copy may
fail (for our unrolled version). The case where the ranges could overlap is addressed by
another function called copy_backwards (implemented using the strategy indicated by its
name).

EXERCISE 2.3. Implement copy_backwards. Pay attention to the interface, in partic-
ular to the allowable iterator categories.

EXERCISE 2.4. Implement find_if (without looking even at the interface or imple-
mentation of the STL find_if) and count_if. Reasoning about what makes a good interface
is important. The return type of count_if must be the difference_type of the iterator. This
exercise will force you to learn iterator_traits and the non-intuitive C++ syntax needed to
simulate type functions.

Part 2

Permutation Algorithms

CHAPTER 3

Introduction to Permutation Algorithms

Most interesting algorithms involving iterators come from a class of problems con-
cerning permutations. We often need to reorder a group of elements. Let us recall a few
definitions. A permutation is a one-to-one mapping of a finite set onto itself. A cyclic
permutation or a cycle is a subset of a permutation whose elements trade places with one
another. An element that remains unmoved by a permutation is called a fixed point. There
can be at most n fixed points, in which case the permutation would be trivial (i.e. the
identity permutation).

There are three distinct kinds of permutation operations. The first kind is index based.
Under an index based permutation operation the destination of an element depends only
on the element’s original position, not on its value. The second kind of permutation oper-
ation takes an element’s value into account when determining its destination. The typical
example of such a predicate based permutation operation is partition. The problem that
partition solves is to place the “good” elements before the “bad” elements, according to
some unary predicate. The third kind of permutation operation compares two values to
determine an element’s destination. While partition uses a unary predicate, comparison
based permutation algorithms, like sort, employ a binary comparison operation.

Remarkably, there are relatively few interesting algorithms within these three classes.
The job of mathematicians is not to derive dozens of theorems, but to discover the few
interesting ones. By the same token, the job of a computer scientist is not to produce a
large number of algorithms, but to discover the important ones. We must act as filters,
separating the good from the bad.

Permutation algorithms fall into three different classes. For permutations of n ele-
ments, algorithms that use at most log n additional storage are known as in-place algo-
rithms. At the other end of the spectrum, we have algorithms that may use as much storage
as needed. In practice this seldom amounts to more than n extra elements – n/2 often
suffices. The third class, memory-adaptive algorithms, tends not to be described in the
literature, but we view it as the most important. It is rarely the case that we have either
as much memory as we like, or a logarithmic amount. Instead, there is usually some ex-
tra memory available. Memory-adaptive algorithms make use of whatever extra memory
they are given to improve performance. For large classes of algorithms, a small increase
in available storage (e.g. 10% or lower) allows for a significant improvement in running
time.

In the chapters of this part we will study index-based permutation operations, predi-
cate based permutation operations and comparison based permutation operations. First we
prove a couple of useful theorems.

THEOREM 3.1. Any permutation, p, on a finite set X can be decomposed into a prod-
uct of disjoint cycles. Except for changes in the order of the cycles, this decomposition is
unique.

35

36 3. INTRODUCTION TO PERMUTATION ALGORITHMS

PROOF. We build our product of cycles as follows: for the first cycle we begin with an
arbitrary element x of X and carry it to its image under the permutation (i.e. to p(x)), which
in turn gets carried to its image, and so on. Since X is finite, we may continue this process
until we first return to an element that has already been visited. Such an element must
in fact be x, thereby completing our cycle, for x is the only element that has not already
appeared as an image, and our function, being a restriction of the original permutation,
must remain one-to-one. After the first cycle is complete, we generate more cycles by
repeating the above process until there no longer remain elements of X which have not yet
participated in a cycle. Finally, since each cycle is uniquely determined by the permutation,
we note that our decomposition is unique (up to order of the cycles). �

THEOREM 3.2. The total number of assignments needed to implement a permutation
on a set of n elements is (n− the number of trivial cycles + the number of non-trivial cycles).

PROOF. Suppose that we have a permutation of length n with i non-trivial cycles and
t trivial cycles. Notice that, in our machine model, any (sequence of) assignments will
"destroy" at least one value. So, to implement a non-trivial cycle of length k we will
need to perform (at least) k + 1 assignments, since permutations must remain 1 to 1. To
see that k + 1 assignments are sufficient, consider the following procedure: first copy the
“last” value in (some representation of) the cycle to a temporary location. Then copy the
remaining k − 1 values (proceeding from right to left) to their final destinations. Finally
copy the temporary value to its final destination. The total number of assignments required
will be: one per element of each non-trivial cycle + one extra per non-trivial cycle (trivial
cycles don’t contribute to the total number of assignments). In other words (n − t) + i. �

See the appendix for an alternative proof.

CHAPTER 4

Position Based Permutation Operations

In this chapter we discuss the three most important index based permutation opera-
tions: reverse, rotate, and random_shuffle. reverse is fairly straightforward, mapping 1 2
3 to 3 2 1. The rotate operation, though extremely useful, is unknown to many program-
mers. Rotating 1 2 3 around 3 results in 3 1 2. That is, rotate swaps (possibly unequal-
sized) ranges. Interestingly, there are three different algorithms for the rotate operation,
each one being suited for use with a different iterator category. We finish the chapter with
random_shuffle.

4.1. reverse

4.1.1. reverse for Bidirectional and Random Access Iterators. In order to reverse
a range we need the ability to swap elements. We begin by implementing swap

t empla te <typename T> / / T models Regu lar Type
i n l i n e void swap (T& a , T& b) {

T tmp=a ;
a=b ;
b=tmp ;

}

We don’t return anything because we didn’t compute anything unknown to the caller.
Observe that the cost of performing a swap is the same as the cost of three assignment
statements.

It is possible to write swap using no extra storage at all. Such an implementation is
not useful nowadays, since it runs more slowly then the version above. Nonetheless it is an
interesting technique:

a ^=b ; / / a == a0 ^ b0 b == b0
b^= a ; / / a == a0 ^ b0 b == a0
a ^=b ; / / a == b0 b == a0

Nowadays the above implementation is not useful because it runs more slowly then
the previous version. Given swap we can implement reverse for bidirectional iterators:

t empla te <typename I > / / I models B i d i r e c t i o n a l I t e r a t o r
void r e v e r s e (I f i r s t , I l a s t) {

whi le (f i r s t != l a s t && f i r s t != −− l a s t) {
swap (∗ f i r s t , ∗ l a s t) ;
++ f i r s t ;

}
}

This code requires bidirectional iterators because it uses of the decrement operator.
Could we make it a little bit faster? We are doing two comparisons per iteration. We can

37

38 4. POSITION BASED PERMUTATION OPERATIONS

reduce the number of comparisons using our usual technique: we create reverse_n. This
allows us to unroll the loop to wring a little bit of extra performance out of the algorithm
when n is known.

t empla te <typename I > /∗ I models B i d i r e c t i o n a l I t e r a t o r ∗ /
void r e v e r s e _ n (I f i r s t ,

I l a s t ,
/∗ We r e t a i n t h i s parame te r s i n c e i t may be e x p e n s i v e

compute i n t h e B i d i r e c t i o n a l I t e r a t o r case . ∗ /
typename s t d : : i t e r a t o r _ t r a i t s <I > : : d i f f e r e n c e _ t y p e n) {

whi le (n >1){
swap (∗ f i r s t , ∗−− l a s t) ;
++ f i r s t ;
n−=2;

}
}

Now we can implement reverse for random access iterators in terms of reverse_n.

t empla te <typename I > /∗ I models Random Ac ce s s I t e r a t o r ∗ /
void r e v e r s e (I f i r s t ,

I l a s t) {
r e v e r s e _ n (f i r s t , l a s t , l a s t − f i r s t) ;

}

EXERCISE 4.1. Implement a version of reverse that dispatches to reverse_n for ran-
dom access iterators and to the previous version for bidirectional iterators.

On some platforms, for bidirectional iterators, it turns out to be faster to call distance
followed by reverse_n.

4.1.2. Sketch of Reverse for Forward Iterators. Now we move on to reverse for
forward iterators. Before we explain how the algorithm works, we need to establish the
meaning of reverse. A permutation, p, is said to reverse a range of elements if and only if,
for all a and b in the range, if a precedes b then p(b) precedes p(a). Now, suppose that we
wish to reverse the sequence of elements

f
abcde

l

We first select a position such as m, the point between a and b:

f
a

m
bcde

l

If we reverse the elements in [f ,m) then reverse the elements in [m, l) we obtain

f
a

m
edcb

l

Now we rotate around m (i.e. we swap the two unequal-sized ranges [f ,m) and [m, l))
we get

f
edcb

m′

a
l

4.1. REVERSE 39

Clearly this procedure has had the effect of reversing the range. We try again, this time
selecting a different m

f
abc

m
de

l

Reversing each range gives
f
cba

m
ed

l

and after the final rotation we once again see that the elements have been reversed:

f
ed

m′

cba
l

To see that this works in general, consider a pair the elements x, y in a range to be
reversed. If after choosing m, x and y are in the same sub-range then their relative order
will be reversed when their sub-range is reversed. Their relative order will be unaffected
by the rotate. On the other hand, if x and y are in different sub-ranges then their relative
order will be unchanged when their sub-range is reversed, but their order will be reversed
by the rotate. In either case the relative order of x and y is flipped, so the permutation
described above really does constitute a reverse algorithm. Later on we will show how a
dual algorithm is possible–we implement a rotate algorithm in terms of reverse. Starting
from the key idea of the algorithm we begin by writing:

I m = s e l e c t (f i r s t , l a s t) ;
r e v e r s e (f i r s t , midd le) ;
r e v e r s e (middle , l a s t) ;
r o t a t e (f i r s t , middle , l a s t) ;

Even leaving aside the fact that we haven’t defined the select procedure yet, the code
above is incomplete, since we will have a non-terminating recursion. We need to insert a
termination condition ahead of the above code:

i f (f == l | | s u c c e s s o r (f)= l) re turn ;

4.1.3. Towards Efficient Divide and Conquer Algorithms. We actually produced
a whole family of reverse algorithms, parameterized by the selected rotation point. Each
algorithm has a different complexity. The cost of the reverse will be essentially equal to the
sum of the costs of all the rotates. We will see later that the complexity of rotating is linear
in the number of elements. Consider the reverse algorithm obtained by using a select that
always chooses the point one past the start for the rotation point. We depict its complexity
in Figure 1.

From the Figure we see that we will have to rotate: a range of size n at the top level of
the recursion, a range of size 1 and a range of size n − 1 at the second level of recursion,
and so on. Adding up these costs we get the total cost for reverse, rev(n) as

rev(n) ≈ (n + (n − 1) + . . . + 1) + ((n − 1) · 1) =
n(n + 1)

2
+ n − 1

So

O(rev(n)) = O(
n(n + 1)

2
+ n − 1) = O(n2).

This analysis is not only about the performance of a particular reverse algorithm. In
general it applies whenever we are using a divide and conquer strategy with an operation
of linear complexity, with a strategy of splitting into two sub-problems by picking off a

40 4. POSITION BASED PERMUTATION OPERATIONS

n

1 n-1

1 n-2

1 n-3

FIGURE 1.

single element from the beginning. In such cases we will see quadratic performance. The
remedy is to use split into sub-problems in the middle. The complexity of this algorithm is
represented in Figure 2 (for simplicity we consider the case when n is a power of 2). The
complexity is now on the order of

O

 lg n∑
i=0

2i ·
n
2i

 = O

 lg n∑
i=0

n

 = O(n ·
(
1 + lg n

)
) = O(n lg n).

So, by switching our partitioning strategy from splitting at the first element to splitting in
the middle we improve the complexity from O(n2) to O(n lg n).

We can make some further improvements. When n is even, instead of using rotate, we
can use the cheaper swap_ranges (which swaps two equal-sized, possibly non-contiguous
ranges).

EXERCISE 4.2. Implement I2 swap_ranges(I1 first, I1 last, I2 first2).

EXERCISE 4.3. Implement std::pair<I1, I2> swap_ranges_n(I1 first, I2 first2, Integer
n).

Let’s write some code for the forward iterator reverse algorithm based on the ideas
that we have been discussing.

t empla te <typename I > / / I models Forward I t e r a t o r
void r e v e r s e (I f i r s t , I l a s t) {

typename s t d : : i t e r a t o r _ t r a i t s <I > : : d i f f e r e n c e _ t y p e
n = s t d : : d i s t a n c e (f i r s t , l a s t) ;
/∗ The above l i n e has l i n e a r c o m p l e x i t y .

We w i l l a d d r e s s t h i s below . ∗ /

4.1. REVERSE 41

n

n�2 n�2

n�4 n�4 n�4 n�4

n�8 n�8 n�8 n�8 n�8 n�8 n�8 n�8

FIGURE 2.

i f (n <2) re turn ;
I midd le = f i r s t ;
s t d : : advance (middle , n / 2) ;
/∗ Advancing by n / 2 doesn ’ t q u i t e work s i n c e n migh t

be odd . But l u c k i l y , i n t h a t case t h e e l e m e n t
i n t h e mi dd l e doesn ’ t need t o be swapped .
We p a t c h f o r t h e odd case below .

∗ /
I f i r s t 2 = midd le ;
i f (n%2) ++ f i r s t 2 ;
s t d : : swap_ranges (f i r s t , middle , f i r s t 2) ;
r e v e r s e (f i r s t , midd le) ;
r e v e r s e (f i r s t 2 , l a s t) ;

}

This version of reverse is no longer quadratic, it has complexity O(n log n). This is
good, but there is still room for improvement. We do three traversals: once during the call
to distance, again when calling advance, and the third time when calling swap_ranges.
The third traversal dominates the runtime cost, and we will not be able to make it go away.
But we can still enjoy some smaller gains by getting rid of the first two traversals. The
technique is to extend the reverse function to return the information that we previously
obtained by traversing.

It is easiest to see how to do this in the context of reverse_n. Here we avoid the call
to distance since n is already given. We extend reverse_n to return an iterator referring to
the end of the reversed range. Note that it doesn’t matter whether we call swap_ranges
before or after we do the reverse. By moving the calls to reverse_n ahead of the call to
swap_ranges we can make use of the iterator returned by reverse_n to get rid of the call to
advance.

Finally, we need to add code to return the end of the reversed range. It is trivial to
figure out what to return in case n < 2. In addition, while the first call to reverse_n gives
us middle, the second call to reverse_n gives us result. In code we have:

t empla te <typename I , / / I models Forward I t e r a t o r
typename J > / / J models I n t e g e r

42 4. POSITION BASED PERMUTATION OPERATIONS

I r e v e r s e _ n (I f i r s t , J n)
{

i f (n == 0) re turn f i r s t ;
i f (n == 1) re turn ++ f i r s t ;

I midd le = r e v e r s e _ n (f i r s t , n / 2) ; /∗ t h i s e l i m i n a t e s t h e need
f o r advance ∗ /

i f (n%2 == 1) ++ midd le ;
I r e s u l t = r e v e r s e _ n (middle , n / 2) ;
swap_ranges_n (f i r s t , middle , n / 2) ;
re turn r e s u l t ;

}

We find this code amazing because, at first glance, it is not at all clear where any work
is being done! This implementation is in-place: it uses lg n additional storage for the stack
during the recursion. It should be clear how to produce reverse from this reverse_n.

We saw in Theorem 3.2 that the minimum number of assignments needed to imple-
ment a permutation is n + ntc− tc where ntc is the number of non-trivial cycles, and tc
is the number of trivial cycles. For reverse this amounts to n + n/2 − n%2. This tells
us that reverse is the most expensive permutation to execute, because we have the largest
possible number of non-trivial cycles. In particular, there is no point in trying to make our
implementation of reverse (for bidirectional or forward iterators) any more efficient.

4.1.4. Memory Adaptive Algorithms. Unfortunately, it turns out that in practice
the forward iterator version of reverse is not very useful. The typical example of a con-
tainer that can only provide forward iterators is a singly-linked list. But for such lists we
would usually implement reverse by directly manipulating the successors of the iterators.
Nonetheless, the issues that we addressed in the reverse example are illustrative of those
that appear in the more general class of top-down recursive algorithms.

Usually, when we provide a top-down recursive algorithm for an operation, we should
also provide a memory adaptive version. During the recursion, as soon as the sub-problem
becomes smaller than the auxiliary buffer, we can speed things up. To do so, we first copy
the all of the remaining elements into the buffer. Assuming that the buffer provides at
least bidirectional iterators, we can efficiently copy the elements back into place in reverse
order, using the reverse_copy algorithm. We give the code for reverse_copy followed by
the code for reverse_n_adaptive.

t empla te <typename B , / / B models B i d i r e c t i o n a l i t e r a t o r
typename O> / / O models Outpu t I t e r a t o r

O r e v e r s e _ c o p y (B f i r s t , B l a s t , O r e s u l t)
{

whi le (f i r s t != l a s t) {
−− l a s t ;
∗ r e s u l t = ∗ l a s t ;
++ r e s u l t ;

}
re turn r e s u l t ;

}

4.1. REVERSE 43

Observe the asymmetry in the arguments to reverse_copy above. As an alternative to
providing two bidirectional iterators to delimit the source range, we can provide a single in-
put iterator referring to the beginning of the source range, along with a pair of bidirectional
iterators that determine the destination range. In each case, to implement the algorithm,
we need at least one of the ranges to provide bidirectional iterators so that we can walk
backwards through that. Despite the fact that it is a bit too cute, the best name that we can
think of for this algorithm is copy_reverse:

t empla te <typename I , / / I models I n p u t I t e r a t o r
typename B> / / B models B i d i r e c t i o n a l I t e r a t o r

I c o p y _ r e v e r s e (I f i r s t , B r e s u l t _ f i r s t , B r e s u l t _ l a s t)
{

whi le (r e s u l t _ f i r s t != r e s u l t _ l a s t) {
−− r e s u l t _ l a s t ;
∗ f i r s t = ∗ r e s u l t _ l a s t ;
++ f i r s t ;

}
re turn f i r s t ;

}

EXERCISE 4.4. Implement reverse_copy_n.

Here is the code for reverse_n_adaptive:

t empla te <typename I , / / I models Forward I t e r a t o r
typename I2 > / / I models B i d i r e c t i o n a l I t e r a t o r

I r e v e r s e _ n _ a d a p t i v e (I f i r s t ,
typename s t d : : i t e r a t o r _ t r a i t s <I > : : d i f f e r e n c e _ t y p e

n ,
I2 b u f f e r ,
typename s t d : : i t e r a t o r _ t r a i t s <I > : : d i f f e r e n c e _ t y p e

b u f f e r _ l e n g t h)
{

i f (n ==0) re turn f i r s t ;
i f (n ==1) re turn ++ f i r s t ;
i f (n <= b u f f e r _ l e n g t h) {

re turn r e v e r s e _ c o p y (b u f f e r , copy_n (f i r s t , n , b u f f e r) , f i r s t) ;
}
I midd le = r e v e r s e _ n _ a d a p t i v e (f i r s t , n / 2 , b u f f e r , b u f f e r _ l e n g t h) ;
i f (n%2==1) ++ midd le ;
I l a s t = r e v e r s e _ n _ a d a p t i v e (middle , n / 2 , b u f f e r , b u f f e r _ l e n g t h) ;
swap_ranges_n (f i r s t , middle , n / 2) ;
re turn l a s t ;

}

STL provides get_temporary_buffer which tries to return the largest available tem-
porary buffer. It would be nice of this was useful in trying to write memory adaptive
algorithms, but unfortunately it is implemented using malloc. System interfaces have a
tendency to hide information that we need to know such as: the cache size, the size of
physical memory, or the available temporary buffer size. Information hiding has gotten to
the point where it is difficult to program effectively.

44 4. POSITION BASED PERMUTATION OPERATIONS

Adaptive algorithms are commonly useful, but somehow they are overlooked consid-
ered by the theoreticians, who employ an all-or-nothing approach. Even as little as 1% of
additional memory can have dramatic effects. As we saw in the reverse_adaptive_n, the
bottom of the recursion tree is where all the work gets done. But this is exactly where a
small buffer of extra storage can have the most benefit.

EXERCISE 4.5. Graph the performance of the adaptive algorithm for different buffer
sizes. Use an array, together with forward iterator adaptor (fairly large, say 100,000) and
see how the performance varies when 1%, 10%, and 50% additional storage is available.

4.1.5. reverse for Node Based Iterators. Consider the following linked list:

i
1
−→

j
2
−→

k
3
−→

l
4
−→

end
∅

Here we have four nodes, i, j, k, and l with *i==1, *j==2, *k==3, *l==4 and succes-
sor(i)=j, successor(j)==k, successor(k)==l, successor(l)==end. end is not dereference-
able, it exists simply for convenience to represent an off-the-end node. A natural way to
reverse this data structure is to change the successors of each node so that we end up with:

end
∅
←−

i
1
←−

j
2
←−

k
3
←−

l
4

We didn’t change or copy any of the values, we still have *i==1, *j==2, *k==3, *l==4.
But now successor(i)=end, successor(j)==i, successor(k)==j, successor(l)==k. In gen-
eral, when we are working with linked data structures (node-based structures) we can im-
plement reverse without copying any values. The iterators that we have been discussing
so far do not allow for successor changes. We need an additional operation which we will
call set_successor. We will call (forward or stronger) iterators that support this operation
node-based iterators, or node iterators.

In C++ there is no uniform and efficient notion of an empty list, so we borrow from lisp
the idea of using the reverse_append(first, last, result) operation which reverses the range
[f irst, last) and then appends result. This algorithm eliminates the need to deal with empty
lists. Then we can implement reverse(first, last) for node iterators as reverse_append(first,
last, last). Here is the code for reverse_append:

t empla te <typename T> / / T models Node I t e r a t o r
T r e v e r s e _ a p p e n d (T f i r s t , T l a s t , T r e s u l t) {

whi le (f i r s t != l a s t) {
T n e x t = s u c c e s s o r (f i r s t) ;

/∗ We must save f i r s t ’ s s u c c e s s o r as we w i l l n o t be
a b l e t o d i s c o v e r i t a f t e r c a l l i n g s e t _ s u c c e s s o r . ∗ /
s e t _ s u c c e s s o r (f i r s t , r e s u l t) ;
r e s u l t = f i r s t ;
f i r s t = n e x t ;

}
re turn r e s u l t ;

}

Notice that we save the first’s old successor before setting its new successor in order
to retain the ability to properly navigate the list. We could simplify reverse_append by
making set_successor return a value, but there are several possible choices with no clear
winner (e.g. we might return the old value of the successor, or we might return the first
argument).

4.2. ROTATE 45

EXERCISE 4.6. Implement a simple node iterator and use it to test your implementa-
tion of reverse_append. You do not need to implement a container.

We use the name reverse_nodes to distinguish this operation from reverse, since an
operation that changes the successor of a node has markedly different semantics from an
operation that changes the value.

While node iterators must be at least forward iterators, it is quite possible to have
bidirectional node iterators. Node operation support is orthogonal to the notion of iterator
categories. In general, we cannot form a simple hierarchical taxonomy of concepts.

4.2. rotate

The rotate operation is very useful since, in many algorithms, it is necessary to swap
two ranges of unequal size. We saw one use of rotate when working towards a reverse
algorithm for forward iterators (although we optimized away the call to rotate, in favor of
a call to swap_ranges, during recursion elimination).

rotate is also useful when implementing data structure operations. Consider the prob-
lem of inserting elements from a range [first, last) into a vector at position. The standard
C++ library provides this functionality as the member function template vector::insert(I1
position, I2 first, I2 last). When I2 is only an input iterator we don’t know the size of the
range [first, last), i.e. we don’t know in advance how many elements are to be inserted.
Naive algorithms insert elements into the vector one at a time. But then, for each of the dis-
tance(first, last) inserts, distance(position, end()) elements must be moved out of the way
(end() denotes the end of the vector). If we add to this the cost of copying each element of
[first, last) into position, the total number of assignments required by this algorithm is:

distance(f irst, last) ∗ (distance(position, end()) + 1)

There are even some versions of the standard C++ library that ship using this quadratic al-
gorithm. A different algorithm, employing rotate, only requires one move of [position, end()) .
We begin by appending all of the elements in [f irst, last) to the vector. Then we rotate
the new elements into place. Roughly speaking, this reduces the number of assignments
required from the (quadratic) product of the lengths of the two ranges, to the (linear) sum
of the lengths. More precisely, if we represent the (linear) cost of rotating n elements as
rot(n), the number of assignments needed is:

distance(f irst, last) + rot(distance(f irst, last) + distance(position, end()))

We will have more to say about the cost of rotating later on. In C++ our algorithm looks
like:

t empla te <typename T ,
typename A>

t empla te <typename I >
void v e c t o r <T , A> : : i n s e r t (i t e r a t o r p o s i t i o n , I f i r s t , I l a s t)
{
/∗ p o s i t i o n may n o t remain v a l i d a f t e r an i n s e r t i o n o c c u r s . We save

i t s o f f s e t so t h a t we can l a t e r c o n s t r u c t an i t e r a t o r t h a t r e f e r s
t o t h e b e g i n n i n g o f t h e range t o be r o t a t e d . We do t h e same f o r t h e
o r i g i n a l end so t h a t we can l a t e r d e t e r m i n e t h e r o t a t i o n p o i n t . ∗ /

d i f f e r e n c e _ t y p e p o s i t i o n _ o f f s e t = p o s i t i o n − b e g i n () ;
d i f f e r e n c e _ t y p e e n d _ o f f s e t = end () − b e g i n () ;

46 4. POSITION BASED PERMUTATION OPERATIONS

whi le (f i r s t != l a s t)
push_back (∗ f i r s t + +) ;

s t d : : r o t a t e (b e g i n () + p o s i t i o n _ o f f s e t ,
b e g i n () + e n d _ o f f s e t ,
end ()) ;

}

In this chapter we derive, analyze, and optimize three separate algorithms for the rotate
operation: one algorithm for forward iterators, one for bidirectional iterators, and one for
random access iterators.

Before we explain how the algorithms work, we need to be clear on the meaning of the
rotate operation. rotate(I f , Im, Il) must swap the two adjacent ranges, [f ,m) and [m, l) .
If [f ,m) has size a and [m, l) has size b then the rotate(f ,m, l) operation is defined to
have the same effect as a permutation that moves the elements in [f ,m) to the right by a
positions, and moves the elements in [m, l) to the left by b positions. We will revisit the
return value later.

4.2.1. rotate for Bidirectional Iterators. At first, the problem of rotating appears to
be quite difficult, as we must swap ranges of unequal size. Since rotate helped us discover
how to implement reverse, we ask in turn whether reverse might help us to see how to
implement rotate. Suppose that we wish to rotate the range [f , l) containing the values 1
through 8 around the iterator m, which refers to 6, as in:

(4.1)
f
12345

m
678

l

Reversing the entire range with reverse(f , l) yields:

f
876

m′

54321
l

This puts each range in the correct location, though the elements within each range still
need to be reversed. In the case of forward iterators, it may not be efficient to determine
the image of m, shown above as m′, under the rotation. So it is most convenient if we
begin by reversing each of the small ranges in Equation 4.1. That is, we start by calling
reverse(f , n) and reverse(m, l) to obtain:

f
54321

m
876

l

Now, we reverse the entire range with a call to reverse(f , l) to arrive at:

f
678

m′

12345
l

We call this the “three reverse” rotate algorithm. What is its complexity (in terms of the
number of assignments required)? We know that it takes n/2 swaps to reverse a range of n
elements. In the three reverse algorithm we reverse the entire range once, at a cost of n/2
swaps. We also reverse two smaller ranges, the sum of whose sizes is n, which requires
another n/2 swaps. So the total cost is n swaps, or 3n assignments.

Is a rotate algorithm that requires 3n assignments good or bad? Any non-trivial ro-
tation will consist of a permutation that moves every element–there will be no trivial cy-
cles. By Theorem 3.2 the minimum number of assignments required will therefore be
n + the number of cycles. This is substantially lower than 3n assignments. In the section

4.2. ROTATE 47

on rotate for forward iterators we will show that, remarkably, the number of cycles is the
gcd of the sizes of the two ranges! Then, in the section on rotate for random access itera-
tors, we will describe an algorithm that requires only n + gcd assignments–the minimum
possible number. Nevertheless, we will later see that sometimes three reverses is the best
algorithm to use.

A well-designed rotate needs to return the image of m, we’ll call it m′. For, we have
seen that the caller might not be able to determine this value without traversing. Further-
more, this allows us to undo the effects of a rotate. In other words, rotate(f , rotate(f ,m, l), l)
is the identity permutation. Of course we want to return m′ without doing any extra work.
This is a constant challenge–we want to return the useful information without paying a
performance penalty.

We modify the algorithm to return m′ as follows. We begin as before by reversing the
ranges [f ,m) and [m, l) . The third reverse, the one which reverses the entire range [f , l)
, is normally implemented as:

whi le (f != l && f != −− l) {
swap (∗ f , ∗ l) ;
++ f ;

}

The key to efficiently returning m′ is the observation that, in the course of reversing, when
one iterator hits m the other iterator will be at m′. So we change our the third reverse,
beginning with:

whi le (f != m && m != l) {
−− l ;
swap (∗ f , ∗ l) ;
++ f ;

}

That is, we reverse until one of the iterators hits the sentinel, m. We then: save m′, complete
the reverse of the middle range, and finally return m′. The algorithm for reversing until
we hit a sentinel is useful in its own right, so we create a new interface, reverse_until.
We commonly create new interfaces, since algorithms often come in clusters of useful
variants. reverse_until(I f, I m, I l) will reverse the range [f , l) as discussed above until
one of the iterators hits m. We might be tempted to have it simply return m′. But then
we would be throwing away a piece of useful information. The caller doesn’t know which
of the two ranges, [m,m′) or [m′,m) is the valid one. So we require that reverse_until
returns, in a pair<I, I>, the valid range of elements that haven’t yet been reversed. The
caller can determine m′ by testing whether m is equal to the first element of the pair–if not,
then the pair’s first element contains m′, otherwise the second element does. Here is the
implementation in C++:

t empla te <typename I > / / I models B i d i r e c t i o n a l I t e r a t o r
s t d : : p a i r <I , I >
r e v e r s e _ u n t i l (I f i r s t , I middle , I l a s t)
{

whi le (f i r s t != midd le && midd le != l a s t) {
−− l a s t ;
swap (∗ f i r s t , ∗ l a s t) ;
++ f i r s t ;

}

48 4. POSITION BASED PERMUTATION OPERATIONS

re turn s t d : : make_pa i r (f i r s t , l a s t) ;
}

Now we can implement our improved rotate as:

t empla te <typename I > / / I models B i d i r e c t i o n a l I t e r a t o r
I r o t a t e (I f i r s t , I middle , I l a s t) {

i f (f i r s t == midd le) re turn l a s t ;
i f (midd le == l a s t) re turn f i r s t ;

r e v e r s e (f i r s t , midd le) ;
r e v e r s e (middle , l a s t) ;

s t d : : p a i r <I , I > new_middle =
r e v e r s e _ u n t i l (f i r s t , middle , l a s t) ;

r e v e r s e (new_middle . f i r s t , new_middle . second) ;

i f (midd le != new_middle . f i r s t) {
re turn new_middle . f i r s t ;

} e l s e {
re turn new_middle . second ;

}
}

4.2.2. rotate for Forward Iterators. We wish to exchange the ranges [f ,m) and
[m, l) , of sizes a and b respectively.

f
a

m
b

l

This time we are given only forward iterators. If one of the ranges is empty then there is
no work to do. When a = b, we can call swap_ranges on the two equal sized ranges, and
since m′ = m we can return m. We must also define our algorithm in case a > b or a < b.
We proceed inductively, that is, we show how to reduce the problem of rotating the entire
range to a problem involving a smaller rotation.

First we consider the case where [f ,m) of size a is smaller than [m, l) of size b. Let
m′ be the iterator with distance(m,m′) = a. In the diagrams below, each range is labeled
with its size.

(4.2)
f
a

m
a

m′

b − a
l

The idea is to first swap the two blocks of size a, then to rotate the resulting second and
third blocks. The first task is easily accomplished with a call to swap_ranges. The task
of swapping the two remaining blocks (of smaller total size) is accomplished with another
call to rotate since the second and third ranges are not guaranteed to be the same size.

We elaborate the above idea: We begin by swapping the (equal sized) ranges [f ,m)
and [m,m′) :

(4.3)
f
a

m
a

m′

b − a
l

The swap has moved each element originally from [m,m′) to the left by a positions. By
the definition of rotate the elements now in [f ,m) are in their final positions. The swap

4.2. ROTATE 49

has moved the elements originally residing in [f ,m) to the right by a positions to [m,m′) .
rotate requires that these elements ultimately move to the right by b positions, so they must
still move b − a positions to the right. The elements in [m′, l) have not moved at all, so
they have yet to move b positions to the left. All of the necessary remaining moves can be
accomplished if we exchange the ranges [m,m′) and [m′, l) . That is, we have reduced
the problem of exchanging ranges of sizes a and b to the smaller problem of exchanging
ranges of sizes a and b − a. Observe that our return value will be the same as that returned
by “inner” rotation, rotate(m, m’, l).

The case where a > b is handled similarly. We again begin by swapping two equal
sized blocks followed by a call to rotate on a smaller range. Elaborating, here we let m′ be
the iterator with distance(f ,m′) = b as pictured below:

f
b

m′

a − b
m
b

l

We begin as before by swapping the equal sized ranges, in this case [f ,m′) and [m, l)
. The swap moves each element originally from [m, l) to the left by a positions, to their
final destinations in [f ,m′) . An important consequence is that here m′ is the value that
we must eventually return. The swap has also moved the elements originally from [f ,m′)
to the right by a positions. rotate requires that these elements ultimately move to the right
by b positions so they must still be moved a− b positions back to the left. The elements of
[m′,m) have not moved at all, so they have yet to move b positions to the right. All of the
necessary remaining moves can be accomplished if we exchange the ranges [m′,m) and
[m, l) . That is, we have reduced the problem of exchanging ranges of sizes a and b to the
problem of exchanging ranges of sizes a − b and b. The final result will be:

f
b

m′

b a − b
l

The forward iterator rotate algorithm was discovered by David Gries and Harlan Mills [4].
We will refer to it as the Gries-Mills algorithm.

4.2.2.1. Analysis of Gries-Mills. Let us determine the cost of the Gries-Mills algo-
rithm, in terms of the number of assignments. In the case when a < b we first swap the two
ranges of size a. This costs a swaps and it moves exactly a elements to their final places.
Then, in the sub-problem, we rotate smaller ranges of size a and b − a. In other words, we
have reduced the size of our problem by a at a cost of a swaps. A similar analysis applies
in the case when a > b, in which case we reduce the size of our problem by b at a cost of b
swaps. In either case we reduce the size of our problem by min(a, b), at a cost of that many
swaps. Just before the algorithm terminates, when the remaining ranges are of equal size d,
we gain some efficiency, moving the final 2∗d elements into place at a cost of only d swaps.
Altogether, the cost in swaps of the rotate is n − the size of the final (equal-sized) ranges.

What is be the size of the final ranges? Lets look a little bit more carefully at how the
algorithm works. If a < b we reduce the size of our problem by a and are left with the task
of exchanging ranges of size a and b−a. If a > b we reduce our problem to rotating ranges
of size b and a − b. We continue in this manner until the remaining ranges have the same
size. Writing this down in code we get:

i n t r e m a i n i n g _ s i z e (i n t a , i n t b)
{

i f (a < b) re turn r e m a i n i n g _ s i z e (a , b − a) ;
i f (b < a) re turn r e m a i n i n g _ s i z e (b , a − b) ;
re turn a ;

50 4. POSITION BASED PERMUTATION OPERATIONS

}

But this is exactly Euclid’s algorithm for (subtractively) calculating the gcd(a, b)! So the
final ranges have size gcd(a, b) and the total cost of the algorithm is n − gcd(a, b) swaps,
or 3 ∗ (n − gcd(a, b)) assignments.

It is important to note that the number of cycles in the “complete” rotate permutation
is the same as the number of cycles in the permutation corresponding to the “inner” rotate.
We demonstrate this in the case where a < b for rotate(f ,m, l) and rotate(m,m′, l) (see
Equation 4.3). Consider what happens to an element at y in the range [m,m′) . In the
inner rotation, let x be the position of the element that gets moved to y, and let z be the
position where the element at y gets moved, e.g. (. . . xyz . . .) If we precede the inner
rotation by swapping the ranges [f ,m) and [m,m′) , it will have the following effects
on the destinations of the elements: (i) the element at x will still be moved to y, (ii) the
element at y will move to the left by a positions to, say, position y′ and (iii) the element at y′

will be moved to position z. The destinations of elements of the range [m′, l) will remain
unchanged. In other words we transform the inner rotation into the complete rotation if,
for each position y in [m,m′) , we replace y in the cycle (. . . xyz . . .) with yy′ to get the
resulting cycle (. . . xyy′z . . .). This leaves the total number of cycles unchanged. The case
where a > b is handled similarly.

Another important lemma is that if positions x and y are in the same cycle then x ≡ y
(mod gcd(a, b)). To see this, consider what happens to an element at position i. We have:

(4.4) i→

i + b if i + b < l
i − a otherwise

Thus the distance between two positions in the same cycle will be of the form d = ma+ nb
for some integers m, n. But gcd(a, b) divides all such numbers, so d ≡ 0 (mod gcd(a, b))
which completes the proof of the lemma. As a corollary, it follows that each position in a
contiguous block of gcd(a, b) elements is part of a different cycle. We will find this fact
useful when implementing the random access iterator rotate algorithm.

4.2.2.2. Implementation of Gries-Mills. In the previous section we explained that our
implementation strategy for swapping unequal sized ranges was to first swap two equal-
sized ranges in order to order to reduce the original problem to a smaller one. We start
from the heart of our implementation, then work our way out, patching as necessary. We
could almost use swap_ranges(f ,m,m) for the initial swap. Unfortunately, this will wreak
havoc if [f ,m) is larger than [m, l) . Instead, we need a variant of swap_ranges that will
swap as many elements of the two ranges as are present in the shorter range.

Once again, we create a new algorithm: swap_ranges(I1 f1, I1 l1, I2 f2, I2 l2). What
should it return? If the shorter range has length a we want to return the iterator, call it
m, that is a past the beginning of the longer range. But, just as was the case with the
reverse_until algorithm,there is another useful piece of information that we must return. It
may not be efficient for the caller to determine which range the returned iterator is in. So
here too we return a pair, this time of type pair<I1, I2>. The caller can determine m by
testing whether l1 is equal to the first element of the pair–if not, then the pair’s first element
contains m, otherwise the second element does. Here is the code:

t empla te <typename I1 , / / I 1 models Forward I t e r a t o r
typename I2 > / / I 2 models Forward I t e r a t o r

s t d : : p a i r <I1 , I2 >
swap_ranges (I1 f1 , I1 l1 , I2 f2 , I2 l 2)
{

4.2. ROTATE 51

whi le (f1 != l 1 && f2 != l 2) {
swap (∗ f1 , ∗ f2) ;
++ f1 ;
++ f2 ;

}

re turn s t d : : make_pa i r (f1 , f2) ;
}

We start implementing the Gries-Mills rotate(I f, I m, I l) algorithm from the inside
out. The algorithm takes different actions according to the relative sizes, a and b, of the
two ranges to be swapped, as indicated by the comments below.

s t d : : p a i r <I1 , I2 > tmp = swap_ranges (f , m, m, l) ;
i f (tmp . f i r s t == m && tmp . second == l)

re turn ; / / a == b
a s s e r t (tmp . f i r s t == m | | tmp . second == l) ;
/∗ Our a s s e r t comes from t h e d e f i n i t i o n o f swap_ranges . ∗ /

i f (tmp . f i r s t == m) { / / a < b
f = m;
m = tmp . second ;

} e l s e { / / b < a
f = tmp . f i r s t ;

}

If we put this code inside of a while(true), a couple of issues remain. First, if one of the
ranges is empty the loop won’t terminate–the code above only works if neither range is
empty. We can patch this by adding the precondition assert(f != m && m != l) . Again we
have found a useful algorithmic fragment, which we will name rotate_non_empty. Another
issue is that we are comparing tmp.first to m in two separate places. The standard way to
fix this is to fuse the two conditions. Rewriting, we now have:

t empla te <typename I > / / I models Forward I t e r a t o r
void r o t a t e _ n o n _ e m p t y (I f , I m, I l)
{

a s s e r t (f != m && m != l) ;
whi le (t rue) {

s t d : : p a i r <I , I > tmp = swap_ranges (f , m, m, l) ;
i f (tmp . f i r s t == m) {

i f (tmp . second == l) re turn ; / / a == b
e l s e { / / a < b

f = m;
m = tmp . second ;

}
} e l s e { / / b < a

f = tmp . f i r s t ;
}

}
}

EXERCISE 4.1. We can still speed up the above code. As it stands now, we are calling
swap_ranges from inside of a while loop. That is, we have a function call which results in

52 4. POSITION BASED PERMUTATION OPERATIONS

two nested while loops. This is rather costly when we get down to the point of swapping
many tiny ranges. Though swap_ranges was helpful in understanding how to develop the
algorithm we now want to avoid the unnecessary overhead. Rewrite rotate_non_empty to
use swap instead of swap_ranges.

Finally, we must patch the code to return m′, the image of the dividing point, and we
must handle the cases when one of the ranges is empty. How do we know when we have
found m′? We discussed how to calculate the return value in Section . Recall that three
cases occur for ranges [f ,m) and [m, l) , of sizes a, b respectively. If a equals b then we
simply return m. If a > b then after swapping ranges, m′ is at f + b, which is the same as
the return value of swap_ranges(f, m, m, l). Finally, if a < b we discovered that the return
value was the same as that of the “inner” rotate. Below is an implementation of rotate that
addresses these issues.

t empla te <typename I > / / I models Forward I t e r a t o r
void r o t a t e (I f , I m, I l)
{

i f (f == m) re turn l ;
i f (m == l) re turn f ;
whi le (t rue)
{

s t d : : p a i r <I , I > tmp = swap_ranges (f , m, m, l) ;
i f (tmp . f i r s t == m) {

i f (tmp . second == l) re turn m; / / a == b
e l s e { / / a < b

f = m;
m = tmp . second ;

}
} e l s e { / / b < a

r o t a t e _ n o n _ e m p t y (tmp . f i r s t , m, l) ;
re turn tmp . f i r s t ;

}
}

}

4.2.3. rotate for Random Access Iterators. We saw in the previous section that a
rotation which swaps ranges of sizes a and b corresponds to a permutation with gcd(a, b)
cycles. We also proved that any adjacent gcd(a, b) elements in the range belong to different
cycles. In particular, the first gcd positions contain exactly one position from each cycle.
Cycles can be implemented very efficiently for random access iterators: given a position i
we can quickly find the next position in the cycle using Equation 4.4. For each position i
in the first gcd elements our algorithm will efficiently perform the corresponding cycle...

Part 3

Appendices and Back Matter

APPENDIX A

Minimum Number of Assignments Needed to Implement a
Cycle

Leslie Lamport contributed the material in this Appendix.
Let f be a permutation of 1, ..., n. Assume there are n balls numbered 1 to n and an

infinite set of boxes numbered 1, 2, Let a configuration C be an assignment of the balls
to boxes that assigns each ball to exactly one box. The initial configuration Cinit assigns
each ball i to box i. The goal configuration Cgoal assigns each ball i to box f [i]. A move
consists of moving a ball from its current box to an empty box.

The object is to find the minimal number of moves that takes the initial configuration
to the goal configuration.

Call box f [i] the destination box of ball i.
Partition the balls into cycles, where a cycle is a minimal set S of balls such that if ball

i is in S then ball f [i] is in S . If S is a cycle and C is a configuration, define

dist(S ,C) ∆

=

IF every ball in S is in its destination box
THEN 0
ELSE the number of balls in S not in their destination boxes

+
IF every destination box of a ball in S has a ball in S

THEN 1
ELSE 0

For any configuration C, define movesToGo(C) ∆

= the sum over all cycles S of
dist(S ,C)

LEMMA A.1.
movesToGo(C) = 0 ⇐⇒ C = Cgoal

PROOF. Obvious. �

LEMMA A.2. If a move takes configuration C to configuration C′, then movesToGo(C′) ≥
movesToGo(C) − 1.

PROOF. Let the move be a move of ball i.

(1) For all cycles S , if i is not in S then dist(S ,C′) = dist(S ,C)
Proof: pretty obvious.

(2) If i in S , then dist(S ,C′) ≥ dist(S ,C) − 1
(a) CASE every ball in S is in its destination box

Proof: Obvious, because in this case dist(S ,C) = 0
(b) CASE ∧ not every ball in S is in its destination box

∧ every destination box of a ball in S has a ball in S

55

56 A. MINIMUM NUMBER OF ASSIGNMENTS NEEDED TO IMPLEMENT A CYCLE

Proof: In this case, i cannot be put into its destination box because that box
already contains a ball in S . Therefore, it is put elsewhere. It’s easy to see
then that dist(S ,C′) = dist(S ,C) − 1

(c) CASE ∧ not every ball in S is in its destination box
∧ not every destination box of a ball in S has a ball in S

Proof: In this case, dist(S ,C) equals the number of balls in S not in their
destination boxes, and moving i can decrease this value by at most 1 and
hence can decrease dist(S ,C) by at most 1.

(d) QED
Proof: By propositional logic, Cases 2a, 2b, and 2c are exhaustive.

(3) QED
Proof: Follows trivially from 1 and 2 and the definition of movesToGo.

�

THEOREM A.3. The number of moves to go from the initial configuration to the goal
configuration is at least movesToGo(Cinit).

PROOF. Follows easily from Lemmas A.1 and A.2. �

Bibliography

1. John W. Backus, Can programming be liberated from the von neumann style? a functional style and its algebra
of programs., Commun. ACM 21 (1978), no. 8, 613–641.

2. G. A. Blaauw and Jr. F. P. Brooks, Computer architecture: Concepts and evolution, Addison Wesley, Reading,
1997.

3. Jr. F. P. Brooks, The mythical man-month: Essays on software engineering, 20th anniversary edition, Addison
Wesley, Reading, 1995.

4. David Gries and Harlan Mills, Swapping sections, Tech. Report TR81-452, Cornell University Library, 1981.
5. J. L. Hennessy and D. A. Patterson, Computer architecture: A quantitative approach (3rd edition), Morgan

Kaufmann, New York, 2003.
6. Kenneth E. Iverson, Operators., ACM Trans. Program. Lang. Syst. 1 (1979), no. 2, 161–176.
7. , Notation as a tool of thought., Commun. ACM 23 (1980), no. 8, 444–465.
8. Dave Musser and Alexander Stepanov, Generic programming, ISSAC: Proceedings of the ACM SIGSAM

International Symposium on Symbolic and Algebraic Computation (formerly SYMSAM, SYMSAC, EU-
ROSAM, EUROCAL) (also sometimes in cooperation with the Symbolic and Algebraic Manipulation Groupe
in Europe (SAME)), 1989.

57

	Part 1. Basic Algorithms
	Chapter 1. The Machine Model
	1.1. The Significance of Memory
	1.2. Generic Algorithms

	Chapter 2. Introductory Algorithms
	2.1. Iterators
	2.2. copy
	2.2.1. Iterator Categories
	2.2.2. copy_n and Loop Unrolling

	2.3. distance and Compile Time Dispatching
	2.4. Analyzing a Program
	2.5. Implementing an Iterator
	2.6. Type Functions
	2.6.1. The Limitations of Object-Oriented Programming

	Part 2. Permutation Algorithms
	Chapter 3. Introduction to Permutation Algorithms
	Chapter 4. Position Based Permutation Operations
	4.1. reverse
	4.1.1. reverse for Bidirectional and Random Access Iterators
	4.1.2. Sketch of Reverse for Forward Iterators
	4.1.3. Towards Efficient Divide and Conquer Algorithms
	4.1.4. Memory Adaptive Algorithms
	4.1.5. reverse for Node Based Iterators

	4.2. rotate
	4.2.1. rotate for Bidirectional Iterators
	4.2.2. rotate for Forward Iterators
	4.2.2.1. Analysis of Gries-Mills
	4.2.2.2. Implementation of Gries-Mills

	4.2.3. rotate for Random Access Iterators

	Part 3. Appendices and Back Matter
	Appendix A. Minimum Number of Assignments Needed to Implement a Cycle
	Bibliography

