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. . . ,,, table(k) (O<=k<m) represents the primality . . . , , , of 2k+3 

(define (make-sieve-table m) 
(define (mark tab i step m) 
(cond ( ( >  m i) 

(vector-set! tab i #!false) 
(mark tab (+ i step) step m) ) ) ) 

(define (scan tab $3 5,:) 
(cond ( ( >  m s) 

(if (vector-ref tab k) (mark tab s p m)) 
(scan tab (+ k 1) (+ p 2) (+ s p p 2) m)) 
(else tab))) 

(scan {make-vector m #!true) 0 3 3 m)) 

(define (sieve n) 
(let ((m (quotient (-  n 1) 2))) 
(define (loop tab k p result m) 
(if (<= m k) 

(reverse! result) 
(let ( (r (if (vector-ref tab k) 

(cons p result) 
result) ) ) 

(loop tab (+ k 1) (+ p 2) r m) ) ) )  
(loop (make-sieve-table m) 0 3 (list 2) m) ) ) 
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. . . and we can do a generic version of the same 

(syntax (bit-set! a b) (vector-set! a b # ! false) ) 

' (syntax (bit-ref a b) (vector-ref a b) ) 

(syntax (make-bit-table a) (make-vector a #!true)) 

(define (make-sieve-table m) 
(define (mark tab i step m) 
(cond ( ( >  m i) 

(bit-set! tab i) 
(mark tab (+ i step) step m) ) ) ) 

(define (scan tab k p s m) 
(cond ( ( >  m s) 

(if (bit-ref tab k) (mark tab s p m) ) 
(scan tab (+ k 1) (+ p 2) (+ s p p 2) m)) 
(else tab) ) )  

(scan (make-bit-table m) 0 3 3 m)) 

(define (sieve n) 
(let ( (m (quotient (- n 1) 2) ) ) 
(define (loop tab k p result m) 
(if (<= m k) 

(reverse! result) 
(let ((r (if (bit-ref tab k) 

(cons p result) 
result) ) ) 

(loop tab (+ k 1) (+ p 2) r m)))) 
(loop (make-sieve-table m) 0 3 (list 2) m))) 
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(syntax (bit-set! a b) (string-set! a b #\f) ) 

(syntax (bit-ref a b) (char=? (string-ref a b) #\t) ) 

(syntax (make-bit-table a) (make-string a #\t)) 

(define (make-sieve-table m) 
(define (mark tab i step m) 
(cond ( ( >  m i) 

(bit-set! tab i) 
(mark tab (+ i step) step m) ) ) ) 

(define (scan tab k p s m) 
(cond ( ( >  m s) 

(if (bit-ref tab k) (mark tab s p m)) 
(scan tab (+ k 1) (+ p 2) (+ s p p 2) m)) 
(else tab))) 

(scan (make-bit-table m) 0 3 3 m) ) 

(define (sieve n) 
(let ( (m (quotient ( -  n 1) 2) ) ) 
(define (loop tab k p result m) 
(if (<= m k) 

(reverse! result) 
(let ((r (if (bit-ref tab k) 

(cons p result) 
result) ) ) 

(loop tab (+ k 1) (+ p 2) r m)) ) ) 
(loop (make-sieve-table m) 0 3 (list 2) m))) 
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(syntax 

( syntax 

(syntax 

(define 

(bit-set! a b) 
(let ((position (quotient b 8))) 
(let ((byte (char->integer (string-ref a position))) 

(shift (vector-ref '#(1 2 4 8 16 32 64 128) 
(modulo b 8)))) 

(if (odd? (quotient byte shift)) 
(string-set! a position 

(integer->char ( -  byte shift))))))) 

(bit-ref a b) 
(let ((byte (char->integer 

(string-ref a (quotient b 8)))) 
(shift (vector-ref '#(I 2 4 8 16 32 64 128) 

(modulo b 8)))) 
(odd? (quotient byte shift)))) 

(make-bit-table a) 
(make-string (ceiling (/ a 8) ) (integer->char 255) ) ) 

(make-sieve-table m) 
(define (mark tab i step m) 
(cond ( ( >  m i) 

(bit-set ! tab i) 
(mark tab (+ i step) step m) ) ) ) 

(define (scan tab k 
(cond ( ( >  m s) 

(if (mark tab s p m) ) 
p 2) (+ s p p 2) m)) 

(scan (make-bit-table m) 0 '$4 m)) 
(define (sieve n) 
(let ((m (quotient (-  n 1) 2))) 
(define (loop tab k p result m) 
(if (<= m k) 

(reverse! result) 
(let ((r (if (bit-ref tab k) 

(cons p result) 
result) ) ) 

(loop tab (+ k 1) (+ p 2) r m) ) ) ) 
(loop (make-sieve-table m) 0 3 (list 2) m) ) ) 

.... , , , , Pairs 

. . . , , , Primitives: 

. . . ,,, cons: (cons 1 2 )  ==> (1. 2) 

4 
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0 . .  , , , car: (car I(1 . 2)) ==> 1 

... ,,, cdr: (cdr '(1 . 2)) ==> 2 

. . . ,.. pair?: (pair? '(1 . 2)) ==> #!true . . . 
I f ,  (pair? 1) ==> #!false 

. . . ,,, set-car!: (define a '(1 . 2)) ==> ?? ... 
I , f  (set-car! a 0) ==> ?? . . . , , I  a ==> (0 . 2) . . . , used to be known as rplaca 

... ,,, set-cdr!: (define a '(1 . 2)) ==> ?? ... , , ,  (set-cdr! a 0) -- --> ?? . . . 
, I ,  a ==> (1. 0) . . . , used to be known as rplacd 

.... , , , , Lists 

. . . , , , Primitives: 

... Empty list: 
;;; ( ) :  ( )  ==> ( )  ... 
I f ,  (pair? I()) ==> #!false !!! nil is not a pair !!! . . . ,,, used to be known as nil 

... ,,, null?: (null? I()) ==> #!false . . . ,,, used to be known as null 

. . . , ,, Unlike in LISP (car I()) ==> error 
0 . .  
I , I  (cdr I ( )  ) ==> error 
0 . .  ,,, TI SCHEME does not signal that error, but no code should 
depend on 
;;; (cdr I()) returning I() 

... ,.. Proper list is a pair cdr of which is either a proper list 
0 . .  ,,, or an empty list 
0 . .  , , , Problem: 
. . . ,,, define a predicate PROPER-LIST? 

(define (proper-list? 1) 
(if (pair? 1) 

(proper-list? (cdr 1)) 
(null? 1))) 
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. . . ,,, An improper (dotted) list is a chain of pairs not ending in 
the empty ... list 
... , , Problem: 
. . . , define a predicate IMPROPER-LIST? 

(define (last-cdr 1) 
(if (pair? 1) 

(last-cdr (cdr 1)) 
1) 

(define (improper-list? 1) 
(and (pair? 1) (not (null? (last-cdr 1))))) 

. . . ,,, More about lambda 
0 . .  , ,  there are three ways to specify formal arguments of a function: 
. . . 
f f f  1 - (lambda variable <body>) ==> the procedure takes any 
number of . . . 
f l f  - arguments; they are put in a list and the list is bound 
to a ... 
f f f  variable 

. , . . 2 - (lambda proper-list-of-distinct-variables <body>) ... 
f f f  the procedure takes a fixed number of arguments equal the 
length . . . 
, I t  of the proper-list-of-distinct-variables; it is an error 
to give it . . . 
f l l  more or less 

... , , 3 - (lambda improper-list-of-distinct-variables <body>) 
0 . .  
f f l  the extra arguments are bound to the last variable 

... 
f . ,  Non-primitive (but standard) functions on lists 

. , . , . (define (caar x) (car (car x) ) ) 

. . . 
f , ,  (define (cadr x) (car (cdr x) ) ) 

. . . , , , (define (cdar x) (cdr (car x) ) ) 
0 . .  , , , (define (cddr x) (cdr (cdr x) ) ) 
. . . , ,, ... and up to four letters 
(define list (lambda x x)) 
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0 . .  
I , ,  Explain! 

0 . .  
r r r Problem: 

. . . , , ,  define a function LENGTH that returns length of a list 

(define (my-length 1) 
(define (length-loop number list) 
(if (pair? list) 

(length-loop (+ number 1) (cdr list) ) 
number) ) 

(length-loop 0 1)) 

... , r r Problem: 

. . . define a function REVERSE that returns a newly allocated list 
consisting . . . of the elements of list in reverse order 
(define (reverse-append x y) 
(if (pair? x) 

(reverse-append (cdr x) (cons (car x) y) ) 
- Y)) 

(define (my-reverse x) 
(reverse-append x I ( ) ) )  

Equivalence predicates 

<see pages 12-14 of R3R> 

Destructive functions 

reverse returns a new list (a new chain of pairs) 
but we may want to reverse the original list 

a function F is called applicative iff 

(lambda (x) ( (lambda (y) (f x) (equal? x y) ) (copy x) ) ) 

always returns #!true 

for an applicative function F a function F! is its destructive 
equivalent iff 

1. (f x) == (f! (copy x)) 

2. (not (equal? x (f x) ) ) 
implies 
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0 . 0 ,,, from this two axioms we can derive: 
. . . ,,, Bang rule 1: 

. . . ,,, (W x) = (f (g x)) => (w! x) = (f! (g! x)) 

0 . . ,,, Bang rule 2: 
.. . , ,  (w! x) = (f! (g! x)) => (W x) = (f! (g x)) 

0 0 . , , , Problem: 
0.. ,,, implement REVERSE! 

(define (reverse-append! x y) 
(define (loop a b c) 
(set-cdr! a c) 
(if (pair? b) 

(loop b (cdr b) a) 
a) 

(if (pair? x) 
(loop x (cdr x) y) 
Y) 

(define (my-reverse! x) (reverse-append! x I ( ) ) )  

;;; it is a little more difficult to right an iterative 
8 . 0  ,,, procedure COPY-LIST 
0 0 0  ,,, we can always do 

(define (stupid-copy-list 1) 
(if (pair? 1) 

(cons (car 1) (stupid-copy-list (cdr 1))) 
1) 

0.. ,,, as a matter of fact, it is better to define it as: 

(define (not-so-stupid-copy-list 1) 
(reverse! (reverse 1))) 

e.0 ,,, there is a very good way to do it: 

(define (rcons x y) 
(set-car! x (cons y I ( ) ) )  

(car x)) 
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(define (copy-list x) 
(define (loop x y)- 
(if (pair? y) 

(loop (rcons x (car y) ) (cdr y) ) 
(set-cdr! x y))) 

(if (pair? x) 
((lambda (header) (loop header (cdr x) ) header) 
(list (car x) ) ) 

COPY-LIST is still much slower than NOT-SO-STUPID-COPY-LIST 

redefine RCONS as: 

(define-integrable 
rcons 
(lambda (x y) 
(set-cdr! x (cons y '0)) 
(car x))) 

;;; and recompile COPY-LIST 

. . . , , , Problem: 

... ,,, implement APPEND as a function of an arbitrary number of 
lists . . . ,,, which returns a list containing the elements of the first 
list . . ,,, followed by the elements of the other lists ... ,,, the resulting list is always newly allocated, exept that it 
shares 
;;; structure with the last list argument. The last argument may 
actually ... ,, , be any object; an improper list results if it is not a proper 
list ... , , , (see R3R page 16) 

(define my-append 
( (lambda (header) 

(lambda lists 
(define (main-loop lists first next last) 
(set-cdr! last first) 
(if next 

(main-loop next 
(car next) 
(cdr next) 
(inner-loop first last)) 

(cdr header) ) ) 
(define (inner-loop list last) 
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(if (pair? list) 
(inner-loop- (cdr list) (rcons last (car list) ) ) 
last) ) - - 

(if lists 
(main-loop lists (car lists) (cdr lists) header) 
'0))) 

. a ,,, Problem: 

..a , , , implement APPEND! 

(define my-append! 
( (lambda (header) 

(lambda lists 
(define (main-loop lists first next last) 
(set-cdr! last first) 
(if next 

(main-loop next 
(car next) 
(cdr next) 
(inner-loop first last) ) 

(cdr header) ) ) 
(define ( inner-loopv list last) 
(if (pair? list) 

(last-pair list) 
last) ) 

(if lists 
(main-loop lists (car lists) (cdr lists) header) 
'0))) 



A.A. Stepanov - CS 603 Notes 

(define (list-copy x) 
(define (loop rest last) 
(cond ((pair? rest) 

(let ( (new (list (car rest) ) ) ) 
(set-cdr! last new) 
(loop (cdr rest) new) ) ) 

(else (set-cdr! last rest)))) 
(if (pair? x) 

(let ( (first (list (car x) ) ) ) 
(loop (cdr x) first) 
first) 

x) 

(define (vector-copy v) 
(define (loop u n m) 
(cond ( (< n m) 

(vector-set ! u n (vector-ref v n) ) 
(loop u (+ n 1) m) ) 

(else 
u) 1 )  

(let ((1 (vector-length v))) 
(loop (make-vector 1) 0 1))) 

(define (stupid-copy tree) 
(cond ((atom? tree) 

tree) 
(cons (stupid-copy (car tree)) 

(stupid-copy (cdr tree))))) 

(define (tree-copy tree) 
(define (loop 1 stack) 
(cond ( (pair? (car 1) ) 

(set-car! 1 (cons (caar 1) (cdar 1)) ) 
(loop (car 1) 

(if (pair? (cdr 1)) (cons 1 stack) stack) ) ) 
( (pair? (cdr 1) ) 
(set-cdr! 1 (cons (cadr 1) (cddr 1) ) ) 
(loop (cdr 1) stack) ) 

( (pair? stack) 
(let ((i (car stack)) 

(j (car stack) ) ) 
(set-car! stack (cadr i)) 
(set-cdr! stack (cddr i)) 
(set-cdr! i stack) 

(let ((n (cons (car tree) (cdr tree) ) ) ) 
(loop n '0) 
n) 

tree) ) 
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. . . , The problem we are trying to solve is to rotate a vector . . . 
I to the left by I positions 

(define swap! 
(lambda (v i j) 
(let ( (temp (vector-ref v i) ) ) 
(vector-set! v i (vector-ref v j ) ) 
(vector-set! v j temp) ) ) ) 

(define subvector-reverse! 
(named-lambda (loop v i j) 
(if (< i j) 

(define rotate! 
(lambda (v i) 
(let* ((n (vector-length v)) 

(j (modulo i n) ) ) 
(subvector-reverse! v 0 (-  j 1)) 

- (subvector-reverse! v j ( -  n 1)) 
(subvector-reverse! v 0 (-  n 1)) 
v) 
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(define 
list-length 
length) 

(define 
sequence-length 
(lambda (x) 
(cond ((list? x) (list-length x)) 

( (vector? x) (vector-length x) ) 
( (string? x) (string-length x) ) 
(else (error "Invalid operand to sequence operationff 

(list 'sequence-length x)))))) 

(define 
empty? 
(lambda (seq) (zero? (sequence-length seq)))) 

(define 
sequence-ref 
(lambda (x i) 
(cond ((pair? x) (list-ref x i)) 

( (vector? x) (vector-ref x i) ) 
((string? x) (string-ref x i) ) 
(else (error "Invalid operand to sequence operationff 

(list 'ref x i))))))) 

(define 
sequence-set! 
(lambda (x i object) 
(cond ( (pair? x) (set-car! (list-tail x i) object) ) 

( (vector? x) (vector-set! x i object) ) 
((string? x) (string-set! x i object) ) 
(else (error "Invalid operand to sequence operationff 

(list 'sequence-set! x i object)))))) 

(define 
make-list 
(lambda (length . object) 
(letrec 

(lambda (length result ob j ect) 
(if (<= length 0) 

result 
(loop (-  length 1) (cons object result) object) ) ) ) ) 

(loop length I ( )  (if object (car object) '0))))) 

(define 
sequence-copy 
(lambda (s) 
(cond ((pair? s) (list-copy s)) 
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(lambda (operation string 
(if (< i length) 

(cond 

(begin 

i length) 

(operation (string-ref string i)) 
(string-for-each 
operation string (+ i 1) length) ) ) ) ) ) 

((pair? seq) 
(list-for-each operation seq)) 

( (vector? seq) 
(vector-for-each 
operation seq 0 (vector-length seq))) 

( (string? seq) 
(string-for-each 
operation seq 0 (string-length seq))) 

H H  

(define 
map ! 
(lambda (operation seq) 
(letrec 
((list-map! 

(lambda (operation list) 
(if (pair? list) 

(begin 
(set-car! list (operation (car list) ) ) 
(list-map! operation (cdr list)))))) 

(vector-map ! 
(lambda (operation vector i length) 
(if (< i length) 

(begin 
(vector-set ! 
vector i (operation (vector-ref vector 

(vector-map! 
operation vector (+ i 1) length) ) ) ) ) 

(string-map! 
(lambda (operation string i length) 
(if (< i length) 

(begin 
(string-set! 
string i (operation (string-ref string 

(string-map! 
operation string (+ i 1) length) ) ) )  ) ) 

(cond ((pair? seq) 
(list-map! operation seq)) 

( (vector? seq) 
(vector-map! operation seq 0 (vector-length seq))) 

( (string? seq) 
(string-map! operation seq 0 (string-length seq))) 

1 
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(define 
member-if 
(lambda (predicate? list) 
(letrec 
((loop (lambda (predicate? x) 

(if (pair? x) 
(if (predicate? (car x) ) 

X 
(loop predicate? (cdr x) ) ) 

'0)))) 
(loop predicate? list)))) 

(define 
filter 
(lambda (predicate? list) 
(letrec 
- ((loop 

(lambda (predicate? rest result) 
(if (pair? rest) 

(if (predicate? (car rest) ) 
(begin 
(set-cdr! result (cons (car rest) ( )  ) ) 
(loop predicate? (cdr rest) (cdr result))) 

(loop predicate? (cdr rest) result)) 
(set-cdr! result rest))))) 

(let ((first (member-if predicate? list))) 
(if (pair? first) 

(let ( (result (cons (car first) ( )  ) ) ) 
(loop predicate? (cdr first) result) 
result) 

'0))))) 

(define 
filter! 
(lambda (predicate? list) 
(letrec 

( (loop 
(lambda (predicate? rest next) 
(if (pair? next) 

(if (predicate? (car next)) 
(loop predicate? next (cdr next)) 
(begin 
(set-cdr! rest (cdr next) ) 
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(loop predicate? rest (cdr rest)))))))) 
(let ((first (member-if predicate? list))) 
(if (pair? first) 

(begin 
(loop predicate? first (cdr first) ) 
first) 

'0))))) 

(define 
for-each-cdr 
(lambda (operation list) 
(letrec ( (loop 

(lambda (rest) 
(if (pair? rest) 

(begin (operation rest) 
(loop (cdr rest))))))) 

(loop list) ) ) ) 

(define 
for-each-cdr! 
(lambda (operation list) 
(letrec ( (loop 

(lambda (rest) 
(if (pair? rest) 

(let ( (temp (cdr rest) ) ) 
(operation rest) 

(define 
vector-map 
(lambda (operation vector) 
(letrec 

( (loop 
(lambda (operation old new i length) 
(if (< i length) 

(begin 
(vector-set ! 
new i (operation (vector-ref old i)) ) 

(loop operation old new (+ i 1) length) ) 
new) 1 )  

(let ((length (vector-length vector))) 
(loop operation vector (make-vector length) 0 length))))) 

(define 
vector-copy 
(lambda (vector) 
(letrec 

( (loop 
(lambda (old new i length) 
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(if (< i length) 
(begin 
(vector-set! new i (vector-ref old i) ) 
(loop old new (+ i 1) length) ) 

new) 1 )  
(let ((length (vector-length vector))) 
(loop vector (make-vector length) 0 length))))) 

(define 
map-append! 
(let ( (header (list ( )  ) ) ) 
(lambda (procedure x) 
(set-cdr! header '0) 
(let ((result header)) 

( f or-each 
(lambda (Y) 
(set-cdr! result y) 
(set! result (last-pair result))) 

x) 
(cdr header))))) 

(define 
accumulate 
(lambda (operation seq result) 

( f or-each 
(lambda (x) (set! result (operation result x) ) ) 
sea 

result) ) 

(define 
reduce 
(lambda (operation seq) 
(letrec 

( (list-reduce 
(lambda (operation rest result) 
(if (pair? rest) 

(list-reduce 
operation (cdr rest) (operation 

result (car rest))) 
result) ) ) 

(vector-reduce 
(lambda (operation v i length result) 
(if (>= i length) 

result 
(vector-reduce 
operat ion 
v (+ i 1) length (operation 

result (vector-ref v i)))))) 
(string-reduce 
(lambda (operation s i length result) 
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(if (>= i length) 
result 
(string-reduce 
operat ion 
s (+ i 1) length (operation 

result (string-ref v i))))))) 
(cond ((pair? seq) 

(list-reduce operation (cdr seq) (car seq) ) ) 
( (vector? seq) 
(if (not (zero? (vector-length seq) ) ) 

(vector-reduce 
operat ion 
seq 
1 
(vector-length seq) 
(vector-ref seq 0) ) 

l # o ) )  
( (string? seq) 
(if (not (zero? (string-length seq))) 

(string-reduce 
operat ion 
seq 
1 
(string-length seq) 
(string-ref seq 0)) 
1 

(define 
right-reduce! 
(lambda (operation seq) 
(reduce operation (sequence-reverse! seq)))) 

(define 
pairwise-reduce! 
(lambda (operation list) 
(letrec 

( (loop 
(lambda (operation x) 
(if (pair? (cdr x) ) 

(begin 
(set-car! x (operation (car x) (cadr x) ) ) 
(set-cdr! x (cddr x)) 

(if 
(loop operation (cdr x))))))) 

(pair? list) 
(begin 
(loop operation list) 
list) 
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(define 
parallel-reduce! 
(lambda (operation list) 

(letrec 
( (loop 

(lambda (operation x) 
(if (pair? (cdr x) ) 

(begin 
(pairwise-reduce! operation x) 
(loop operation x) ) 

(car x))))) 
(if (pair? list) 

(loop operation list) 
'0)))) 

(define (outer-product operation 11 12) 
(map (lambda (x) (map (lambda (y) (operation x y)) 12)) 11)) 
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Tools for sorting study 

(macro timer 
(lambda (x) 
(let ((exp (cadr x) ) ) 

(let ( (time0 (runtime) ) ) 
((lambda 0 ,exp)) 
(/ ( -  (runtime) time0) 100))))) 

(define (random-list n . p) 
(if (null? p) 

(let loop ((i 1) (tail I())) 

(if (> i n) 
tail 
(loop (1+ i) (cons (%random) tail)))) 

(let loop ((i 1) (tail ( ) )  (p (car p))) 
(if (> i n) 

tail 
(loop (1+ i) (cons (random p) tail) p) ) ) ) ) 

(define (random-vector n . p) 
(if (null? p) 

- (do ( (V (make-vector n) ) 
(i 0 (+ i 1))) 

((>= i n) V) 
(vector-set! v i (%random))) 

(do ( (P (car P) 
(V (make-vector n) ) 
(i 0 (+ i 1))) 

((>= i n) V) 
(vector-set! v i (random p))))) 

(define (iota n) 
(let loop ((i (-I+ n)) (tail I())) 

(if (< i 0) 
tail 
(loop (- i 1) (cons i tail))))) 

(define (reverse-iota n) (reverse! (iota n) ) ) 

(define (random-iota n . p) 
(set! p (if (null? p) n (car p) ) ) 
(let loop ((i (-I+ n)) (tail I 0)) 
(if ( c  i 0) 

tail 
(loop (-I+ i) (cons (+ i (random p) ) tail) ) ) ) ) 

(define (list-copy x) (append x I())) 
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(define (make-time-sort copy-function) 
(lambda (sort) 
tsc t) 
(let ((x (copy-function *test-list*))) 
(timer (sort x > ) ) ) ) )  

(define time-sort (make-time-sort list-copy)) 

(define time-vsort (make-time-sort l.ist->vector)) 

(define (make-comp-count copy-function) 
(lambda (sort) 
(letrec ((comp-count0 0) 

(comp-count1 0) 
(comp (lambda (x y) 

(cond ( ( >  16000 comp-count0) 
(set! comp-count0 (1+ comp-count0))) 
(else 
(set! comp-count1 (1+ comp-countl)) 
(set! comp-count0 1))) 

(' x Y)))) 
- (sort (copy-function *test-list*) comp) 

(+ comp-count0 (* comp-count1 16000))))) 

(define comp-count (make-comp-count list-copy)) 

(define v-comp-count (make-comp-count list->vector)) 

(define (make-test x) (set! *test-list* x) 
*the-non-printing-object*) 

(define *test-list* I()) 

(define (make-statistic function title-string) 
(lambda (sort length n) 
(do ( (nl #\newline) 

(i 0 (1+ i)) 
(1 '0)) 

((>= i n) 
( f or-each 
display 
(list 

II title-string nl 
"number of elements: length nl 
Ifnumber of tests: n nl 
I1mean: (mean 1) nl 
"standard-deviation: (standard-deviation 1) nl)) 

*the-non-printing-object*) 
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(make-test (random-list length)) 
(set! 1 (cons (function sort) 1))))) 

(define statistic-comp-count 
(make-statistic comp-count IICOUNTING COMPARISONSI1)) 

(define statistic-v-comp-count 
(make-statistic v-comp-count IICOUNTING COMPARISONSw)) 

(define statistic-time-sort 
(make-statistic time-sort "TIMINGI1)) 

(define statistic-time-vsort 
(make-statistic time-vsort "TIMINGI1)) 

(define (mean 1) 
(let loop ((result 0) (n 0) (1 1)) 
(if (null? 1) 

(/ result n) 
(loop (+ result (car 1)) (1+ n) (cdr 1))))) 

(define (variance 1) 
(let ((m (mean 1))) 
(let loop ((result 0) (n -1) (1 1) ) 
(if (null? 1) 

(/ result n) 
(loop (+ result (let ((i (-  (car 1) m) ) ) ( *  i i) ) ) 

(I+ n) 

(define (standard-deviation 1) (sqrt (variance 1))) 

(define (average-deviation 1) 
(let ((m (mean 1))) 
(let loop ((result 0) (n 0) (1 1)) 
(if (null? 1) 

( /  result n) 
(loop (+ result (abs (-  (car 1) m))) (1+ n) (cdr 

1)))))) 
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see Knuth, ItThe Art of Computer Pr~gramming,~~ vol. 3, "Sorting 
and Searching,It pages 105-111. 

"the bubble-sort seems to have nothing to recomend it, 
exept a catchy namett (Knuth) 

this is Knuthls version of bubble-sort; it does fewer comparisons 
than the traditional version, but is more involved: it is much 
faster than the traditional version for lists that are sorted in 
the right order, doing only N-1 comparison in such cases. 

(define (bubble-sort-knuth! v predicate) 
(let loop ( (bound (-I+ (vector-length v) ) ) ) 
(do ((i 0 j) 

(j 1 (I+ j)) 
(flag -1) 

( (>= i bound) (if (>= flag 0) (loop flag) v) ) 
(let ((a (vector-ref v i)) 

(b (vector-ref v j) ) ) 
(when (predicate b a) 

(vector-set! v i b) 
(vector-set! v j a) 
(set! flag i)))))) 

this is the traditional version: 

(define (bubble-sort! v predicate) 
(do ( (n (-I+ (vector-length v) ) (-I+ n) ) ) 

( ( <  n 0) v) 
(do ((i 0 j) 

(j 1 (I+ j))) 
((>= i n)) 
(let ((a (vector-ref v i) ) 

(b (vector-ref v j) ) ) 
(when (predicate b a) 

(vector-set! v i b) 
(vector-set! v j a) ) ) ) ) ) 
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COMPARISONS COUNTING 

comparison counting sort has been known from times immemorial; 
it was first mentioned by E. H. Field (Journal of ACM, 3, 1956) 

this sort does not have any nice properties. It is very slow, 
and there is no way to improve it. see Knuth, "The Art of Computer 
Pr~grarnming,~~ vol. 3, %orting and Searching,@' pages 76-78. 

(define (comparison-counting-sort v predicate) 
(let ((n (vector-length v))) 
(define counters (make-vector n 0)) 
(define sorted (make-vector n)) 
(define (bump i) 
(vector-set! counters i. (1+ (vector-ref counters i)))) 

(do ((i (-I+ n) (-I+ i))) 
((>= 0 i) ) 
(do ((j (-I+ i) (-I+ j))) 

( ( >  0 j)) 
(if (predicate (vector-ref v i) (vector-ref v j) ) 

(bump j 
(bump i)))) 

;;sometimes we may just want to output vector COUNTERS 
(do ( (i (-I+ n) (-I+ i) ) ) 

( ( >  0 i) sorted) 
(vector-set ! 
sorted 
(vector-ref counters i) 
(vector-ref v i) ) ) ) ) 
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;DISTRIBUTION COUNTING 
this sort is very important for sorting large lists with keys 
from a small range; it is also used with radix sorting. This 
particular way to do distribution counting was developed by H. 
Seward in his MS thesis at MIT in 1954. See Knuth, "The Art of 
Computer Pr~gramming,~~ vol. 3, Itsorting and Sear~hing,~~ pages 
76-78. 

(define (distribution-counting-sort v key-function d) 
;;v - is a vector, key-function - a function which maps 
;;elements of this vector into integers x such that 0 =< x < d 
(let* ((n (vector-length v)) 

(counter (make-vector d 0)) 
(sorted (make-vector n) ) ) 

(do ((j 0 (I+ j))) 
((>= j n) 
(let ((k (key-function (vector-ref v j)))) 
(vector-set! counter k (1+ (vector-ref counter k))))) 

(vector-set! counter 0 (-I+ (vector-ref counter 0))) 
(do ((i 1 (1+ i))) 

( (>= i d)) 
(vector-set! counter i 

(+ (vector-ref counter i) 
(vector-ref counter (-I+ i) ) ) ) ) 

(do ((j (-I+ n) (-I+ j) 1 )  
( (> 0 j) sorted) 
(let* ((r (vector-ref v j)) 

(k (key-function r)) 
(i (vector-ref counter k) ) ) 

(vector-set! sorted i r) 
(vector-set! counter k (-I+ i)))))) 

(define (distribution-by-lists-sort! list key-function d) 
;;list - is a list, key-function - a function which maps 
;;elements of this list into integers x such that 0 =c x < d 
(let ((counter (make-vector d 0))) 
(let loop ((i list)) 
(if (pair? i) 
(let ( (next (cdr i) ) 

(k (key-function (car i) ) ) ) 
(set-cdr! i (vector-ref counter k)) 
(vector-set! counter k i) 
(loop next) 1 )  

(do ( (i (-I+ d) (-I+ i) ) 
(result I ( )  ) ) 

( ( >  0 i) result) 
(let revappend! ((x (vector-ref counter i))) 
(if (pair? x) 

(let ( (next (cdr x) ) ) 
(set-cdr! x result) 
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(set! r e s u l t  x) 
(revappend! n e x t ) ) ) ) ) ) )  
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see Knuth, *'The Art of Computer Pr~gramming,~~ vol. 3, **Sorting 
and Searching,** pages 80-84 and 95-99. 

insertion sort (or sift sort) is the best sort to sort sequences 
which are almost sorted in the right direction other than that it 
should not be used for sorting sequences with more than 50 elements 

(define (insertion-vector-sort! v predicate) 
(define last (-I+ (vector-length v))) 
(do ((s last (-I+ s)) ) 

((<= s 0) v) 
(do ((i s (1+ i)) 

(e (vector-ref v (-I+ s) ) ) ) 
((or (> i last) 

(predicate e (vector-ref v i) ) ) 
(vector-set! v (-I+ i) e) ) 
(vector-set! v (-I+ i) (vector-ref v 

(define (insert! cons list predicate) 
(let ( (e (car cons) ) ) 
(cond ( (or (null? list) 

(predicate e (car list) ) ) 
(set-cdr! cons list) 
cons) 
(else 
(do ((first list second) 

(second (cdr list) (cdr second) ) ) 
( (or (null? second) 

(predicate e (car second) ) ) 
(set-cdr! first cons) 
(set-cdr! cons second) 
list)))))) 

(define (insertion-list-sort! list predicate) 
(let loop ((1 list) (output * 0)) 
(if (null? 1) 

output 
(let ((next (cdr 1))) 
(loop next (insert! 1 output predicate)))))) 

(define (insertion-sort! x predicate) 
(cond ((pair? x) 

(insertion-list-sort! x predicate)) 
((vector? x) 
(insertion-vector-sort! x predicate)) 
(else x)) 
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see 
Xnuth, "The Art of Computer Pr~gramming,~~ vol. 3, "Sorting and 
Sear~hing,~~ pages 114-123. 

this version of quicksort can be used only with non-reflexive 
test predicates, such as > or <. An attempt to use it with reflexive 
test predicates, such as >= or <= may result in an 
out-of-bound vector access. 

(define (quicksort! v test) 
(define length (vector-length v)) 
(let partition ((f 0) (1 (-I+ length))) 
(define key 
(let ( (a- (vector-ref v f) ) 

(b (vector-ref v 1) ) 
(C (vector-ref v (quotient (+ f 1) 2) ) ) ) 

(cond ((test a b) (cond ((test b c) b) 
((test a c) c) 
(else a) 1 

((test a c) a) 
((test b c) c) 
(else W ) )  

(define (increase i) 
(if (not (test (vector-ref v i) key)) 

* 

(increase (1+ i)))) 
(define (decrease i) 
(if (not (test key (vector-ref v i) ) ) 

i 
.L 

(decrease (-I+ i) ) ) ) 
(when 

(> ( -  1 f) 8) 
(do ( (f -pointer (increase f) (increase (1+ f -pointer) ) ) 

(1-pointer (decrease 1) (decrease (-I+ 1-pointer)))) 
((>= f-pointer 1-pointer) 
(if (= f -pointer 1-pointer) 

(if (= f f-pointer) 
(set! f-pointer (+ f-pointer 1) ) 
(set! 1-pointer ( -  1-pointer 1)))) 

(cond ( (> (-  1-pointer f) ( -  1 f-pointer) ) 
(partition f-pointer 1) 
(partition f 1-pointer) ) 
(else 
(partition f 1-pointer) 
(partition f-pointer 1)))) 

(let ((temp (vector-ref v f-pointer))) 
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(vector-set ! v f -pointer (vector-ref v l-pointer) ) 
(vector-set! v l-pointer temp))))) 

the following is just a version of insertion sort which works 
with non-reflexive tests 

(do ((s (-  length 2) (-  s 1))) 
( ( <  s 0) v) 
(do ((i s next) 

(next (+ s 1) (+ next 1) ) 
(e (vector-ref v s) ) ) 

( (or (>= next length) 
(not (test (vector-ref v next) e))) 

(vector-set! v i e) ) 
(vector-set! v i (vector-ref v next))))) 
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This is a version of quicksort used by MIT Scheme: 

(define (qsort obj pred) 
(if (vector? obj ) 

(qsort! (vector-copy obj) pred) 
(vector->list (qsort! (list->vector obj) pred)))) 

(define qsort ! 
(let 0 

(define (exchange! vec i j) 
(let ( (a (vector-ref vec i) ) ) 
(vector-set! vec i (vector-ref vec j)) 
(vector-set! vec j a) ) ) 

(named-lambda (qsort ! ob j pred) 
(define (sort-internal! vec 1 r) 
(cond ( (<= r 1) vec) 

( ( =  r (I+ 1) 1 
(if (pred (vector-ref vec r) (vector-ref vec 1)) 

(exchange! vec 1 r) ) 
vec) 
(else (quick-merge vec 1 r)))) 

(define (quick-merge vec 1 r) 
(let ( (first (vector-ref vec 1) ) ) 
(define (increase-i i) 
(if (or (> i r) (pred first (vector-ref vec i)) ) 

i 
(increase-i (1+ i) ) ) ) 

(define (decrease- j j ) 
(if (or (<= j 1) 

(not (pred first (vector-ref vec j ) ) ) ) 
j 
(decrease-j (-I+ j)))) 

(define (loop i j) 
(if (< i j) 

(begin (exchange! vec i j) 
(loop (increase-i (1+ i) ) 

(decrease-j (-I+ j)))) 
(begin 
(cond ( ( >  j 1) 

(exchange! vec j 1) ) ) 
(sort-internal! vec (1+ j) r) 
(sort-internal! vec 1 (-I+ j))))) 

(loop (increase-i (I+ 1) ) - .  

(decrease- j r) ) ) ) 
( if (vector? ob j ) 

(begin (sort-internal! obj 0 (-I+ (vector-length obj))) 
obj 



A.A. Stepanov - CS 603 Notes 

(error IIQSORT! works on vectors only: obj))))) 

(define (treesort unsorted predicate . k) 
(define n (vector-length unsorted)) 
(define sorted I()) 

(define m (make-vector ( *  n 2) ) ) 
(define (minimum i) 
(vector-set! 
m 
i 
(let* ((j ( *  i 2)) 

(first (vector-ref m j)) 
(second (vector-ref m (1+ j)))) 

(cond ( (null? first) second) 
((null? second) first) 
( (predicate (car first) (car second) ) 
first) 
(else 
second) 1 )  1 )  

(set! k (if (or (null? k) (> (car k) n)) n (car k))) 
(set! sorted (make-vector kl) . . 

((i 1 (1+ i)) 
(tag n (I+ tag))) 

( ( >  i n) 
(vector-set! m tag (cons (vector-ref unsorted (-I+ i)) 

tag) 
((i (-I+ n) (-I+ i))) 
((>= 0 i)) 
(minimum i) ) 
((j 0 (I+ j)) 
(i (cdr (vector-ref m 1)) (cdr (vector-ref m 1) ) ) ) 

( (>= j k) sorted) 
(vector-set ! sorted j (car (vector-ref m 1) ) ) 
(vector-set ! m i ( ) ) 
(do ((i (quotient i 2) (quotient i 2))) 

( (<= i 0)) 
(minimum i) ) ) ) 
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We shall first consider merge-sort. This will lead us to several 
new functional forms and allow us at first to produce a more 
efficient code for merge-sort itself and then to produce a new 
sorting algorithm which has some very unusual properties. 

Recursive Merge-Sort. 

The traditional version of merge-sort is based on the 
divide-and-conquer programming paradigm. First, we split the list 
of items in two halves, merge-sort them separately, and then 
merge them together. The following is the SCHEME translation of a 
COMMON LISP code from Winston and Horn: 

(define (winston-sort x predicate) 
(define (merge a b) 
(cond ((null? a) b) 

((null? b) a) 
( (predicate (car a) (car b) ) 
(cons (car a) (merge (cdr a) b) ) ) 
(else 
(cons (car b) (merge a (cdr b)))))) 

(define (head 1 n) 
(cond ( (negative? n) ( ) ) 

(else (cons (car-ij (head (cdr 1) (-  n 2)))))) 
(define (tail 1 n) 
(cond ( (negative? n) 1) 

(else (tail (cdr 1) (-  n 2))))) 
(define (first-half 1) (head 1 (-  (length 1) 1) ) ) 
(define (last-half 1) (tail 1 (- (length 1) 1))) 
(cond ( (null? (cdr x) ) x) 

(else (merge (winston-sort (first-half x) predicate) 
(winston-sort (last-half x) predicate) ) ) ) ) 

Splitting linked lists in two is a time consuming activity. The 
same list is traversed twice at first by FIRST-HALF and then by 
SECOND-HALF, not counting two traversals by LENGTH. 
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we can make this merge stable by using alterating loops: 

(define merge! 
(lambda (11 12 predicate) 
(letrec 
((right-loop 

(lambda (i j) 
(let ((k (cdr i))) 
(cond ( (null? k) (set-cdr! i j) ) 

( (predicate (car k) (car j ) ) (right-loop k j ) ) 
(else (set-cdr! i j) (wrong-loop j k)))))) 

(wrong-loop 
(lambda (i j) 
(let ((k (cdr i))) 
(cond ( (null? k) (set-cdr! i j) ) 

( (predicate (car j) (car k) ) 
(set-cdr! i j) (right-loop j k)) 
(else (wrong-loop k j))))))) 

(cond ((null? 11) 12) 
((null? 12) 11) 
((predicate (car 11) (car 12)) 
(right-loop 11 12) 11) 
(else (wrong-loop 12 11) 12))))) 

(define 
merge 
(lambda (x y predicate) 
(letrec 

( (loop 
(lambda (first second result) 
(cond ( (null? first) 

(reverse! (reverse-append second result))) 
( (null? second) 
(reverse! (reverse-append first result))) 

( (predicate (car first) (car second) ) 
(loop (cdr first) second (cons (car first) 

result) ) ) 
(else 
(loop first (cdr second) (cons (car second) 
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It can be easily seen that we can sort a list by first 
transforming it into a list of one element lists and then 
reducing merge on it: 

(define (?-sort! 1 predicate) 
(reduce (lambda (x y) (merge! x y predicate) ) (listify! 1) ) ) 

where LISTIFY! is: 

(define (listify! 1) (map! list 1) ) 

And our ?-sort! sorts. But it sorts extremely slowly. This 
sequence of merges transforms merge-sort into insertion-sort. 

It is now easy to.see that what we need is another reduction 
operator. Instead of reducing the list from left to right (or 
f m m  right to left - both orders are possible in COMMON LISP) we 
want to reduce the list in a tournament fashion - with logN 
rounds. We can do it with the help of the following two 
functional forms: 

(define (pairwise-reduce! operation 1) 
(let loop ((x 1) ) 
(cond ((null? (cdr x) ) 1) 

(else (set-car! x (operation (car x) (cadr x))) 
(set-cdr! x (cddr x) ) (loop (cdr x) ) ) ) ) ) 

(define (parallel-reduce! operation 1) 
(if (null? (cdr 1)) (car 1) 

(parallel-reduce ! operation 
(pairwise-reduce! operation 1)))) 

PARALLEL-REDUCE! is an iterative analog of divide-and-conquer. 
When used with an associative operation, such as merge, it 
produces the same result as REDUCE, but very often more quickly. 
For non-associative operations it produces a different result, 
which may be valuable in itself and leads to new algorithms. 

Now we can easily implement merge-sort: 

(define (merge-sort! 1 predicate) 
(parallel-reduce! (lambda (x y) (merge! x y predicate) ) 

(listify! 1) ) ) 

It can be seen that all the processes involved are iterative and 
all function calls can be easily removed. We generate exactly N 
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extra conses. But the number of extra conses can be further 
reduced if LISTIFY! will make not a list of one element lists, 
but a list of sorted lists with 8 elements each created with the 
help of the insertion sort. While this can be done, this does not 
really improve the performance since LISTIFY! takes a very small 
percentage of total time declining when N grows. 

(define (put-in-adder! x register function zero) 
(let ((y (car register) ) (z (cdr register) ) ) 
(cond ((eqv? y zero) (set-car! register x)) 

(else (set-car! register zero) 
(set! x (function x y)) 
(if (null? z) (set-cdr! register (list x)) 

(put-in-adder! x z function zero) ) ) ) ) ) 

It can be used for many different things from simulating binary 
1+ to implementing binomial queues. 

We can now define a new version of merge-sort: 

(define (adder-merge-sort! 1 predicate) 
(define register (list I ( )  ) ) 
(define (local-merge! x y) (merge! y x predicate)) 
(define (local-put-in-adder! x) 
(set-cdr! x ( )  ) 
(put-in-adder! x register local-merge! I ( ) ) )  

(for-each-cdr! local-put-in-adder! 1) 
(reduce local-merge! register)) 

It generates logN conses, and is very quick. 

(define (v-put-in-adder! x register function zero) 
;;we assume that register is long and there will be no overflow 
(let loop ((x x) (i 0) ) 
(let ((y (vector-ref register i))) 
(cond ((eqv? y zero) (vector-set! register i x)) 

(else (vector-set! register i zero) 
(loop (function x y) (1+ i))))))) 

(define v-adder-merge-sort! 
(let ((register (make-vector 32))) 
(lambda (1 predicate) 
(define function (lambda (x y) (merge! y x predicate) ) ) 
(vector-fill! register I()) 

(for-each-cdr! 
(lambda (x) 
(set-cdr! x I()) 

(v-put-in-adder! x register function I ( ) ) )  

1) 
(vector-reduce function register)))) 
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This is a very fast hand optimized version of mergesort: 

(define (merge-sort! x predicate) 
(define (merge i j) 
(let ((k (cdr i))) 

(do 

(do 

(cond ( (null?- k) (set-cdr! i j ) ) 
( (predicate (car k) (car j ) ) (merge k j ) ) 
(else (set-cdr! i j) (merge j k) ) ) ) ) 

((1 x (cdr 1) 1 )  
((null? 1)) 
(set-car! 1 (list (car 1)))) 
( 1  
( (null? (cdr x) ) (car x) ) 
(do ((1 x (cdr 1)) 

((null? (cdr 1))) 
(let ((i (car 1) ) 

(j (cadr 1)) 
(cond ( (predicate (car i) (car j) ) (merge i j) ) 

(else (set-car! 1 j) (merge j i) ) ) ) 
(set-cdr! 1 (cddr 1))))) 
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(define (grab x y) 
(set-cdr! x (cons y (cdr x))) 
x) 

(define (make-tournament-play predicate) 
(lambda (x y) 
(if (predicate (car x) (car y) ) 

(grab x Y) 
(grab Y x)))) 

(define (make-tournament reduction) 
(lambda ( forest predicate) 
(reduction 
(make-tournament-play predicate) 
forest) ) ) 

(define sequential-tournament! (make-tournament right-reduce!)) 

(define parallel-tournament! (make-tournament parallel-reduce!)) 

(define (make-tournament-sort! tournamentl tournament2) 
(lambda (plist predicate) 
(let ( (p (tournamentl (map! list plist) predicate) ) ) 
- ( f or-each-cdr 

(lambda (x) (set-cdr! x (tournament2 (cdr x) predicate) ) ) 
P) 

(define tournament-sort-p! 
(make-tournament-sort! parallel-tournament! 

parallel-tournament!)) 

(define tournament-sort-s! 
(make-tournament-sort! parallel-tournament! 

sequential-tournament!)) 

(define tournament-sort-s-s! 
(make-tournament-sort! sequential-tournament! 

sequential-tournament!)) 
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(macro grab! 
(lambda (body) 
(let ((x (cadr body) ) 

(y (caddr body) ) 
(2 (gensym)) 
(W (gensym) 1 )  

(let ((,z ,XI (,w ,Y)) 
(set-cdr! ,w (cdar ,z)) 
(set-cdr! (car J) ,w) 
dm)) 

(macro tournament-play! 
(lambda (body) 

' (let ( (X (cadr body) ) 
(y (caddr body) ) 
(predicate (cadddr body) ) ) 

(if ( ,predicate (caar , x) (caar , y) ) 
(grab! ,x ,Y) 
(grab! ,Y ,x))))) 

(define (sequential-tournament! forest predicate) 
(cond 

( (null? forest) ( )  ) 
I (null? (cdr forest) ) (car forest) ) 
(else 
(let ( (X (reverse! forest) ) ) 
(do ((result x (tournament-play! result next predicate)) 

(next (cdr x) after-next) 
(after-next (cddr x) (cdr after-next))) 
((null? after-next) 
(car (tournament-play! result next predicate)))))))) 

(define (parallel-tournament! forest predicate) 
(define (tournament-round! so-far to-be-done) 
(cond ((null? to-be-done) so-far) 

((null? (cdr to-be-done)) 
(set-cdr! to-be-done so-far) 
to-be-done) 
(else 
(let* ( (i (cdr to-be-done) ) 

(j (cdr i)) 
(new (tournament-play! to-be-done 

i 
predicate) ) ) 

(set-cdr! new so-far) 
(tournament-round! new j))))) 

(if (null? forest) 
' 0 
(do ( (x forest (tournament-round! ( ) x) ) ) 

((null? (cdr x) ) (car x) ) ) ) ) 
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VECTOR UTILITIES 

(vector-last v) - returns the index of the last element in a 
vector. 

(vector-swap! v i j) - interchanges the values of elements i 
and j in a vector. 

(vector-reverse! v) - reverses a vector in place (destructively). 
(vector-move! v to from) - move the value from element from to 

element to. 

(vector-compare predicate v first second) - compare element 
first with element second using predicate. 

(define-integrable (vector-last v) 
(-I+ (vector-length v) ) ) 

(define-integrable (vector-swap! v i j) 
(let ( (temp (vector-ref v i) ) ) 
(vector-set ! v i (vector-ref v j ) ) 
(vector-set ! v j temp) ) ) 

(define (vector-reverse! v) 
(do ((first 0 (1+ first)) 

(last (vector-last v) (-I+ last))) 
( (>= first last) v) 
(vector-swap! v first last) ) ) 

(define-integrable (vector-move! v to from) 
(vector-set! v to (vector-ref v from))) 

(define-integrable (vector-compare predicate v first second) 
(predicate (vector-ref v first) (vector-ref v second) ) ) 
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SIFTING 

Sift is an algorithmic primitive which can be used to build a 
variety of sorting algorithms. It is a generalization of the 
bubbling operation in heaps. Given a vector, v, containing 
elements to be sorted, sift considers chains of elements. A chain 

is a sequence of elements whose indices in the vector are related 

functionally to one another. When bubbling up in an ordinary 
heap, for example, the next element in a chain has an index which 
is found by halving the current index. Sift also takes a value 
whose proper place within the chain is to be found. The proper 
place of a value within a chain is defined by a predicate, 
which is used to compare pairs of values. If (predicate a b) 
is satisfied, then a belongs ahead of b in the chain. Usually, 
the value passed to sift is a value already in the chain and 
currently out of place with respect to the predicate. Sift is 
invoked with this value and with a chain which is otherwise 
correct with respect to the predicate. After sifting, this value 
is in the correct place in the chain. Thus, a proper chain with 
one more element has been created. Starting with chains 
containing one element (which are trivially correct), sift is 
called to create larger chains which lead to a variety of 
structures useful in sorting. Examples of these are heaps (of 
many kinds), and partially sorted subsequences of elements. As we 
will see below, many variants of heapsort, shellsort, and 
selection sort can be created using sift. 

(sift v position next-function value fill-pointer predicate) - 
v - vector containing values to be sorted. 
current - position in v where sift is to start. 
next-function - function which returns the position 
of the next element to be considered in the sift; 
returns null if current position is the last element 
to be considered. 
value - the value to be placed in v. 
fill-pointer - last occupied position in v. 
predicate - predicate indicating ordering desired by 
the sort; i.e., (predicate v[i] v[j]) is satisfied for 
i < j at the end of the sort. 

(sift-all! v step-function start fill-pointer predicate) - 
iteratively invokes sift starting from positions 
start,start-1, ... 0. This can be used to set up a 
heap, do an insertion sort, or do one phase of Shellsort. 
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(define (sift! v current 
predicate) 

Notes 

next-function value fill-pointer 

(let ( (next- (next-function v current fill-pointer predicate) ) ) 
(cond ((or (nu117 next) (predicate value (vector-ref v next))) 

(vector-set! v current value)) 
(else (vector-set! v current (vector-ref v next)) 

(sift! v next next-function value fill-pointer 
predicate) ) ) ) ) 

(define (sift-all! v next-function start fill-pointer predicate) 
(do ( (i start (-  i 1) ) ) 

( ( <  i 0) v) 
(sift! v i next-function (vector-ref v i) fill-pointer 

predicate) ) ) 
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INSERTION SORT 

To implement Insertion Sort using the sift primitive, we need 
only define an appropriate next-function. 

(insertion-next step) - next-function for insertion sort. Also, 
suitable for implementing one phase of Shellsort. 
Generates next postion by adding a constant to current 
position. 

(insertion-step-sort! v step predicate) - uses insertion-next 
and sift-all! to sort, or in the case of Sheelsort, 
to do one phase of a sort by sorting every step-th 
element in v. 

(insertion-sort! v predicate) - Insertion Sort. Invokes 
insertion-step-sort! with step=l. 

(define (insertion-step step) ' 

(lambda (v current fill-pointer predicate) 
(let ( (next (+ current step) ) ) 
(if (> next f ill-pointer) ( )  next) ) ) ) 

(define (insertion-step-sort! v step predicate) 
(let ( (1 (vector-last v) ) ) 
(sift-all! v (insertion-step step) (-  1 step) 1 predicate))) 

(define (insertion-sort! v predicate) 
(insertion-step-sort! v 1 predicate)) 
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SHELLSORT 

Refs: D.E. Knuth, "The Art of Computer Pr~grarnming,~~ 
Vol. 3, Itsorting and Searching, It pp. 84-95. 
Donald L. Shell, CACM, Vol. 2, 1959, pp.30-32. 
Collected Algorithms from CACM: Algorithm #201 

Properties: Sorts vectors in place, not stable, partial sorting 
not possible, worst case complexity 0[NA2], average 
case complexity varies and is in practice competitve 
with the best sorts. 

Shellsort takes as input a vector of values to be sorted and a 
sequence of increments. These increments control the sorting 
process. Each increment is used in turn to define the distance 
between elements in the vector. Elements in the vector at this 
distance are considered as a chain (see the description of the 
sifting operation above) and are sorted. The final increment in 
the sequence is 1 and so at the end of Shellsort, the vector is 
totally sorted. Thus, Shellsort can be thought of as a series of 
insertion sorts. The purpose of the initial sorts in the sequence 
is to quickly bring elements to positions which are close to the 
proper positions for these elements so that each individual pass 
of the algorithm does not have to work too hard it is well known 
that-insertion sort is very fast when the elements to be sorted 
do not have to move far. Picking a good sequence of increments is 
an art. We offer several good choices below. 

(define (make-shellsort! increment-function) 
(lambda (v predicate) 

( f or-each 
(lambda (step) (insertion-step-sort! v step predicate)) 
(increment-function (vector-length v))) 

v) 

INCREMENT SEQUENCES FOR SHELLSORT 
The following are sequences shown to be good for Shellsort. 
(Reference: "Handbook of Algorithms and Data StructuresI1, G. 
H. Gonnet Addison-Wesley, 1984) 
(knuth-increments n) - function yielding the sequence recommended 

by Knuth in his book. n is the number of elements in 
the vector of elements to be sorted. The sequence 
generated is (...., 40, 13, 4, 1). The sequence is 
generated starting with the value 1 at the end of the 
sequence. The next ( e ,  preceding) value is generated 
from the current one by multiplying by 3 and adding 1. 
The final (first) element in the sequence is the largest 
such number which is less than n. 

(shellsort-knuth! v predicate) - Shellsort using Knuth 
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increments. 

(pratt-increments n) - increments by shown by Pratt to guarantee 
O[n * (log (n)"2)] worst case prefonnance but very 
slow in practice. Elements of the sequence are composites 

of powers of 2 and powers of 3. For example if n is 50, 
the sequence is ( 4 8 , 3 6 , 3 2 , 2 7 , 2 4 , 1 8 , 1 6 , 1 2 , 9 , 6 , 4 , 3 , 2 , 1 ) .  

(shellsort-pratt! v predicate) - Shellsort using Pratt 
increments. 

(gonnet-increments n) - increments recommended by Gonnet in his 
book. The sequence is generated by starting with 
floor(.4545n) and continuing to take floor(.4545i) 
until 1 is reached. 

(shellsort-gonnet! v predicate) - Shellsort using Gonnet 
increments. 

(stepanov-increments n) - increments recommended by A. Stepanov. 
The sequence is generated by taking floor(eAi + .5); 
i.e., powers of e rounded to the nearest integer. Again, 

the sequence is generated in reverse order and ends with 

the largest such value less than n. These increments are 

the most efficient ones we have found thus far. 
(shellsort-stepanov! v predicate) - Shellsort using Stepanov 

increments. 

(define (knuth-increments n) 
(do ((i 1 (+ ( *  i 3) 1)) 

(tail ( )  (cons i tail))) 
( (>= i n) (or (cdr tail) tail) ) ) ) 

(define shellsort-knuth! (make-shellsort! knuth-increments)) 

(define (pratt-increments n) 
(define (powers base n) 
(do ((x 1 ( *  x base) ) 

(result ( ) (cons x result) ) ) 
((>= x n) result))) 

(filter (lambda (x) (< x n) ) 
(parallel-reduce! 
(lambda (x y) (merge! x y > ) )  
(outer-product * (powers 2 n) (powers 3 n)) ) ) ) 

(define shellsort-pratt! (make-shellsort! pratt-increments)) 
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(define (gonnet-increments n) 
(define (gonnet n) (floor ( *  n .45454) ) ) 
(do ( (i (gonnet n) (gonnet i) ) 

(result I() (cons i result))) 
((>= 1 i) (reverse! (cons 1 result))))) 

(define shellsort-gonnet! (make-shellsort! gonnet-increments)) 

(define (stepanov-increments n) 
(do ((i 1 (+ i 1) ) 

(e 1 (floor (+ 0.5 (exp i)))) 
(tail ( )  (cons e tail) ) ) 

( (>= e n) tail))) 

(define shellsort-stepanov! 
(make-shellsort! stepanov-increments)) 
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HEAPS USING SIFTING 

Heaps can also be implemented using the sift primitive, inclusing 

an entire family of Heapsort algorithms. These algorithms also 
use some of the vector utilities described above. All of the 
heap utilities implemented above are reimplemented here using the 
same names for the functions. Thus, if this entire file is 
loaded and compiled, these are the functions which will be used, 
since they the last (most recent) ones defined. 

next-functions for sift: 

(heap-son v father fill-pointer predicate) 

- This is a next-function for sift. Given father, a position in 
the vector (v, fill-pointer, and predicate are as above in the 
description of sift) it returns the position of the ltlargeru 
successor of father. Thus, if father = i, it returns the false 
value if 2i+2 is greater than n. (Recall that our vectors are 

. indexed starting from 0; thus a vector of n elements has 
elements with indices O,l,...n-1 and the children of an element 
with index i are those with indices 2i+l and 2i+2.) It returns 
2i+l- if (predicate v[2i+l] v[2i+2]) is true or if 2i+3 is greater 
than n; and it returns 2i+2 if (predicate v[2i+l] v[2i+2]) is 
false. This is the appropriate next-function for bubbling down in 
ordinary heaps. 

(heap-up-pointer son) - floor( (son-1)/2 ) 

(heap-father v son fill-pointer predicate) - The appropriate 
next-function for bubbling up in an ordinary heap. It returns 
(heap-up-pointer son) if son is positive and the false value 
otherwise. 

(define (heap-son v father fill-pointer predicate) 
(let ((son ( *  2 (1+ father)))) 
(cond ( (>= fill-pointer son) 

(if (predicate (vector-ref v son) 
(vector-ref v (-I+ son))) 

son 
(-I+ son))) 

( (= fill-pointer (-I+ son) ) (-I+ son) ) 
(else IO)))) 

(define (heap-up-pointer son) (quotient (-I+ son) 2)) 

(define (heap-father v son fill-pointer predicate) 
(if (>= 0 son) ) (heap-up-pointer son) ) ) 
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(define (downheap! v father value fill-pointer predicate) 
(sift! v father heap-son value fill-pointer predicate)) 

(define (upheap! v son value predicate) 
(sift! v son heap-father value son 

(lambda (x y) (predicate y x) ) ) ) 

(define (build-heap! v fill-pointer ~redicatel 
(sift-all ! v heap-son (heap-~~-~ointer f illLpointer) 
fill-pointer predicate)) 

(define (heap-set! v position value fill-pointer predicate) 
(if (predicate (vector-ref v position) value) 

(downheap! v position value fill-pointer predicate) 
(upheap! v position value predicate))) 

HEAPSORT 

Williams' Heapsort Algorithm 
Refs: Knuth Volume 3 , p. 145-149 
Collected Algorithms from CACM: Algorithm #232 
CACM, Vol. 7 (1964) pp. 347-348 
Properties: sorts vectors in place, not stable, partial sort 

- possible, worst case running time O[N*log(N)]. 

Heapsort works by setting up a heap. A heap is a binary tree with 
the following properties. The descendents of node i are nodes 2i 
and 2i+l. Thus, the links pointing to the descendents of a node 
are implicit in the nodes1 positions in the vector. A node 
satisfies the predicate (passed as an argument to heapsort) with 
respect to all its descendents. Thus, for example, if the 
predicate is <, each node is less than all its descendents. 
Heapsort begins by building a heap (using build-heap). The heap 
is built by checking that the predicate is satisfied and 
interchanging a node with its smaller (in the sense of the 
predicate) descendent if necessary, so that after the exchange 
the predicate is satisfied. Traditionally, for the sake of 
efficiency, the heap is built upside down, in reverse order of 
the predicate. Here, for clarity, the heap is built right side 
up. The function of "bubbling down an element, in some cases 
several levels in the heap, until the predicate is satisfied or 
the element reaches the bottom of the heap, is handled by 
downheap. After the heap is set up, the element which should be 
in the first position in the sorted vector is at the top of the 
heap (in position 1). The first and last element in the heap are 
interchanged and the last element is removed from further 
consideration by decreasing the size of the heap. The new top 
heap element (taken from the bottom of the heap in the above 
exchange) is bubbled down. The process of exchange and bubbling 
is repeated until the entire vector is sorted. At this point, the 
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vector in in reverse order, so reverse! is called to put the 
vector in the desired sorted order. 

(heapsort! v predicate) - Heapsort. v is the vector to be 
sorted using the predicate. 

(read-heap! v fill-pointer predicate) - pop all the elements out 
-of the heap in order. 

HEAPSORT USING SIFTING 

(heapsort! v predicate) - Heapsort. See description above. This 
is the traditional version of Heapsort. The heap is built in 
reverse order of the predicate, which allows the read operation 
to pop out the elements in reverse order and then place them in 
their proper positions in the sorted vector when the popped 
element and the last element in the heap are interchanged. 

(read-heap! v fill-pointer predicate) - pop all the elements out 
of a heap. See description above. 

(reverse-heapsort! v predicate) - This is the more natural 
version of Heapsort, as described in the section above. 
The-heap is built in the natural order and the sorted 
list is reversed at the end of the sort. 

(top-down-build-heap! v fill-pointer predicate) - The heap can be 
built from the top down. This is useful if the elements 
are not all available at the time the heap is originally 
being formed. This has worst case complexity O[nlog(n)]. 

(top-down-heapsort! v predicate) - Heapsort using top-down- 
build-heap. 

(define (read-heap! v fill-pointer predicate) 
(do ((position fill-pointer (-I+ position))) 

((>= 0 position) v) 
(vector-swap! v position 0) 
(downheap! v 0 (vector-ref v 0) (-I+ position) predicate) ) ) 

(define (heapsort! v predicate) 
(build-heap! v (vector-last v) (lambda (x y) (predicate y x) ) ) 
(read-heap! v (vector-last v) (lambda (x y) (predicate y x) ) ) ) 

(define (reverse-heapsort! v predicate) 
(build-heap! v (vector-last v) predicate) 
(read-heap! v (vector-last v) predicate) 
(vector-reverse! v)) 
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TOP-DOWN-BUILD-HEAP Top-down-build-heap! allows us to build a 
heap one element at a time. It is O[N*log(N)] in the worst case 
and O[N] on the average. We can also implement heapsort with 
top-down-build-heap! 

(define (top-down-build-heap! v fill-pointer predicate) 
(do ( (position 1 (1+ position) ) ) 

( ( >  position fill-pointer) v) 
(upheap! v position (vector-ref v position) predicate))) 

(define (top-down-heapsort! v predicate) 
(top-down-build-heap! v (vector-last v) predicate) 
(read-heap! v (vector-last v) predicate) 
(vector-reverse! v)) 

3-HEAPS 3-heaps are slightly faster (3% fewer comparisons 
and 2% less time) than ordinary heaps (2-heaps). In 3-heaps, 
each non-terminal node has up to 3 children. This results in a 
shallower tree but requires an additional comparison per level. 
Of all the possible breadths of heaps, we found 3-heaps to be 
the best. Note that this section redefines the functions 
heap-son and heap-up-pointer and should not be loaded unless 
you intend to use 3-heaps instead of ordinary heaps. 

(define (heap-son v father fill-pointer predicate) 
(define (test i j) 
(predicate (vector-ref v i) (vector-ref v j ) ) ) 

(let ((son ( *  3 (1+ father)))) 
(cond ((>= fill-pointer son) 

(if (test son (-  son 1) ) 
(if (test son ( -  son 2)) son ( -  son 2)) 
(if (test (-  son 1) (-  son 2)) 

(- son 1) 
(-  son 2)))) 

( (= fill-pointer (-I+ son) ) 
(if (test (-  son 1) ( -  son 2)) ( -  son 1) ( -  son 

( ( =  fill-pointer ( -  son 2)) ( -  son 2)) 
(else '0)))) 

(define (heap-up-pointer son) (quotient (-I+ son) 3) ) 

D-HEAPS 

Using sifting, d-heaps (heaps with d successors per node) can 
be implemented. This is useful in order to carry out experiments 
on the relative efficiency of different values of d, which is 
interesting in the case where there are additions, deletions and 
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changes in value of the vector elements. It is possible, by 
giving some nodes d children and other d+l children to form 
d-heaps for non-integer values of d. We do not do this here, 
however. 

(largest-in-the-range v first last predicate) - returns the 
largest element between position first and position last, where 

v [i] is largest if (predicate v[i] v[ j 3 ) is true for all j in 
the range. 

make-d-heap-son d) - returns a heap-son function for a d-heap. 
For example (define heap-son (make-d-heap-son 4)) sets 
up the heap-son function for a 4-heap. 

make-d-heap-up-pointer d) - returns a heap-up-pointer function 
for a d-heap. 

(define (largest-in-the-range v first last predicate) 
(if (> first last) ( )  

(do ( (next (1+ first) (1+ next) ) ) 
( (> next last) first) 
(if (predicate (vector-ref v next) 

(vector-ref v first) ) 
(set! first next) ) ) ) ) 

(define (make-d-heap-son d) 
(lambda (v father fill-pointer predicate) 
(let ((x ( *  d father))) 
(largest-in-the-range 
v (+ x 1) (min (+ x d) fill-pointer) predicate) ) )  ) 

(define (make-d-heap-up-pointer d) 
(lambda (son) (quotient (-I+ son) d) ) ) 

(define (selection-sort! v predicate) 
(do ( (last (vector-last v) ) 

(i 0 (1+ i))) 
((>= i last) v) 
(vector-swap! v i 

(largest-in-the-range v i last predicate)))) 

Synactic extensions 

So far the only special forms that we used are LAMBDA, IF, 
DEFINE, QUOTE and SET! 

While these forms are powerful enough SCHEME includes several 
secondary special forms that are normally expressed with the help 
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of the primitive ones. 

While SCHEME does not specify a standard mechanism for syntactic 
expansions actual implementations provide macro mechanism to do 
the stuff. 

Quasiquotation 

<see R3R pages 10-11> 

Macros 

Macro is a function of one argument (macroexpander) associated 
with a keyword. 

When SCHEME compiles an S-expression car of which is a macro 
keyword it replaces it with a value that is returned by the 
corresponding macroexpander applied to this S-expression 

(macro m-square 
(lambda (body) 

' ( *  , (cadr body) , (cadr body) ) ) ) 
So if we say 

(m-square 4) 

it will expand into 

But if we say 

(m-square (sin 1.234)) 

it will expand into 

( *  (sin 1.234) (sin 1.234)) 

and we are going to evaluate (sin 1.234) twice 

(macro better-m-square 
(lambda (body) 
(if (or (number? (cadr body) ) 

(symbol? (cadr body))) 
( *  , (cadr body) , (cadr body) ) 
'((lambda (temp) ( *  temp temp)) 
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, (cadr 
Derived special forms 

the simpliest special form we can implement is B E G I N  

(def ine (begin-expander body) 
((lambda ( )  . , (cdr body))) 

(macro my-begin begin-expander) 

one of the most useful ones is COND 

(define (cond-expander body) 
(define temp (gensym) ) 
(define (loop clauses) 
(if (pair? clauses) 

(if (pair? (car clauses) ) 
(if (eq? 'else (caar clauses)) 

(begin . , (cdar clauses) ) 
(if (null? (cdar clauses) ) 

( (lambda ( , temp) 
(if ,temp ,temp ,(loop (cdr clauses)))) 

, (caar clauses) ) 
(if , (caar clauses) 

(begin . , (cdar clauses) ) 
,(loop (cdr clauses))))) 

(syntax-error "Wrong clause in CONDtl body) ) 
# !  false) ) 

(loop (cdr body) ) ) 

(macro my-cond cond-expander) 

Let us implement a macro B E G I N 0  that implements a special form 
that takes a sequence of forms, evaluates them and returns the 
value of the first one. 

(define (begino-expander body) 
(define temp (gensym)) 
(cond ( (null? (cdr body) ) 

(syntax-error vExpression has too few subexpressions~ 
body 

((null? (cddr body)) 
(cadr body) ) 
(else ( (lambda ( ,temp) , @ (cddr body) ,temp) 

, (cadr body))))) 
(macro my-begin0 begin0-expander) 

(define (and-expander form) 
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(cond ( (null? (cdr form) ) #!true) 
( (null? (cddr f om) ) (cadr f om) ) 
(else 

I (if , (cadr form) 
, (and-expander (cdr f om) ) 
#!false)))) 

(macro my-and and-expander) 

(define (or-expander form) 
(define temp (gensym) ) 
(cond ( (null? (cdr f om) ) # ! false) 

( (null? (cddr form) ) (cadr form) ) 
(else 

((lambda (,temp) 
(if ,temp 

, temp 
,(or-expander (cdr form)))) 

, (cadr form))))) 
(macro my-or or-expander) 

Problem: 
4 

Define macro WHEN that takes a predicate and any number of forms. 
It first evaluates the predicate and if it returns a true value 
evaluates the forms sequentially returning the value of the last 
form. 
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(define set-macro! 
(lambda (symbol function) 
(putprop symbol function lpcs*macro))) 

(define remove-macro! 
(lambda (symbol) 
(remprop symbol lpcs*macro))) 

(define macro-function 
(lambda (symbol) 
(getprop symbol lpcs*macro))) 

(define macroexpand-1 
(lambda (form) 
(cond ( (symbol? form) 

(let ( (x (macro-function f o m )  ) ) 
(if (pair? x) 

(cdr x) 
form) 1 )  

( (and (pair? form) 
(symbol? (car f o m )  ) ) 

(let ((x (macro-function (car form)))) 
(cond ((pair? x) 

(cons (cdr x) (cdr form) ) ) 
( (procedure? x) . 
(X f o m  
(else form)))) 

(else form)))) 

(define macroexpand 
(letrec 

( (loop 
(lambda ( f o m )  
(let ((expansion (macroexpand-1 
(if (equal? form expansion) 

form 
(loop expansion)))))) 

loop) 

(define macroexpand-all 
(letrec 

( (loop 
(lambda (form) 
(let ((first-expansion (macroexpand form))) 
(if (and (pair? first-expansion) 

(not (eq? (car first-expansion) 'quote))) 
(map loop first-expansion) 
first-expansion))))) 
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(macro make-encapsulation 
(lambda (body) 
(let ((parameters (cadr body)) 

(variables (caddr body) ) 
(local-procedures (cadddr body)) 
(methods (car (cddddr body)))) 

(lambda , parameters 
(let* ,variables 
(letrec ,(append local-procedures methods) 
(let ((list-of-methods 

(list . , (map (lambda (x) 
(cons I ,  (car x) , (car x) ) ) 

methods) ) ) ) 
(lambda (message) 
(let ((method (assq message list-of-methods))) 
(if (null? method) 

(error 
Itno such method in this encapsulation: ' 
message) 

(cdrmethod))))))))))) 

(macro old-use-methods 
(lambda (body) 

J (let , (map (lambda (x) 
(if (pair? x) 

( , (car x) ( , (cadr body) , (cadr x) ) ) 
'(tx (r(cadr body) 'r~)))) 

(caddr body) ) . , (cdddr body) ) -) ) 
(macro use-methods 
(lambda (body) 
(define (clause-parser clause) 
(map (lambda (x) 

(if (pair? x) 
( , (car x) ( , (car clause) , (cadr x) ) ) 
'(,x (,(car clause) ',x)))) 

(cadr clause) ) ) 
'(let ,(map-append! clause-parser (cadr body)) 

f (cddr body)))) 

(define (make-encapsulation-iterator encapsulation) 
(let ((pop! (encapsulation 'pop!)) 

(empty? (encapsulation 'empty?))) 
(lambda (function) 
(do 0 

( (empty?) 
(function (pop!)))))) 
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...--------,- 
1 1  I---------- . . . Utilities 
.em--------,, 
I f f - - - - - - - - - -  

(define (vector-last v) 
(+ (vector-length v) 1) ) 

(define (vector-swap! v i j) 
(let ( (temp (vector-ref v i) ) ) 
(vector-set! v i (vector-ref v j)) 
(vector-set! v j temp))) 

(define (vector-reverse! v) 
(do ((first 0 (1+ first)) 

(last (vector-last v) (-I+ last))) 
( (>= first last) v) 
(vector-swap! v first last))) 
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(check-underflow) 
(vector-ref v front) ) ) 

(peek-rear (lambda ( ) 
(check-underflow) 
(vector-ref v (if (= rear 0) 

last 
(-I+ rear))))) 

(length (lambda ( )  number-of-nodes))))) 
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(lambda ( index) 
(negative? index)))) 

((empty? (lambda ( )  (= fill-pointer -1))) 
(push! 
(lambda (value) 
(let ((index (vector-ref member-v value))) 
(cond ( (not-in? index) 

(set! fill-pointer (1+ fill-pointer)) 
(upheap! fill-pointer value)) 
(else (upheap! index value) ) j j ) ) 

(lambda ( )  
(let ((index (vector-ref v 0))) 
(vector-set! member-v index used-to-be-in) 
(set! fill-pointer (-I+ fill-pointer)) 
(if (not (empty?)) 

(downheap! 0 (vector-ref v (1+ fill-pointer)))) 
index) ) ) - - -  

(unpopped? 
(lambda (index) 
(not (=? (vector-ref member-v index) 

used-to-be-in))))))) 
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;;; 
; Make a scan-based algorithm. 
* . .  ,,, This includes Bellman's, Dijkstra's and Prim's Algorithms. 
6 . .  
f f f  

; Arguments: 
make-data-structure 
value-function 
better? 

(define (make-scan-based-algorithm 
make-data-structure value-function better?) 

(lambda (graph root) 
(let* ((encapsulation 

(make-data-structure 
((graph 'number-of-nodes)) better?)) 

(iterate-pop! 
(make-encapsulation-iterator encapsulation))) 

(use-methods 
( (graph 

(set-label! set-predecessor! second-node link-length 
for-each-node for-each-link-of-node number-of-nodes)) 

(encapsulation 
(push!? (label v-ref)))) 

(for-each-node (lambda (x) (set-predecessor! x I ( ) ) ) )  

(push!? root 0) 
(iterate-pop! 
(lambda (node) 
(for-each-link-of-node 
(lambda ( 1 ink) 

(let ((new-node (second-node link))) 
(when (push! ? 

new-node 
(value-function (label node) 

(link-length link))) 
(set-predecessor! new-node link)))) 

node) ) 
(for-each-node 
(lambda (node) (set-label! node (label node)))))))) 



A.A. Stepanov - CS 603 Notes 

(define bellman 
(make-scan-based-algorithm 
make-vector-deque-with-values 

;make-data-structure 
+ 
< 1 )  

(define dijkstra 
(make-scan-based-algorithm 
make-heap-with-membership-and-values 

;make-data-structure 
+ 
< 1 )  

(define prim 
(make-scan-based-algorithm 
make-heap-with-membership-and-values 

;make-data-structure 
(lambda (x Y) Y) 
< 1 )  


