
A.A. Stepanov - CS 603 Notes

. . . ,,, table(k) (O<=k<m) represents the primality . . . , , , of 2k+3

(define (make-sieve-table m)
(define (mark tab i step m)
(cond ((> m i)

(vector-set! tab i #!false)
(mark tab (+ i step) step m))))

(define (scan tab $3 5,:)
(cond ((> m s)

(if (vector-ref tab k) (mark tab s p m))
(scan tab (+ k 1) (+ p 2) (+ s p p 2) m))
(else tab)))

(scan {make-vector m #!true) 0 3 3 m))

(define (sieve n)
(let ((m (quotient (- n 1) 2)))
(define (loop tab k p result m)
(if (<= m k)

(reverse! result)
(let ((r (if (vector-ref tab k)

(cons p result)
result)))

(loop tab (+ k 1) (+ p 2) r m))))
(loop (make-sieve-table m) 0 3 (list 2) m)))

A.A. Stepanov - CS 603 Notes

. . . and we can do a generic version of the same

(syntax (bit-set! a b) (vector-set! a b # ! false))

' (syntax (bit-ref a b) (vector-ref a b))

(syntax (make-bit-table a) (make-vector a #!true))

(define (make-sieve-table m)
(define (mark tab i step m)
(cond ((> m i)

(bit-set! tab i)
(mark tab (+ i step) step m))))

(define (scan tab k p s m)
(cond ((> m s)

(if (bit-ref tab k) (mark tab s p m))
(scan tab (+ k 1) (+ p 2) (+ s p p 2) m))
(else tab)))

(scan (make-bit-table m) 0 3 3 m))

(define (sieve n)
(let ((m (quotient (- n 1) 2)))
(define (loop tab k p result m)
(if (<= m k)

(reverse! result)
(let ((r (if (bit-ref tab k)

(cons p result)
result)))

(loop tab (+ k 1) (+ p 2) r m))))
(loop (make-sieve-table m) 0 3 (list 2) m)))

A.A. Stepanov - CS 603 Notes

(syntax (bit-set! a b) (string-set! a b #\f))

(syntax (bit-ref a b) (char=? (string-ref a b) #\t))

(syntax (make-bit-table a) (make-string a #\t))

(define (make-sieve-table m)
(define (mark tab i step m)
(cond ((> m i)

(bit-set! tab i)
(mark tab (+ i step) step m))))

(define (scan tab k p s m)
(cond ((> m s)

(if (bit-ref tab k) (mark tab s p m))
(scan tab (+ k 1) (+ p 2) (+ s p p 2) m))
(else tab)))

(scan (make-bit-table m) 0 3 3 m))

(define (sieve n)
(let ((m (quotient (- n 1) 2)))
(define (loop tab k p result m)
(if (<= m k)

(reverse! result)
(let ((r (if (bit-ref tab k)

(cons p result)
result)))

(loop tab (+ k 1) (+ p 2) r m))))
(loop (make-sieve-table m) 0 3 (list 2) m)))

A.A. Stepanov - CS 603 Notes

(syntax

(syntax

(syntax

(define

(bit-set! a b)
(let ((position (quotient b 8)))
(let ((byte (char->integer (string-ref a position)))

(shift (vector-ref '#(1 2 4 8 16 32 64 128)
(modulo b 8))))

(if (odd? (quotient byte shift))
(string-set! a position

(integer->char (- byte shift)))))))

(bit-ref a b)
(let ((byte (char->integer

(string-ref a (quotient b 8))))
(shift (vector-ref '#(I 2 4 8 16 32 64 128)

(modulo b 8))))
(odd? (quotient byte shift))))

(make-bit-table a)
(make-string (ceiling (/ a 8)) (integer->char 255)))

(make-sieve-table m)
(define (mark tab i step m)
(cond ((> m i)

(bit-set ! tab i)
(mark tab (+ i step) step m))))

(define (scan tab k
(cond ((> m s)

(if (mark tab s p m))
p 2) (+ s p p 2) m))

(scan (make-bit-table m) 0 '$4 m))
(define (sieve n)
(let ((m (quotient (- n 1) 2)))
(define (loop tab k p result m)
(if (<= m k)

(reverse! result)
(let ((r (if (bit-ref tab k)

(cons p result)
result)))

(loop tab (+ k 1) (+ p 2) r m))))
(loop (make-sieve-table m) 0 3 (list 2) m)))

.... , , , , Pairs

. . . , , , Primitives:

. . . ,,, cons: (cons 1 2) ==> (1. 2)

4

A.A. Stepanov - CS 603 Notes

0 . . , , , car: (car I(1 . 2)) ==> 1

... ,,, cdr: (cdr '(1 . 2)) ==> 2

. . . ,.. pair?: (pair? '(1 . 2)) ==> #!true . . .
I f , (pair? 1) ==> #!false

. . . ,,, set-car!: (define a '(1 . 2)) ==> ?? ...
I , f (set-car! a 0) ==> ?? . . . , , I a ==> (0 . 2) . . . , used to be known as rplaca

... ,,, set-cdr!: (define a '(1 . 2)) ==> ?? ... , , , (set-cdr! a 0) -- --> ?? . . .
, I , a ==> (1. 0) . . . , used to be known as rplacd

.... , , , , Lists

. . . , , , Primitives:

... Empty list:
;;; () : () ==> () ...
I f , (pair? I()) ==> #!false !!! nil is not a pair !!! . . . ,,, used to be known as nil

... ,,, null?: (null? I()) ==> #!false . . . ,,, used to be known as null

. . . , ,, Unlike in LISP (car I()) ==> error
0 . .
I , I (cdr I ()) ==> error
0 . . ,,, TI SCHEME does not signal that error, but no code should
depend on
;;; (cdr I()) returning I()

... ,.. Proper list is a pair cdr of which is either a proper list
0 . . ,,, or an empty list
0 . . , , , Problem:
. . . ,,, define a predicate PROPER-LIST?

(define (proper-list? 1)
(if (pair? 1)

(proper-list? (cdr 1))
(null? 1)))

A.A. Stepanov - CS 603 Notes

. . . ,,, An improper (dotted) list is a chain of pairs not ending in
the empty ... list
... , , Problem:
. . . , define a predicate IMPROPER-LIST?

(define (last-cdr 1)
(if (pair? 1)

(last-cdr (cdr 1))
1)

(define (improper-list? 1)
(and (pair? 1) (not (null? (last-cdr 1)))))

. . . ,,, More about lambda
0 . . , , there are three ways to specify formal arguments of a function:
. . .
f f f 1 - (lambda variable <body>) ==> the procedure takes any
number of . . .
f l f - arguments; they are put in a list and the list is bound
to a ...
f f f variable

. , . . 2 - (lambda proper-list-of-distinct-variables <body>) ...
f f f the procedure takes a fixed number of arguments equal the
length . . .
, I t of the proper-list-of-distinct-variables; it is an error
to give it . . .
f l l more or less

... , , 3 - (lambda improper-list-of-distinct-variables <body>)
0 . .
f f l the extra arguments are bound to the last variable

...
f . , Non-primitive (but standard) functions on lists

. , . , . (define (caar x) (car (car x)))

. . .
f , , (define (cadr x) (car (cdr x)))

. . . , , , (define (cdar x) (cdr (car x)))
0 . . , , , (define (cddr x) (cdr (cdr x)))
. . . , ,, ... and up to four letters
(define list (lambda x x))

A . A . Stepanov - CS 603 Notes

0 . .
I , , Explain!

0 . .
r r r Problem:

. . . , , , define a function LENGTH that returns length of a list

(define (my-length 1)
(define (length-loop number list)
(if (pair? list)

(length-loop (+ number 1) (cdr list))
number))

(length-loop 0 1))

... , r r Problem:

. . . define a function REVERSE that returns a newly allocated list
consisting . . . of the elements of list in reverse order
(define (reverse-append x y)
(if (pair? x)

(reverse-append (cdr x) (cons (car x) y))
- Y))

(define (my-reverse x)
(reverse-append x I ()))

Equivalence predicates

<see pages 12-14 of R3R>

Destructive functions

reverse returns a new list (a new chain of pairs)
but we may want to reverse the original list

a function F is called applicative iff

(lambda (x) ((lambda (y) (f x) (equal? x y)) (copy x)))

always returns #!true

for an applicative function F a function F! is its destructive
equivalent iff

1. (f x) == (f! (copy x))

2. (not (equal? x (f x)))
implies

A e A o Stepanov - CS 603 Notes

0 . 0 ,,, from this two axioms we can derive:
. . . ,,, Bang rule 1:

. . . ,,, (W x) = (f (g x)) => (w! x) = (f! (g! x))

0 . . ,,, Bang rule 2:
.. . , , (w! x) = (f! (g! x)) => (W x) = (f! (g x))

0 0 . , , , Problem:
0.. ,,, implement REVERSE!

(define (reverse-append! x y)
(define (loop a b c)
(set-cdr! a c)
(if (pair? b)

(loop b (cdr b) a)
a)

(if (pair? x)
(loop x (cdr x) y)
Y)

(define (my-reverse! x) (reverse-append! x I ()))

;;; it is a little more difficult to right an iterative
8 . 0 ,,, procedure COPY-LIST
0 0 0 ,,, we can always do

(define (stupid-copy-list 1)
(if (pair? 1)

(cons (car 1) (stupid-copy-list (cdr 1)))
1)

0.. ,,, as a matter of fact, it is better to define it as:

(define (not-so-stupid-copy-list 1)
(reverse! (reverse 1)))

e.0 ,,, there is a very good way to do it:

(define (rcons x y)
(set-car! x (cons y I ()))

(car x))

A . A . Stepanov - CS 603 Notes

(define (copy-list x)
(define (loop x y)-
(if (pair? y)

(loop (rcons x (car y)) (cdr y))
(set-cdr! x y)))

(if (pair? x)
((lambda (header) (loop header (cdr x)) header)
(list (car x)))

COPY-LIST is still much slower than NOT-SO-STUPID-COPY-LIST

redefine RCONS as:

(define-integrable
rcons
(lambda (x y)
(set-cdr! x (cons y '0))
(car x)))

;;; and recompile COPY-LIST

. . . , , , Problem:

... ,,, implement APPEND as a function of an arbitrary number of
lists . . . ,,, which returns a list containing the elements of the first
list . . ,,, followed by the elements of the other lists ... ,,, the resulting list is always newly allocated, exept that it
shares
;;; structure with the last list argument. The last argument may
actually ... ,, , be any object; an improper list results if it is not a proper
list ... , , , (see R3R page 16)

(define my-append
((lambda (header)

(lambda lists
(define (main-loop lists first next last)
(set-cdr! last first)
(if next

(main-loop next
(car next)
(cdr next)
(inner-loop first last))

(cdr header)))
(define (inner-loop list last)

A.A. Stepanov - CS 603 Notes

(if (pair? list)
(inner-loop- (cdr list) (rcons last (car list)))
last)) - -

(if lists
(main-loop lists (car lists) (cdr lists) header)
'0)))

. a ,,, Problem:

..a , , , implement APPEND!

(define my-append!
((lambda (header)

(lambda lists
(define (main-loop lists first next last)
(set-cdr! last first)
(if next

(main-loop next
(car next)
(cdr next)
(inner-loop first last))

(cdr header)))
(define (inner-loopv list last)
(if (pair? list)

(last-pair list)
last))

(if lists
(main-loop lists (car lists) (cdr lists) header)
'0)))

A.A. Stepanov - CS 603 Notes

(define (list-copy x)
(define (loop rest last)
(cond ((pair? rest)

(let ((new (list (car rest))))
(set-cdr! last new)
(loop (cdr rest) new)))

(else (set-cdr! last rest))))
(if (pair? x)

(let ((first (list (car x))))
(loop (cdr x) first)
first)

x)

(define (vector-copy v)
(define (loop u n m)
(cond ((< n m)

(vector-set ! u n (vector-ref v n))
(loop u (+ n 1) m))

(else
u) 1)

(let ((1 (vector-length v)))
(loop (make-vector 1) 0 1)))

(define (stupid-copy tree)
(cond ((atom? tree)

tree)
(cons (stupid-copy (car tree))

(stupid-copy (cdr tree)))))

(define (tree-copy tree)
(define (loop 1 stack)
(cond ((pair? (car 1))

(set-car! 1 (cons (caar 1) (cdar 1)))
(loop (car 1)

(if (pair? (cdr 1)) (cons 1 stack) stack)))
((pair? (cdr 1))
(set-cdr! 1 (cons (cadr 1) (cddr 1)))
(loop (cdr 1) stack))

((pair? stack)
(let ((i (car stack))

(j (car stack)))
(set-car! stack (cadr i))
(set-cdr! stack (cddr i))
(set-cdr! i stack)

(let ((n (cons (car tree) (cdr tree))))
(loop n '0)
n)

tree))

A.A. Stepanov - CS 603 Notes

. . . , The problem we are trying to solve is to rotate a vector . . .
I to the left by I positions

(define swap!
(lambda (v i j)
(let ((temp (vector-ref v i)))
(vector-set! v i (vector-ref v j))
(vector-set! v j temp))))

(define subvector-reverse!
(named-lambda (loop v i j)
(if (< i j)

(define rotate!
(lambda (v i)
(let* ((n (vector-length v))

(j (modulo i n)))
(subvector-reverse! v 0 (- j 1))

- (subvector-reverse! v j (- n 1))
(subvector-reverse! v 0 (- n 1))
v)

A.A. Stepanov - CS 603 Notes

(define
list-length
length)

(define
sequence-length
(lambda (x)
(cond ((list? x) (list-length x))

((vector? x) (vector-length x))
((string? x) (string-length x))
(else (error "Invalid operand to sequence operationff

(list 'sequence-length x))))))

(define
empty?
(lambda (seq) (zero? (sequence-length seq))))

(define
sequence-ref
(lambda (x i)
(cond ((pair? x) (list-ref x i))

((vector? x) (vector-ref x i))
((string? x) (string-ref x i))
(else (error "Invalid operand to sequence operationff

(list 'ref x i)))))))

(define
sequence-set!
(lambda (x i object)
(cond ((pair? x) (set-car! (list-tail x i) object))

((vector? x) (vector-set! x i object))
((string? x) (string-set! x i object))
(else (error "Invalid operand to sequence operationff

(list 'sequence-set! x i object))))))

(define
make-list
(lambda (length . object)
(letrec

(lambda (length result ob j ect)
(if (<= length 0)

result
(loop (- length 1) (cons object result) object)))))

(loop length I () (if object (car object) '0)))))

(define
sequence-copy
(lambda (s)
(cond ((pair? s) (list-copy s))

n

n

c,
0

fd

r
l

m

C

-4

&
A

c, PC

'
u
c
,

a,
k
c
,

I
m

m

td
C

r
l

-4

k
 m

c, E:
m

 -d

A.A. Stepanov - CS 603 Notes

(lambda (operation string
(if (< i length)

(cond

(begin

i length)

(operation (string-ref string i))
(string-for-each
operation string (+ i 1) length))))))

((pair? seq)
(list-for-each operation seq))

((vector? seq)
(vector-for-each
operation seq 0 (vector-length seq)))

((string? seq)
(string-for-each
operation seq 0 (string-length seq)))

H H

(define
map !
(lambda (operation seq)
(letrec
((list-map!

(lambda (operation list)
(if (pair? list)

(begin
(set-car! list (operation (car list)))
(list-map! operation (cdr list))))))

(vector-map !
(lambda (operation vector i length)
(if (< i length)

(begin
(vector-set !
vector i (operation (vector-ref vector

(vector-map!
operation vector (+ i 1) length)))))

(string-map!
(lambda (operation string i length)
(if (< i length)

(begin
(string-set!
string i (operation (string-ref string

(string-map!
operation string (+ i 1) length))))))

(cond ((pair? seq)
(list-map! operation seq))

((vector? seq)
(vector-map! operation seq 0 (vector-length seq)))

((string? seq)
(string-map! operation seq 0 (string-length seq)))

1

A.A. Stepanov - CS 603 Notes

(define
member-if
(lambda (predicate? list)
(letrec
((loop (lambda (predicate? x)

(if (pair? x)
(if (predicate? (car x))

X
(loop predicate? (cdr x)))

'0))))
(loop predicate? list))))

(define
filter
(lambda (predicate? list)
(letrec
- ((loop

(lambda (predicate? rest result)
(if (pair? rest)

(if (predicate? (car rest))
(begin
(set-cdr! result (cons (car rest) ()))
(loop predicate? (cdr rest) (cdr result)))

(loop predicate? (cdr rest) result))
(set-cdr! result rest)))))

(let ((first (member-if predicate? list)))
(if (pair? first)

(let ((result (cons (car first) ())))
(loop predicate? (cdr first) result)
result)

'0)))))

(define
filter!
(lambda (predicate? list)
(letrec

((loop
(lambda (predicate? rest next)
(if (pair? next)

(if (predicate? (car next))
(loop predicate? next (cdr next))
(begin
(set-cdr! rest (cdr next))

A o A o Stepanov - CS 603 Notes

(loop predicate? rest (cdr rest))))))))
(let ((first (member-if predicate? list)))
(if (pair? first)

(begin
(loop predicate? first (cdr first))
first)

'0)))))

(define
for-each-cdr
(lambda (operation list)
(letrec ((loop

(lambda (rest)
(if (pair? rest)

(begin (operation rest)
(loop (cdr rest)))))))

(loop list))))

(define
for-each-cdr!
(lambda (operation list)
(letrec ((loop

(lambda (rest)
(if (pair? rest)

(let ((temp (cdr rest)))
(operation rest)

(define
vector-map
(lambda (operation vector)
(letrec

((loop
(lambda (operation old new i length)
(if (< i length)

(begin
(vector-set !
new i (operation (vector-ref old i)))

(loop operation old new (+ i 1) length))
new) 1)

(let ((length (vector-length vector)))
(loop operation vector (make-vector length) 0 length)))))

(define
vector-copy
(lambda (vector)
(letrec

((loop
(lambda (old new i length)

A.A. Stepanov - CS 603 Notes

(if (< i length)
(begin
(vector-set! new i (vector-ref old i))
(loop old new (+ i 1) length))

new) 1)
(let ((length (vector-length vector)))
(loop vector (make-vector length) 0 length)))))

(define
map-append!
(let ((header (list ())))
(lambda (procedure x)
(set-cdr! header '0)
(let ((result header))

(f or-each
(lambda (Y)
(set-cdr! result y)
(set! result (last-pair result)))

x)
(cdr header)))))

(define
accumulate
(lambda (operation seq result)

(f or-each
(lambda (x) (set! result (operation result x)))
sea

result))

(define
reduce
(lambda (operation seq)
(letrec

((list-reduce
(lambda (operation rest result)
(if (pair? rest)

(list-reduce
operation (cdr rest) (operation

result (car rest)))
result)))

(vector-reduce
(lambda (operation v i length result)
(if (>= i length)

result
(vector-reduce
operat ion
v (+ i 1) length (operation

result (vector-ref v i))))))
(string-reduce
(lambda (operation s i length result)

A . A . Stepanov - CS 603 Notes

(if (>= i length)
result
(string-reduce
operat ion
s (+ i 1) length (operation

result (string-ref v i)))))))
(cond ((pair? seq)

(list-reduce operation (cdr seq) (car seq)))
((vector? seq)
(if (not (zero? (vector-length seq)))

(vector-reduce
operat ion
seq
1
(vector-length seq)
(vector-ref seq 0))

l # o))
((string? seq)
(if (not (zero? (string-length seq)))

(string-reduce
operat ion
seq
1
(string-length seq)
(string-ref seq 0))
1

(define
right-reduce!
(lambda (operation seq)
(reduce operation (sequence-reverse! seq))))

(define
pairwise-reduce!
(lambda (operation list)
(letrec

((loop
(lambda (operation x)
(if (pair? (cdr x))

(begin
(set-car! x (operation (car x) (cadr x)))
(set-cdr! x (cddr x))

(if
(loop operation (cdr x)))))))

(pair? list)
(begin
(loop operation list)
list)

A.A. Stepanov - CS 603 Notes

(define
parallel-reduce!
(lambda (operation list)

(letrec
((loop

(lambda (operation x)
(if (pair? (cdr x))

(begin
(pairwise-reduce! operation x)
(loop operation x))

(car x)))))
(if (pair? list)

(loop operation list)
'0))))

(define (outer-product operation 11 12)
(map (lambda (x) (map (lambda (y) (operation x y)) 12)) 11))

A o A o Stepanov - CS 603 Notes

Tools for sorting study

(macro timer
(lambda (x)
(let ((exp (cadr x)))

(let ((time0 (runtime)))
((lambda 0 ,exp))
(/ (- (runtime) time0) 100)))))

(define (random-list n . p)
(if (null? p)

(let loop ((i 1) (tail I()))

(if (> i n)
tail
(loop (1+ i) (cons (%random) tail))))

(let loop ((i 1) (tail ()) (p (car p)))
(if (> i n)

tail
(loop (1+ i) (cons (random p) tail) p)))))

(define (random-vector n . p)
(if (null? p)

- (do ((V (make-vector n))
(i 0 (+ i 1)))

((>= i n) V)
(vector-set! v i (%random)))

(do ((P (car P)
(V (make-vector n))
(i 0 (+ i 1)))

((>= i n) V)
(vector-set! v i (random p)))))

(define (iota n)
(let loop ((i (-I+ n)) (tail I()))

(if (< i 0)
tail
(loop (- i 1) (cons i tail)))))

(define (reverse-iota n) (reverse! (iota n)))

(define (random-iota n . p)
(set! p (if (null? p) n (car p)))
(let loop ((i (-I+ n)) (tail I 0))
(if (c i 0)

tail
(loop (-I+ i) (cons (+ i (random p)) tail)))))

(define (list-copy x) (append x I()))

A.A. Stepanov - CS 603 Notes

(define (make-time-sort copy-function)
(lambda (sort)
tsc t)
(let ((x (copy-function *test-list*)))
(timer (sort x >)))))

(define time-sort (make-time-sort list-copy))

(define time-vsort (make-time-sort l.ist->vector))

(define (make-comp-count copy-function)
(lambda (sort)
(letrec ((comp-count0 0)

(comp-count1 0)
(comp (lambda (x y)

(cond ((> 16000 comp-count0)
(set! comp-count0 (1+ comp-count0)))
(else
(set! comp-count1 (1+ comp-countl))
(set! comp-count0 1)))

(' x Y))))
- (sort (copy-function *test-list*) comp)

(+ comp-count0 (* comp-count1 16000)))))

(define comp-count (make-comp-count list-copy))

(define v-comp-count (make-comp-count list->vector))

(define (make-test x) (set! *test-list* x)
the-non-printing-object)

(define *test-list* I())

(define (make-statistic function title-string)
(lambda (sort length n)
(do ((nl #\newline)

(i 0 (1+ i))
(1 '0))

((>= i n)
(f or-each
display
(list

II title-string nl
"number of elements: length nl
Ifnumber of tests: n nl
I1mean: (mean 1) nl
"standard-deviation: (standard-deviation 1) nl))

the-non-printing-object)

A . A . Stepanov - CS 603 Notes

(make-test (random-list length))
(set! 1 (cons (function sort) 1)))))

(define statistic-comp-count
(make-statistic comp-count IICOUNTING COMPARISONSI1))

(define statistic-v-comp-count
(make-statistic v-comp-count IICOUNTING COMPARISONSw))

(define statistic-time-sort
(make-statistic time-sort "TIMINGI1))

(define statistic-time-vsort
(make-statistic time-vsort "TIMINGI1))

(define (mean 1)
(let loop ((result 0) (n 0) (1 1))
(if (null? 1)

(/ result n)
(loop (+ result (car 1)) (1+ n) (cdr 1)))))

(define (variance 1)
(let ((m (mean 1)))
(let loop ((result 0) (n -1) (1 1))
(if (null? 1)

(/ result n)
(loop (+ result (let ((i (- (car 1) m))) (* i i)))

(I+ n)

(define (standard-deviation 1) (sqrt (variance 1)))

(define (average-deviation 1)
(let ((m (mean 1)))
(let loop ((result 0) (n 0) (1 1))
(if (null? 1)

(/ result n)
(loop (+ result (abs (- (car 1) m))) (1+ n) (cdr

1))))))

A.A. Stepanov - CS 603 Notes

see Knuth, ItThe Art of Computer Pr~gramming,~~ vol. 3, "Sorting
and Searching,It pages 105-111.

"the bubble-sort seems to have nothing to recomend it,
exept a catchy namett (Knuth)

this is Knuthls version of bubble-sort; it does fewer comparisons
than the traditional version, but is more involved: it is much
faster than the traditional version for lists that are sorted in
the right order, doing only N-1 comparison in such cases.

(define (bubble-sort-knuth! v predicate)
(let loop ((bound (-I+ (vector-length v))))
(do ((i 0 j)

(j 1 (I+ j))
(flag -1)

((>= i bound) (if (>= flag 0) (loop flag) v))
(let ((a (vector-ref v i))

(b (vector-ref v j)))
(when (predicate b a)

(vector-set! v i b)
(vector-set! v j a)
(set! flag i))))))

this is the traditional version:

(define (bubble-sort! v predicate)
(do ((n (-I+ (vector-length v)) (-I+ n)))

((< n 0) v)
(do ((i 0 j)

(j 1 (I+ j)))
((>= i n))
(let ((a (vector-ref v i))

(b (vector-ref v j)))
(when (predicate b a)

(vector-set! v i b)
(vector-set! v j a))))))

A.A. Stepanov - CS 603 Notes

COMPARISONS COUNTING

comparison counting sort has been known from times immemorial;
it was first mentioned by E. H. Field (Journal of ACM, 3, 1956)

this sort does not have any nice properties. It is very slow,
and there is no way to improve it. see Knuth, "The Art of Computer
Pr~grarnming,~~ vol. 3, %orting and Searching,@' pages 76-78.

(define (comparison-counting-sort v predicate)
(let ((n (vector-length v)))
(define counters (make-vector n 0))
(define sorted (make-vector n))
(define (bump i)
(vector-set! counters i. (1+ (vector-ref counters i))))

(do ((i (-I+ n) (-I+ i)))
((>= 0 i))
(do ((j (-I+ i) (-I+ j)))

((> 0 j))
(if (predicate (vector-ref v i) (vector-ref v j))

(bump j
(bump i))))

;;sometimes we may just want to output vector COUNTERS
(do ((i (-I+ n) (-I+ i)))

((> 0 i) sorted)
(vector-set !
sorted
(vector-ref counters i)
(vector-ref v i)))))

A.A. Stepanov - CS 603 Notes

;DISTRIBUTION COUNTING
this sort is very important for sorting large lists with keys
from a small range; it is also used with radix sorting. This
particular way to do distribution counting was developed by H.
Seward in his MS thesis at MIT in 1954. See Knuth, "The Art of
Computer Pr~gramming,~~ vol. 3, Itsorting and Sear~hing,~~ pages
76-78.

(define (distribution-counting-sort v key-function d)
;;v - is a vector, key-function - a function which maps
;;elements of this vector into integers x such that 0 =< x < d
(let* ((n (vector-length v))

(counter (make-vector d 0))
(sorted (make-vector n)))

(do ((j 0 (I+ j)))
((>= j n)
(let ((k (key-function (vector-ref v j))))
(vector-set! counter k (1+ (vector-ref counter k)))))

(vector-set! counter 0 (-I+ (vector-ref counter 0)))
(do ((i 1 (1+ i)))

((>= i d))
(vector-set! counter i

(+ (vector-ref counter i)
(vector-ref counter (-I+ i)))))

(do ((j (-I+ n) (-I+ j) 1)
((> 0 j) sorted)
(let* ((r (vector-ref v j))

(k (key-function r))
(i (vector-ref counter k)))

(vector-set! sorted i r)
(vector-set! counter k (-I+ i))))))

(define (distribution-by-lists-sort! list key-function d)
;;list - is a list, key-function - a function which maps
;;elements of this list into integers x such that 0 =c x < d
(let ((counter (make-vector d 0)))
(let loop ((i list))
(if (pair? i)
(let ((next (cdr i))

(k (key-function (car i))))
(set-cdr! i (vector-ref counter k))
(vector-set! counter k i)
(loop next) 1)

(do ((i (-I+ d) (-I+ i))
(result I ()))

((> 0 i) result)
(let revappend! ((x (vector-ref counter i)))
(if (pair? x)

(let ((next (cdr x)))
(set-cdr! x result)

A . A . Stepanov - CS 603 Notes

(set! r e s u l t x)
(revappend! n e x t)))))))

A.A. Stepanov - CS 603 Notes

see Knuth, *'The Art of Computer Pr~gramming,~~ vol. 3, **Sorting
and Searching,** pages 80-84 and 95-99.

insertion sort (or sift sort) is the best sort to sort sequences
which are almost sorted in the right direction other than that it
should not be used for sorting sequences with more than 50 elements

(define (insertion-vector-sort! v predicate)
(define last (-I+ (vector-length v)))
(do ((s last (-I+ s)))

((<= s 0) v)
(do ((i s (1+ i))

(e (vector-ref v (-I+ s))))
((or (> i last)

(predicate e (vector-ref v i)))
(vector-set! v (-I+ i) e))
(vector-set! v (-I+ i) (vector-ref v

(define (insert! cons list predicate)
(let ((e (car cons)))
(cond ((or (null? list)

(predicate e (car list)))
(set-cdr! cons list)
cons)
(else
(do ((first list second)

(second (cdr list) (cdr second)))
((or (null? second)

(predicate e (car second)))
(set-cdr! first cons)
(set-cdr! cons second)
list))))))

(define (insertion-list-sort! list predicate)
(let loop ((1 list) (output * 0))
(if (null? 1)

output
(let ((next (cdr 1)))
(loop next (insert! 1 output predicate))))))

(define (insertion-sort! x predicate)
(cond ((pair? x)

(insertion-list-sort! x predicate))
((vector? x)
(insertion-vector-sort! x predicate))
(else x))

A.A. Stepanov - CS 603 Notes

see
Xnuth, "The Art of Computer Pr~gramming,~~ vol. 3, "Sorting and
Sear~hing,~~ pages 114-123.

this version of quicksort can be used only with non-reflexive
test predicates, such as > or <. An attempt to use it with reflexive
test predicates, such as >= or <= may result in an
out-of-bound vector access.

(define (quicksort! v test)
(define length (vector-length v))
(let partition ((f 0) (1 (-I+ length)))
(define key
(let ((a- (vector-ref v f))

(b (vector-ref v 1))
(C (vector-ref v (quotient (+ f 1) 2))))

(cond ((test a b) (cond ((test b c) b)
((test a c) c)
(else a) 1

((test a c) a)
((test b c) c)
(else W))

(define (increase i)
(if (not (test (vector-ref v i) key))

*

(increase (1+ i))))
(define (decrease i)
(if (not (test key (vector-ref v i)))

i
.L

(decrease (-I+ i))))
(when

(> (- 1 f) 8)
(do ((f -pointer (increase f) (increase (1+ f -pointer)))

(1-pointer (decrease 1) (decrease (-I+ 1-pointer))))
((>= f-pointer 1-pointer)
(if (= f -pointer 1-pointer)

(if (= f f-pointer)
(set! f-pointer (+ f-pointer 1))
(set! 1-pointer (- 1-pointer 1))))

(cond ((> (- 1-pointer f) (- 1 f-pointer))
(partition f-pointer 1)
(partition f 1-pointer))
(else
(partition f 1-pointer)
(partition f-pointer 1))))

(let ((temp (vector-ref v f-pointer)))

A.A. Stepanov - CS 603 Notes

(vector-set ! v f -pointer (vector-ref v l-pointer))
(vector-set! v l-pointer temp)))))

the following is just a version of insertion sort which works
with non-reflexive tests

(do ((s (- length 2) (- s 1)))
((< s 0) v)
(do ((i s next)

(next (+ s 1) (+ next 1))
(e (vector-ref v s)))

((or (>= next length)
(not (test (vector-ref v next) e)))

(vector-set! v i e))
(vector-set! v i (vector-ref v next)))))

A.A. Stepanov - CS 603 Notes

This is a version of quicksort used by MIT Scheme:

(define (qsort obj pred)
(if (vector? obj)

(qsort! (vector-copy obj) pred)
(vector->list (qsort! (list->vector obj) pred))))

(define qsort !
(let 0

(define (exchange! vec i j)
(let ((a (vector-ref vec i)))
(vector-set! vec i (vector-ref vec j))
(vector-set! vec j a)))

(named-lambda (qsort ! ob j pred)
(define (sort-internal! vec 1 r)
(cond ((<= r 1) vec)

((= r (I+ 1) 1
(if (pred (vector-ref vec r) (vector-ref vec 1))

(exchange! vec 1 r))
vec)
(else (quick-merge vec 1 r))))

(define (quick-merge vec 1 r)
(let ((first (vector-ref vec 1)))
(define (increase-i i)
(if (or (> i r) (pred first (vector-ref vec i)))

i
(increase-i (1+ i))))

(define (decrease- j j)
(if (or (<= j 1)

(not (pred first (vector-ref vec j))))
j
(decrease-j (-I+ j))))

(define (loop i j)
(if (< i j)

(begin (exchange! vec i j)
(loop (increase-i (1+ i))

(decrease-j (-I+ j))))
(begin
(cond ((> j 1)

(exchange! vec j 1)))
(sort-internal! vec (1+ j) r)
(sort-internal! vec 1 (-I+ j)))))

(loop (increase-i (I+ 1)) - .

(decrease- j r))))
(if (vector? ob j)

(begin (sort-internal! obj 0 (-I+ (vector-length obj)))
obj

A.A. Stepanov - CS 603 Notes

(error IIQSORT! works on vectors only: obj)))))

(define (treesort unsorted predicate . k)
(define n (vector-length unsorted))
(define sorted I())

(define m (make-vector (* n 2)))
(define (minimum i)
(vector-set!
m
i
(let* ((j (* i 2))

(first (vector-ref m j))
(second (vector-ref m (1+ j))))

(cond ((null? first) second)
((null? second) first)
((predicate (car first) (car second))
first)
(else
second) 1) 1)

(set! k (if (or (null? k) (> (car k) n)) n (car k)))
(set! sorted (make-vector kl) . .

((i 1 (1+ i))
(tag n (I+ tag)))

((> i n)
(vector-set! m tag (cons (vector-ref unsorted (-I+ i))

tag)
((i (-I+ n) (-I+ i)))
((>= 0 i))
(minimum i))
((j 0 (I+ j))
(i (cdr (vector-ref m 1)) (cdr (vector-ref m 1))))

((>= j k) sorted)
(vector-set ! sorted j (car (vector-ref m 1)))
(vector-set ! m i ())
(do ((i (quotient i 2) (quotient i 2)))

((<= i 0))
(minimum i))))

A.A. Stepanov - CS 603 Notes

We shall first consider merge-sort. This will lead us to several
new functional forms and allow us at first to produce a more
efficient code for merge-sort itself and then to produce a new
sorting algorithm which has some very unusual properties.

Recursive Merge-Sort.

The traditional version of merge-sort is based on the
divide-and-conquer programming paradigm. First, we split the list
of items in two halves, merge-sort them separately, and then
merge them together. The following is the SCHEME translation of a
COMMON LISP code from Winston and Horn:

(define (winston-sort x predicate)
(define (merge a b)
(cond ((null? a) b)

((null? b) a)
((predicate (car a) (car b))
(cons (car a) (merge (cdr a) b)))
(else
(cons (car b) (merge a (cdr b))))))

(define (head 1 n)
(cond ((negative? n) ())

(else (cons (car-ij (head (cdr 1) (- n 2))))))
(define (tail 1 n)
(cond ((negative? n) 1)

(else (tail (cdr 1) (- n 2)))))
(define (first-half 1) (head 1 (- (length 1) 1)))
(define (last-half 1) (tail 1 (- (length 1) 1)))
(cond ((null? (cdr x)) x)

(else (merge (winston-sort (first-half x) predicate)
(winston-sort (last-half x) predicate)))))

Splitting linked lists in two is a time consuming activity. The
same list is traversed twice at first by FIRST-HALF and then by
SECOND-HALF, not counting two traversals by LENGTH.

a
d

-

cv a
-

4
0

4

O
d

r
l
d

d

I
P
*

n

n

n

CV
r
i

h

n
C

V

r
ld

n

d

n

n

C
V

-C
V

d

r
l
d

d

k

k

fd
m

a

U
d
 U

V

V

n

n
d

 rl
d

d
d

r
(

A.A. Stepanov - CS 603 Notes

we can make this merge stable by using alterating loops:

(define merge!
(lambda (11 12 predicate)
(letrec
((right-loop

(lambda (i j)
(let ((k (cdr i)))
(cond ((null? k) (set-cdr! i j))

((predicate (car k) (car j)) (right-loop k j))
(else (set-cdr! i j) (wrong-loop j k))))))

(wrong-loop
(lambda (i j)
(let ((k (cdr i)))
(cond ((null? k) (set-cdr! i j))

((predicate (car j) (car k))
(set-cdr! i j) (right-loop j k))
(else (wrong-loop k j)))))))

(cond ((null? 11) 12)
((null? 12) 11)
((predicate (car 11) (car 12))
(right-loop 11 12) 11)
(else (wrong-loop 12 11) 12)))))

(define
merge
(lambda (x y predicate)
(letrec

((loop
(lambda (first second result)
(cond ((null? first)

(reverse! (reverse-append second result)))
((null? second)
(reverse! (reverse-append first result)))

((predicate (car first) (car second))
(loop (cdr first) second (cons (car first)

result)))
(else
(loop first (cdr second) (cons (car second)

A.A. Stepanov - CS 603 Notes

It can be easily seen that we can sort a list by first
transforming it into a list of one element lists and then
reducing merge on it:

(define (?-sort! 1 predicate)
(reduce (lambda (x y) (merge! x y predicate)) (listify! 1)))

where LISTIFY! is:

(define (listify! 1) (map! list 1))

And our ?-sort! sorts. But it sorts extremely slowly. This
sequence of merges transforms merge-sort into insertion-sort.

It is now easy to.see that what we need is another reduction
operator. Instead of reducing the list from left to right (or
f m m right to left - both orders are possible in COMMON LISP) we
want to reduce the list in a tournament fashion - with logN
rounds. We can do it with the help of the following two
functional forms:

(define (pairwise-reduce! operation 1)
(let loop ((x 1))
(cond ((null? (cdr x)) 1)

(else (set-car! x (operation (car x) (cadr x)))
(set-cdr! x (cddr x)) (loop (cdr x))))))

(define (parallel-reduce! operation 1)
(if (null? (cdr 1)) (car 1)

(parallel-reduce ! operation
(pairwise-reduce! operation 1))))

PARALLEL-REDUCE! is an iterative analog of divide-and-conquer.
When used with an associative operation, such as merge, it
produces the same result as REDUCE, but very often more quickly.
For non-associative operations it produces a different result,
which may be valuable in itself and leads to new algorithms.

Now we can easily implement merge-sort:

(define (merge-sort! 1 predicate)
(parallel-reduce! (lambda (x y) (merge! x y predicate))

(listify! 1)))

It can be seen that all the processes involved are iterative and
all function calls can be easily removed. We generate exactly N

A.A. Stepanov - CS 603 Notes

extra conses. But the number of extra conses can be further
reduced if LISTIFY! will make not a list of one element lists,
but a list of sorted lists with 8 elements each created with the
help of the insertion sort. While this can be done, this does not
really improve the performance since LISTIFY! takes a very small
percentage of total time declining when N grows.

(define (put-in-adder! x register function zero)
(let ((y (car register)) (z (cdr register)))
(cond ((eqv? y zero) (set-car! register x))

(else (set-car! register zero)
(set! x (function x y))
(if (null? z) (set-cdr! register (list x))

(put-in-adder! x z function zero))))))

It can be used for many different things from simulating binary
1+ to implementing binomial queues.

We can now define a new version of merge-sort:

(define (adder-merge-sort! 1 predicate)
(define register (list I ()))
(define (local-merge! x y) (merge! y x predicate))
(define (local-put-in-adder! x)
(set-cdr! x ())
(put-in-adder! x register local-merge! I ()))

(for-each-cdr! local-put-in-adder! 1)
(reduce local-merge! register))

It generates logN conses, and is very quick.

(define (v-put-in-adder! x register function zero)
;;we assume that register is long and there will be no overflow
(let loop ((x x) (i 0))
(let ((y (vector-ref register i)))
(cond ((eqv? y zero) (vector-set! register i x))

(else (vector-set! register i zero)
(loop (function x y) (1+ i)))))))

(define v-adder-merge-sort!
(let ((register (make-vector 32)))
(lambda (1 predicate)
(define function (lambda (x y) (merge! y x predicate)))
(vector-fill! register I())

(for-each-cdr!
(lambda (x)
(set-cdr! x I())

(v-put-in-adder! x register function I ()))

1)
(vector-reduce function register))))

A.A. Stepanov - CS 603 Notes

This is a very fast hand optimized version of mergesort:

(define (merge-sort! x predicate)
(define (merge i j)
(let ((k (cdr i)))

(do

(do

(cond ((null?- k) (set-cdr! i j))
((predicate (car k) (car j)) (merge k j))
(else (set-cdr! i j) (merge j k)))))

((1 x (cdr 1) 1)
((null? 1))
(set-car! 1 (list (car 1))))
(1
((null? (cdr x)) (car x))
(do ((1 x (cdr 1))

((null? (cdr 1)))
(let ((i (car 1))

(j (cadr 1))
(cond ((predicate (car i) (car j)) (merge i j))

(else (set-car! 1 j) (merge j i))))
(set-cdr! 1 (cddr 1)))))

A . A . Stepanov - CS 603 Notes

A.A. Stepanov - CS 603 Notes

(define (grab x y)
(set-cdr! x (cons y (cdr x)))
x)

(define (make-tournament-play predicate)
(lambda (x y)
(if (predicate (car x) (car y))

(grab x Y)
(grab Y x))))

(define (make-tournament reduction)
(lambda (forest predicate)
(reduction
(make-tournament-play predicate)
forest)))

(define sequential-tournament! (make-tournament right-reduce!))

(define parallel-tournament! (make-tournament parallel-reduce!))

(define (make-tournament-sort! tournamentl tournament2)
(lambda (plist predicate)
(let ((p (tournamentl (map! list plist) predicate)))
- (f or-each-cdr

(lambda (x) (set-cdr! x (tournament2 (cdr x) predicate)))
P)

(define tournament-sort-p!
(make-tournament-sort! parallel-tournament!

parallel-tournament!))

(define tournament-sort-s!
(make-tournament-sort! parallel-tournament!

sequential-tournament!))

(define tournament-sort-s-s!
(make-tournament-sort! sequential-tournament!

sequential-tournament!))

A.A. Stepanov - CS 603 Notes

(macro grab!
(lambda (body)
(let ((x (cadr body))

(y (caddr body))
(2 (gensym))
(W (gensym) 1)

(let ((,z ,XI (,w ,Y))
(set-cdr! ,w (cdar ,z))
(set-cdr! (car J) ,w)
dm))

(macro tournament-play!
(lambda (body)

' (let ((X (cadr body))
(y (caddr body))
(predicate (cadddr body)))

(if (,predicate (caar , x) (caar , y))
(grab! ,x ,Y)
(grab! ,Y ,x)))))

(define (sequential-tournament! forest predicate)
(cond

((null? forest) ())
I (null? (cdr forest)) (car forest))
(else
(let ((X (reverse! forest)))
(do ((result x (tournament-play! result next predicate))

(next (cdr x) after-next)
(after-next (cddr x) (cdr after-next)))
((null? after-next)
(car (tournament-play! result next predicate))))))))

(define (parallel-tournament! forest predicate)
(define (tournament-round! so-far to-be-done)
(cond ((null? to-be-done) so-far)

((null? (cdr to-be-done))
(set-cdr! to-be-done so-far)
to-be-done)
(else
(let* ((i (cdr to-be-done))

(j (cdr i))
(new (tournament-play! to-be-done

i
predicate)))

(set-cdr! new so-far)
(tournament-round! new j)))))

(if (null? forest)
' 0
(do ((x forest (tournament-round! () x)))

((null? (cdr x)) (car x)))))

A . A . Stepanov Notes

A.A. Stepanov - CS 603 Notes

VECTOR UTILITIES

(vector-last v) - returns the index of the last element in a
vector.

(vector-swap! v i j) - interchanges the values of elements i
and j in a vector.

(vector-reverse! v) - reverses a vector in place (destructively).
(vector-move! v to from) - move the value from element from to

element to.

(vector-compare predicate v first second) - compare element
first with element second using predicate.

(define-integrable (vector-last v)
(-I+ (vector-length v)))

(define-integrable (vector-swap! v i j)
(let ((temp (vector-ref v i)))
(vector-set ! v i (vector-ref v j))
(vector-set ! v j temp)))

(define (vector-reverse! v)
(do ((first 0 (1+ first))

(last (vector-last v) (-I+ last)))
((>= first last) v)
(vector-swap! v first last)))

(define-integrable (vector-move! v to from)
(vector-set! v to (vector-ref v from)))

(define-integrable (vector-compare predicate v first second)
(predicate (vector-ref v first) (vector-ref v second)))

A.A. Stepanov - CS 603 Notes

SIFTING

Sift is an algorithmic primitive which can be used to build a
variety of sorting algorithms. It is a generalization of the
bubbling operation in heaps. Given a vector, v, containing
elements to be sorted, sift considers chains of elements. A chain

is a sequence of elements whose indices in the vector are related

functionally to one another. When bubbling up in an ordinary
heap, for example, the next element in a chain has an index which
is found by halving the current index. Sift also takes a value
whose proper place within the chain is to be found. The proper
place of a value within a chain is defined by a predicate,
which is used to compare pairs of values. If (predicate a b)
is satisfied, then a belongs ahead of b in the chain. Usually,
the value passed to sift is a value already in the chain and
currently out of place with respect to the predicate. Sift is
invoked with this value and with a chain which is otherwise
correct with respect to the predicate. After sifting, this value
is in the correct place in the chain. Thus, a proper chain with
one more element has been created. Starting with chains
containing one element (which are trivially correct), sift is
called to create larger chains which lead to a variety of
structures useful in sorting. Examples of these are heaps (of
many kinds), and partially sorted subsequences of elements. As we
will see below, many variants of heapsort, shellsort, and
selection sort can be created using sift.

(sift v position next-function value fill-pointer predicate) -
v - vector containing values to be sorted.
current - position in v where sift is to start.
next-function - function which returns the position
of the next element to be considered in the sift;
returns null if current position is the last element
to be considered.
value - the value to be placed in v.
fill-pointer - last occupied position in v.
predicate - predicate indicating ordering desired by
the sort; i.e., (predicate v[i] v[j]) is satisfied for
i < j at the end of the sort.

(sift-all! v step-function start fill-pointer predicate) -
iteratively invokes sift starting from positions
start,start-1, ... 0. This can be used to set up a
heap, do an insertion sort, or do one phase of Shellsort.

A o A o Stepanov - CS 603

(define (sift! v current
predicate)

Notes

next-function value fill-pointer

(let ((next- (next-function v current fill-pointer predicate)))
(cond ((or (nu117 next) (predicate value (vector-ref v next)))

(vector-set! v current value))
(else (vector-set! v current (vector-ref v next))

(sift! v next next-function value fill-pointer
predicate)))))

(define (sift-all! v next-function start fill-pointer predicate)
(do ((i start (- i 1)))

((< i 0) v)
(sift! v i next-function (vector-ref v i) fill-pointer

predicate)))

A.A. Stepanov - CS 603 Notes

INSERTION SORT

To implement Insertion Sort using the sift primitive, we need
only define an appropriate next-function.

(insertion-next step) - next-function for insertion sort. Also,
suitable for implementing one phase of Shellsort.
Generates next postion by adding a constant to current
position.

(insertion-step-sort! v step predicate) - uses insertion-next
and sift-all! to sort, or in the case of Sheelsort,
to do one phase of a sort by sorting every step-th
element in v.

(insertion-sort! v predicate) - Insertion Sort. Invokes
insertion-step-sort! with step=l.

(define (insertion-step step) '

(lambda (v current fill-pointer predicate)
(let ((next (+ current step)))
(if (> next f ill-pointer) () next))))

(define (insertion-step-sort! v step predicate)
(let ((1 (vector-last v)))
(sift-all! v (insertion-step step) (- 1 step) 1 predicate)))

(define (insertion-sort! v predicate)
(insertion-step-sort! v 1 predicate))

A.A. Stepanov - CS 603 Notes

SHELLSORT

Refs: D.E. Knuth, "The Art of Computer Pr~grarnming,~~
Vol. 3, Itsorting and Searching, It pp. 84-95.
Donald L. Shell, CACM, Vol. 2, 1959, pp.30-32.
Collected Algorithms from CACM: Algorithm #201

Properties: Sorts vectors in place, not stable, partial sorting
not possible, worst case complexity 0[NA2], average
case complexity varies and is in practice competitve
with the best sorts.

Shellsort takes as input a vector of values to be sorted and a
sequence of increments. These increments control the sorting
process. Each increment is used in turn to define the distance
between elements in the vector. Elements in the vector at this
distance are considered as a chain (see the description of the
sifting operation above) and are sorted. The final increment in
the sequence is 1 and so at the end of Shellsort, the vector is
totally sorted. Thus, Shellsort can be thought of as a series of
insertion sorts. The purpose of the initial sorts in the sequence
is to quickly bring elements to positions which are close to the
proper positions for these elements so that each individual pass
of the algorithm does not have to work too hard it is well known
that-insertion sort is very fast when the elements to be sorted
do not have to move far. Picking a good sequence of increments is
an art. We offer several good choices below.

(define (make-shellsort! increment-function)
(lambda (v predicate)

(f or-each
(lambda (step) (insertion-step-sort! v step predicate))
(increment-function (vector-length v)))

v)

INCREMENT SEQUENCES FOR SHELLSORT
The following are sequences shown to be good for Shellsort.
(Reference: "Handbook of Algorithms and Data StructuresI1, G.
H. Gonnet Addison-Wesley, 1984)
(knuth-increments n) - function yielding the sequence recommended

by Knuth in his book. n is the number of elements in
the vector of elements to be sorted. The sequence
generated is (...., 40, 13, 4, 1). The sequence is
generated starting with the value 1 at the end of the
sequence. The next (e , preceding) value is generated
from the current one by multiplying by 3 and adding 1.
The final (first) element in the sequence is the largest
such number which is less than n.

(shellsort-knuth! v predicate) - Shellsort using Knuth

A.A. Stepanov - CS 603 Notes

increments.

(pratt-increments n) - increments by shown by Pratt to guarantee
O[n * (log (n)"2)] worst case prefonnance but very
slow in practice. Elements of the sequence are composites

of powers of 2 and powers of 3. For example if n is 50,
the sequence is (4 8 , 3 6 , 3 2 , 2 7 , 2 4 , 1 8 , 1 6 , 1 2 , 9 , 6 , 4 , 3 , 2 , 1) .

(shellsort-pratt! v predicate) - Shellsort using Pratt
increments.

(gonnet-increments n) - increments recommended by Gonnet in his
book. The sequence is generated by starting with
floor(.4545n) and continuing to take floor(.4545i)
until 1 is reached.

(shellsort-gonnet! v predicate) - Shellsort using Gonnet
increments.

(stepanov-increments n) - increments recommended by A. Stepanov.
The sequence is generated by taking floor(eAi + .5);
i.e., powers of e rounded to the nearest integer. Again,

the sequence is generated in reverse order and ends with

the largest such value less than n. These increments are

the most efficient ones we have found thus far.
(shellsort-stepanov! v predicate) - Shellsort using Stepanov

increments.

(define (knuth-increments n)
(do ((i 1 (+ (* i 3) 1))

(tail () (cons i tail)))
((>= i n) (or (cdr tail) tail))))

(define shellsort-knuth! (make-shellsort! knuth-increments))

(define (pratt-increments n)
(define (powers base n)
(do ((x 1 (* x base))

(result () (cons x result)))
((>= x n) result)))

(filter (lambda (x) (< x n))
(parallel-reduce!
(lambda (x y) (merge! x y >))
(outer-product * (powers 2 n) (powers 3 n)))))

(define shellsort-pratt! (make-shellsort! pratt-increments))

A.A. Stepanov - CS 603 Notes

(define (gonnet-increments n)
(define (gonnet n) (floor (* n .45454)))
(do ((i (gonnet n) (gonnet i))

(result I() (cons i result)))
((>= 1 i) (reverse! (cons 1 result)))))

(define shellsort-gonnet! (make-shellsort! gonnet-increments))

(define (stepanov-increments n)
(do ((i 1 (+ i 1))

(e 1 (floor (+ 0.5 (exp i))))
(tail () (cons e tail)))

((>= e n) tail)))

(define shellsort-stepanov!
(make-shellsort! stepanov-increments))

A.A. Stepanov - CS 603 Notes

HEAPS USING SIFTING

Heaps can also be implemented using the sift primitive, inclusing

an entire family of Heapsort algorithms. These algorithms also
use some of the vector utilities described above. All of the
heap utilities implemented above are reimplemented here using the
same names for the functions. Thus, if this entire file is
loaded and compiled, these are the functions which will be used,
since they the last (most recent) ones defined.

next-functions for sift:

(heap-son v father fill-pointer predicate)

- This is a next-function for sift. Given father, a position in
the vector (v, fill-pointer, and predicate are as above in the
description of sift) it returns the position of the ltlargeru
successor of father. Thus, if father = i, it returns the false
value if 2i+2 is greater than n. (Recall that our vectors are

. indexed starting from 0; thus a vector of n elements has
elements with indices O,l,...n-1 and the children of an element
with index i are those with indices 2i+l and 2i+2.) It returns
2i+l- if (predicate v[2i+l] v[2i+2]) is true or if 2i+3 is greater
than n; and it returns 2i+2 if (predicate v[2i+l] v[2i+2]) is
false. This is the appropriate next-function for bubbling down in
ordinary heaps.

(heap-up-pointer son) - floor((son-1)/2)

(heap-father v son fill-pointer predicate) - The appropriate
next-function for bubbling up in an ordinary heap. It returns
(heap-up-pointer son) if son is positive and the false value
otherwise.

(define (heap-son v father fill-pointer predicate)
(let ((son (* 2 (1+ father))))
(cond ((>= fill-pointer son)

(if (predicate (vector-ref v son)
(vector-ref v (-I+ son)))

son
(-I+ son)))

((= fill-pointer (-I+ son)) (-I+ son))
(else IO))))

(define (heap-up-pointer son) (quotient (-I+ son) 2))

(define (heap-father v son fill-pointer predicate)
(if (>= 0 son)) (heap-up-pointer son)))

A.A. Stepanov - CS 603 Notes

(define (downheap! v father value fill-pointer predicate)
(sift! v father heap-son value fill-pointer predicate))

(define (upheap! v son value predicate)
(sift! v son heap-father value son

(lambda (x y) (predicate y x))))

(define (build-heap! v fill-pointer ~redicatel
(sift-all ! v heap-son (heap-~~-~ointer f illLpointer)
fill-pointer predicate))

(define (heap-set! v position value fill-pointer predicate)
(if (predicate (vector-ref v position) value)

(downheap! v position value fill-pointer predicate)
(upheap! v position value predicate)))

HEAPSORT

Williams' Heapsort Algorithm
Refs: Knuth Volume 3 , p. 145-149
Collected Algorithms from CACM: Algorithm #232
CACM, Vol. 7 (1964) pp. 347-348
Properties: sorts vectors in place, not stable, partial sort

- possible, worst case running time O[N*log(N)].

Heapsort works by setting up a heap. A heap is a binary tree with
the following properties. The descendents of node i are nodes 2i
and 2i+l. Thus, the links pointing to the descendents of a node
are implicit in the nodes1 positions in the vector. A node
satisfies the predicate (passed as an argument to heapsort) with
respect to all its descendents. Thus, for example, if the
predicate is <, each node is less than all its descendents.
Heapsort begins by building a heap (using build-heap). The heap
is built by checking that the predicate is satisfied and
interchanging a node with its smaller (in the sense of the
predicate) descendent if necessary, so that after the exchange
the predicate is satisfied. Traditionally, for the sake of
efficiency, the heap is built upside down, in reverse order of
the predicate. Here, for clarity, the heap is built right side
up. The function of "bubbling down an element, in some cases
several levels in the heap, until the predicate is satisfied or
the element reaches the bottom of the heap, is handled by
downheap. After the heap is set up, the element which should be
in the first position in the sorted vector is at the top of the
heap (in position 1). The first and last element in the heap are
interchanged and the last element is removed from further
consideration by decreasing the size of the heap. The new top
heap element (taken from the bottom of the heap in the above
exchange) is bubbled down. The process of exchange and bubbling
is repeated until the entire vector is sorted. At this point, the

A.A. Stepanov - CS 603 Notes

vector in in reverse order, so reverse! is called to put the
vector in the desired sorted order.

(heapsort! v predicate) - Heapsort. v is the vector to be
sorted using the predicate.

(read-heap! v fill-pointer predicate) - pop all the elements out
-of the heap in order.

HEAPSORT USING SIFTING

(heapsort! v predicate) - Heapsort. See description above. This
is the traditional version of Heapsort. The heap is built in
reverse order of the predicate, which allows the read operation
to pop out the elements in reverse order and then place them in
their proper positions in the sorted vector when the popped
element and the last element in the heap are interchanged.

(read-heap! v fill-pointer predicate) - pop all the elements out
of a heap. See description above.

(reverse-heapsort! v predicate) - This is the more natural
version of Heapsort, as described in the section above.
The-heap is built in the natural order and the sorted
list is reversed at the end of the sort.

(top-down-build-heap! v fill-pointer predicate) - The heap can be
built from the top down. This is useful if the elements
are not all available at the time the heap is originally
being formed. This has worst case complexity O[nlog(n)].

(top-down-heapsort! v predicate) - Heapsort using top-down-
build-heap.

(define (read-heap! v fill-pointer predicate)
(do ((position fill-pointer (-I+ position)))

((>= 0 position) v)
(vector-swap! v position 0)
(downheap! v 0 (vector-ref v 0) (-I+ position) predicate)))

(define (heapsort! v predicate)
(build-heap! v (vector-last v) (lambda (x y) (predicate y x)))
(read-heap! v (vector-last v) (lambda (x y) (predicate y x))))

(define (reverse-heapsort! v predicate)
(build-heap! v (vector-last v) predicate)
(read-heap! v (vector-last v) predicate)
(vector-reverse! v))

A.A. Stepanov - CS 603 Notes

TOP-DOWN-BUILD-HEAP Top-down-build-heap! allows us to build a
heap one element at a time. It is O[N*log(N)] in the worst case
and O[N] on the average. We can also implement heapsort with
top-down-build-heap!

(define (top-down-build-heap! v fill-pointer predicate)
(do ((position 1 (1+ position)))

((> position fill-pointer) v)
(upheap! v position (vector-ref v position) predicate)))

(define (top-down-heapsort! v predicate)
(top-down-build-heap! v (vector-last v) predicate)
(read-heap! v (vector-last v) predicate)
(vector-reverse! v))

3-HEAPS 3-heaps are slightly faster (3% fewer comparisons
and 2% less time) than ordinary heaps (2-heaps). In 3-heaps,
each non-terminal node has up to 3 children. This results in a
shallower tree but requires an additional comparison per level.
Of all the possible breadths of heaps, we found 3-heaps to be
the best. Note that this section redefines the functions
heap-son and heap-up-pointer and should not be loaded unless
you intend to use 3-heaps instead of ordinary heaps.

(define (heap-son v father fill-pointer predicate)
(define (test i j)
(predicate (vector-ref v i) (vector-ref v j)))

(let ((son (* 3 (1+ father))))
(cond ((>= fill-pointer son)

(if (test son (- son 1))
(if (test son (- son 2)) son (- son 2))
(if (test (- son 1) (- son 2))

(- son 1)
(- son 2))))

((= fill-pointer (-I+ son))
(if (test (- son 1) (- son 2)) (- son 1) (- son

((= fill-pointer (- son 2)) (- son 2))
(else '0))))

(define (heap-up-pointer son) (quotient (-I+ son) 3))

D-HEAPS

Using sifting, d-heaps (heaps with d successors per node) can
be implemented. This is useful in order to carry out experiments
on the relative efficiency of different values of d, which is
interesting in the case where there are additions, deletions and

A . A . Stepanov - CS 603 Notes

changes in value of the vector elements. It is possible, by
giving some nodes d children and other d+l children to form
d-heaps for non-integer values of d. We do not do this here,
however.

(largest-in-the-range v first last predicate) - returns the
largest element between position first and position last, where

v [i] is largest if (predicate v[i] v[j 3) is true for all j in
the range.

make-d-heap-son d) - returns a heap-son function for a d-heap.
For example (define heap-son (make-d-heap-son 4)) sets
up the heap-son function for a 4-heap.

make-d-heap-up-pointer d) - returns a heap-up-pointer function
for a d-heap.

(define (largest-in-the-range v first last predicate)
(if (> first last) ()

(do ((next (1+ first) (1+ next)))
((> next last) first)
(if (predicate (vector-ref v next)

(vector-ref v first))
(set! first next)))))

(define (make-d-heap-son d)
(lambda (v father fill-pointer predicate)
(let ((x (* d father)))
(largest-in-the-range
v (+ x 1) (min (+ x d) fill-pointer) predicate))))

(define (make-d-heap-up-pointer d)
(lambda (son) (quotient (-I+ son) d)))

(define (selection-sort! v predicate)
(do ((last (vector-last v))

(i 0 (1+ i)))
((>= i last) v)
(vector-swap! v i

(largest-in-the-range v i last predicate))))

Synactic extensions

So far the only special forms that we used are LAMBDA, IF,
DEFINE, QUOTE and SET!

While these forms are powerful enough SCHEME includes several
secondary special forms that are normally expressed with the help

A.A. Stepanov - CS 603 Notes

of the primitive ones.

While SCHEME does not specify a standard mechanism for syntactic
expansions actual implementations provide macro mechanism to do
the stuff.

Quasiquotation

<see R3R pages 10-11>

Macros

Macro is a function of one argument (macroexpander) associated
with a keyword.

When SCHEME compiles an S-expression car of which is a macro
keyword it replaces it with a value that is returned by the
corresponding macroexpander applied to this S-expression

(macro m-square
(lambda (body)

' (* , (cadr body) , (cadr body))))
So if we say

(m-square 4)

it will expand into

But if we say

(m-square (sin 1.234))

it will expand into

(* (sin 1.234) (sin 1.234))

and we are going to evaluate (sin 1.234) twice

(macro better-m-square
(lambda (body)
(if (or (number? (cadr body))

(symbol? (cadr body)))
(* , (cadr body) , (cadr body))
'((lambda (temp) (* temp temp))

A.A. Stepanov - CS 603 Notes

, (cadr
Derived special forms

the simpliest special form we can implement is B E G I N

(def ine (begin-expander body)
((lambda () . , (cdr body)))

(macro my-begin begin-expander)

one of the most useful ones is COND

(define (cond-expander body)
(define temp (gensym))
(define (loop clauses)
(if (pair? clauses)

(if (pair? (car clauses))
(if (eq? 'else (caar clauses))

(begin . , (cdar clauses))
(if (null? (cdar clauses))

((lambda (, temp)
(if ,temp ,temp ,(loop (cdr clauses))))

, (caar clauses))
(if , (caar clauses)

(begin . , (cdar clauses))
,(loop (cdr clauses)))))

(syntax-error "Wrong clause in CONDtl body))
! false))

(loop (cdr body)))

(macro my-cond cond-expander)

Let us implement a macro B E G I N 0 that implements a special form
that takes a sequence of forms, evaluates them and returns the
value of the first one.

(define (begino-expander body)
(define temp (gensym))
(cond ((null? (cdr body))

(syntax-error vExpression has too few subexpressions~
body

((null? (cddr body))
(cadr body))
(else ((lambda (,temp) , @ (cddr body) ,temp)

, (cadr body)))))
(macro my-begin0 begin0-expander)

(define (and-expander form)

A.A. Stepanov - CS 603 Notes

(cond ((null? (cdr form)) #!true)
((null? (cddr f om)) (cadr f om))
(else

I (if , (cadr form)
, (and-expander (cdr f om))
#!false))))

(macro my-and and-expander)

(define (or-expander form)
(define temp (gensym))
(cond ((null? (cdr f om)) # ! false)

((null? (cddr form)) (cadr form))
(else

((lambda (,temp)
(if ,temp

, temp
,(or-expander (cdr form))))

, (cadr form)))))
(macro my-or or-expander)

Problem:
4

Define macro WHEN that takes a predicate and any number of forms.
It first evaluates the predicate and if it returns a true value
evaluates the forms sequentially returning the value of the last
form.

A.A. Stepanov - CS 603 Notes

(define set-macro!
(lambda (symbol function)
(putprop symbol function lpcs*macro)))

(define remove-macro!
(lambda (symbol)
(remprop symbol lpcs*macro)))

(define macro-function
(lambda (symbol)
(getprop symbol lpcs*macro)))

(define macroexpand-1
(lambda (form)
(cond ((symbol? form)

(let ((x (macro-function f o m)))
(if (pair? x)

(cdr x)
form) 1)

((and (pair? form)
(symbol? (car f o m)))

(let ((x (macro-function (car form))))
(cond ((pair? x)

(cons (cdr x) (cdr form)))
((procedure? x) .
(X f o m
(else form))))

(else form))))

(define macroexpand
(letrec

((loop
(lambda (f o m)
(let ((expansion (macroexpand-1
(if (equal? form expansion)

form
(loop expansion))))))

loop)

(define macroexpand-all
(letrec

((loop
(lambda (form)
(let ((first-expansion (macroexpand form)))
(if (and (pair? first-expansion)

(not (eq? (car first-expansion) 'quote)))
(map loop first-expansion)
first-expansion)))))

A . A . Stepanov - CS 603 Notes

A . A . Stepanov - CS 603 Notes

(macro make-encapsulation
(lambda (body)
(let ((parameters (cadr body))

(variables (caddr body))
(local-procedures (cadddr body))
(methods (car (cddddr body))))

(lambda , parameters
(let* ,variables
(letrec ,(append local-procedures methods)
(let ((list-of-methods

(list . , (map (lambda (x)
(cons I , (car x) , (car x)))

methods))))
(lambda (message)
(let ((method (assq message list-of-methods)))
(if (null? method)

(error
Itno such method in this encapsulation: '
message)

(cdrmethod)))))))))))

(macro old-use-methods
(lambda (body)

J (let , (map (lambda (x)
(if (pair? x)

(, (car x) (, (cadr body) , (cadr x)))
'(tx (r(cadr body) 'r~))))

(caddr body)) . , (cdddr body)) -))
(macro use-methods
(lambda (body)
(define (clause-parser clause)
(map (lambda (x)

(if (pair? x)
(, (car x) (, (car clause) , (cadr x)))
'(,x (,(car clause) ',x))))

(cadr clause)))
'(let ,(map-append! clause-parser (cadr body))

f (cddr body))))

(define (make-encapsulation-iterator encapsulation)
(let ((pop! (encapsulation 'pop!))

(empty? (encapsulation 'empty?)))
(lambda (function)
(do 0

((empty?)
(function (pop!))))))

A.A. Stepanov - CS 603 Notes

...--------,-
1 1 I---------- . . . Utilities
.em--------,,
I f f - - - - - - - - - -

(define (vector-last v)
(+ (vector-length v) 1))

(define (vector-swap! v i j)
(let ((temp (vector-ref v i)))
(vector-set! v i (vector-ref v j))
(vector-set! v j temp)))

(define (vector-reverse! v)
(do ((first 0 (1+ first))

(last (vector-last v) (-I+ last)))
((>= first last) v)
(vector-swap! v first last)))

A.A. Stepanov - CS 603 Notes

(check-underflow)
(vector-ref v front)))

(peek-rear (lambda ()
(check-underflow)
(vector-ref v (if (= rear 0)

last
(-I+ rear)))))

(length (lambda () number-of-nodes)))))

L A . Stepanov - CS 603 Notes

(lambda (index)
(negative? index))))

((empty? (lambda () (= fill-pointer -1)))
(push!
(lambda (value)
(let ((index (vector-ref member-v value)))
(cond ((not-in? index)

(set! fill-pointer (1+ fill-pointer))
(upheap! fill-pointer value))
(else (upheap! index value)) j j))

(lambda ()
(let ((index (vector-ref v 0)))
(vector-set! member-v index used-to-be-in)
(set! fill-pointer (-I+ fill-pointer))
(if (not (empty?))

(downheap! 0 (vector-ref v (1+ fill-pointer))))
index))) - - -

(unpopped?
(lambda (index)
(not (=? (vector-ref member-v index)

used-to-be-in)))))))

A-A. Stepanov - CS 603 Notes

;;;
; Make a scan-based algorithm.
* . . ,,, This includes Bellman's, Dijkstra's and Prim's Algorithms.
6 . .
f f f

; Arguments:
make-data-structure
value-function
better?

(define (make-scan-based-algorithm
make-data-structure value-function better?)

(lambda (graph root)
(let* ((encapsulation

(make-data-structure
((graph 'number-of-nodes)) better?))

(iterate-pop!
(make-encapsulation-iterator encapsulation)))

(use-methods
((graph

(set-label! set-predecessor! second-node link-length
for-each-node for-each-link-of-node number-of-nodes))

(encapsulation
(push!? (label v-ref))))

(for-each-node (lambda (x) (set-predecessor! x I ())))

(push!? root 0)
(iterate-pop!
(lambda (node)
(for-each-link-of-node
(lambda (1 ink)

(let ((new-node (second-node link)))
(when (push! ?

new-node
(value-function (label node)

(link-length link)))
(set-predecessor! new-node link))))

node))
(for-each-node
(lambda (node) (set-label! node (label node))))))))

A.A. Stepanov - CS 603 Notes

(define bellman
(make-scan-based-algorithm
make-vector-deque-with-values

;make-data-structure
+
< 1)

(define dijkstra
(make-scan-based-algorithm
make-heap-with-membership-and-values

;make-data-structure
+
< 1)

(define prim
(make-scan-based-algorithm
make-heap-with-membership-and-values

;make-data-structure
(lambda (x Y) Y)
< 1)

