
Interview of Alex Stepanov by Yuyong Zhao
for the Chinese Popular Computer Weekly (www.cpcw.com)

Published 28 February 2005

How did you become involved with computers?

In 1972 a friend of mine recommended me for a job as a computer programmer in one of
the Moscow research institutes. They hired me and I have been programming ever since.
I was fortunate to join a laboratory that was developing a fault-tolerant minicomputer
from scratch. I learned a great deal about architecture, operating systems and other
system software while working there. I participated in the design of the OS, wrote a
debugger, assembler, and linker-loader. I was fortunate to work closely with Alexander
Gurevich, the chief designer of the mini-computer and a wonderful programmer.

What do you teach your children and students?

While I am not a professor now, I do spend a lot of time teaching engineers at Adobe.
The course that I teach is based on my belief that programming is a mathematical
discipline and I try to show that algorithms are defined on abstract mathematical
structures. The books that I recommend to my students are The Art of Computer
Programming by Donald Knuth, which is the great encyclopedia of programming
techniques. I was told that a very good translation of it was published by the Defense
Industry Publishing Company in Beijing and I urge all of your readers to buy a copy of
all three volumes. It is something that they should keep studying for the rest of their lives.
The other book that I urge my students to read is The Textbook of Algebra by George
Chrystal. It is a massive two volume work covering most of elementary algebra. Sadly
enough, nowadays even people with graduate degrees in Mathematics do not know most
of the material in Chrystal. I do not know if it is translated into Chinese; if it is not, I
would hope that somebody does translate it. Next year I plan to finish a book based on
my lectures. Of course, I will be very happy if it is translated into Chinese.

As far as my children are concerned, several of them are programmers. One of my
daughters works on compilers and performance tools; another is an engineering manager
at large anti-virus company. I, however, did not teach them much of anything. My
children seldom listen to me.

What is good way to learn how to program? Is it necessary to learn more than one
programming language?

Yes, it is very important to learn several different programming languages. I used Algol-
60, Common Lisp, Scheme, Ada, C, C++, Java, and several assembly languages.
However, do not concentrate on the language. It is just a tool – and often a very imperfect
tool – of expressing algorithms and data structures. As Niklaus Wirth correctly observed:
Programs = Algorithms + Data Structures.

What are the differences between computer languages and human languages?

Nobody ever managed to write poetry in a computer language. We have a long way to go
before programming languages evolve to a point of allowing us to write truly beautiful
things in them.

What do you think of OO? Is it a good style of programming? Is there a necessary
and useful tool for learning OO?

I try not to think of OO. I am not impressed with their approach to programming. Quoting
from my interview to an Italian journal: "I find OOP technically unsound. It attempts to
decompose the world in terms of interfaces that vary on a single type. To deal with the
real problems you need multisorted algebras – families of interfaces that span multiple
types. I find OOP philosophically unsound. It claims that everything is an object. Even if
it is true it is not very interesting – saying that everything is an object is saying nothing at
all. I find OOP methodologically wrong. It starts with classes. It is as if mathematicians
would start with axioms. You do not start with axioms – you start with proofs. Only when
you have found a bunch of related proofs, can you come up with axioms. You end with
axioms. The same thing is true in programming: you have to start with interesting
algorithms. Only when you understand them well, can you come up with an interface that
will let them work." I repeat: programming is about algorithms and data structures, not
about inheritance and polymorphism.

What is the relationship between Mathematics and Computer Science?

Computer Science is a mathematical discipline. Quoting from Dijkstra: "As soon as
programming emerges as a battle against unmastered complexity, it is quite natural that
one turns to that mental discipline whose main purpose has been for centuries to apply
effective structuring to otherwise unmastered complexity. That mental discipline is more
or less familiar to all of us, it is called Mathematics. If we take the existence of the
impressive body of Mathematics as the experimental evidence of the opinion that for the
human mind the mathematical method is indeed the most effective way to come to grips
with complexity, we have no choice any longer: we should reshape our field of
programming in such a way that, the mathematician's methods become equally applicable
to our programming problems, for there are no other means."

Why did you invent STL? How did it come about? What is the influence of STL on
your life and research?

I invented STL after many years of trying to find ways to decompose programs into
flexible, parameterized modules. I am still unhappy with it: there are many imperfections
caused by my inability to say what I want to say in C++. It should be viewed as a draft of
a future library. I may not live long enough to see such a library, but I believe that
eventually there will be a really standard way to define algorithms and data structures.
Maybe one of your readers will be the designer.

It is hard to say what the influence of STL on my life or research has been. STL did not
change my life materially, since I did not bring me any monetary rewards. I wanted to

show my friends how to program correctly and, as far as I was concerned, STL was done
just for them. The fact that I was able to finish it makes me happy. Sometimes I hear that
it helped somebody and it also makes me happy. There are people who are sure they can
do a much better job designing a library and they often feel that saying something nasty
about STL proves that they can. Public attacks do hurt me.

You have studied in the USSR but now work for an American company. What do
you think about the differences between the two countries and their universities?
What is a good university education, especially in Computer Science?

I left USSR in 1977 and for years I felt quite at home in the USA. Now, when I am
getting old, I often return to the books of my youth: Tolstoy, Dostoevsky, Gogol,
Pushkin. And I spend lots of time reading classical books by great mathematicians of the
past: Euclid, Gauss, Dirichlet, Euler, Felix Klein. I do find that American Universities,
and the American society in general, does not value culture and science as much as it was
valued in Russia. It is not valued in Russia now, and I hear that a new generation of
Chinese students thinks more about acquiring money than about acquiring knowledge.
This is sad.

Could you make any predictions about IT in the future? What programming
languages will we be using?

For the next few years you will be using C++ and Java. I do hope that eventually some
new, beautiful language will come along. But I do not hope that I will live long enough to
see it.

What do you think about China and Chinese programmers? What do you want to
say to them?

China is a great country. It produced some great mathematicians in the past: The Nine
Chapters by Ch'in Chiu-Shao is one of the masterpieces of Ancient Mathematics; and
Master Sun' Manual by Sun Tse (Sun Zi) contains a remarkable discovery of what we in
the West call Chinese Remainder Algorithm. And in the XXth century China produced
some really great mathematicians such as Jing Run Chen with his results on Goldbach
conjecture. I hope that Chinese programmers will become as great as Chinese
mathematicians. My advice to them is simple: learn Mathematics, learn Computer
Science, learn English.

How many times have you visited China? What were your first impressions of
China?

This is going to be my first trip to China. I am looking forward to visiting your great and
beautiful country. And I hope to get to eat some of the wonderful food and drink some
oolong tea.

