
posit ion

Declaration

Index Segment : :pos i t ion() ;

Description

p o s i t i o n returns the index of the leftmost element in the segment for which
. the value of comp is non-zero, or, if there is no such index, the successor of .

the last index of the segment.

See Also r ightPos i t ion, search

Time Complexity Linear. If n is the number of elements in the segment
then the number of comp operations performed is at most n.

Space Complexity Constant

Mutative? No

Implementation

Index segment : :pos i t ion()
<

r e g i s t e r Index s t a r t = first () ;
r e g i s t e r Integer -1en = length() ;

while (l e n && !comp(start)) {len--; s tar t++;)

return s t a r t ;
3

rotate

Declaration

void Mutable-Segment : : rotate (Integer k) ;

Description

rotate shifts the mutable segment to the left by k places. That is, after
rotate, the element in the i-th position is the one that was in position
(i + k) mod n, for i = 0,. . . , n - 1, where n = length().

Time Complexity Linear. The number of move operations performed is
exactly n + gcd(n, k mod n) (where gcd is the greatest common divisor).

Space Complexity Constant

Mutative? Yes

Implementation

void Mutable-Segment::rotate(Integer k)
register Integer n = length();
register Index e = first() + n;
register Integer m = gcd(n, k X n) ;
do (

m-- ;
register Index h first () + m;
register Index i = h;
register Index j i;
save,value(i) ;
while ((j += k) < e 1 1 (j -=n) != h) <

move (j , i) ;
i = j;

3
restore,value(i);

3
while (m) ;

3

reverse

Declaration

void Mutable-Segment::reverse();

Description

reverse reverses the order of the elements in the mutable segment.

See Also reversecopy

Time Complexity Linear. The number of swap operations performed is
exactly ln/ZJ, where n is the number of elements in the segment.

Space Complexity Constant

Mutative? Yes

Implementat ion

void Mutable-Segment::reverse()
{ register Index i = first () ;

register Index j = i + length() - 1;
while (i < j) {swap(i, j); i++; j-;I

1

f i l e : i n d e x x p p

c l a s s node {
node* nex t ;
Element datum;

p u b l i c :
node (Element e, node* n) {datum = e; nex t = n;
Element i n f o () { r e t u r n datum;)
node* l i n k () { r e t u r n nex t ;)
v o i d set i n f o (Element e) {datum = e;)
v o i d s e t - l i nk (node* n) {nex t = n; } -

1;

c l a s s Index {
node* ind ;

p u b l i c :
I n d e x 0 I)
Index(nodek i) { i n d = i;)
Index o p e r a t o r + + () { i n d = i n d - > l i n k () ; r e t u r n i n d ;)
Index o p e r a t o r + (I n t e g e r n) {

node* j = ind ;
wh i l e (n) {

j = j - > l i n k () ;
n--

I

1
r e t u r n Index (j) ;

1

1
Element f r i e n d i n fo (1ndex i) { r e t u r n i . i n d - > i n f o () ;)
v o i d f r i e n d set i n f o (Index i, Element e) {i. ind ->se t i n f o (e) ; I -
I n t e g e r o p e r a t o r - (Index i) {

node* j = i . i n d ;
I n t e g e r n = 0;
wh i l e (j != i n d) {

j = j - > l i n k () ;
n++;

I
r e t u r n n;

1
I ;

Index make index(E1ement v e c t o r [] , I n t e g e r n) {
node* i i s t = 0;
f o r (I n t e g e r i = n; i; i--)

l i s t = new node (v e c t o r [i-11 , l i s t) ;
r e t u r n Index (l i s t) ;

Alex 5/25/90

How complexity figures in to our three level organization
Generic structures: gives complete semantics, ignoring complexity
Categorical structures: gives complete semantics, including complexity without
determining constants

Realizations: gives complete semantics, including complexity with
constants determined

Classification of operations (at Categorical level)

By signature, e.g., Sequence --+ Sequence

1 Refine

Pseudo-permutation t7'x(count(result,x) I count(input,x))
Can prove, e.g., length(resu1t) < length(input)

Improper permutation rue) Permutation

comparison based
stable partition e . g + , sorl

o index-based

even-numbered e.g., copy, reverse, rotate, random shuflle

o predicate-based
e g . , remove,
stable remove,
select positive values \ comparison based

e.g., remove duplicates,
select largest half

Further classification is functional vs. mutative

Paper example - binary search (Alex 6/18/90)

Nobody can get it right (Bentley, Programming Pearls; Writing Efficient
Programs, pp. 122- 123.)
He gives the code (so does Knuth)

But their code is wrong, even the interface is wrong.

Takes an element, looks for it. If it finds it, position is returned.
If not, -1 is returned, but that is no help.
If you want to insert, need position.
Searching for incomplete string needs more info also.
Even if it finds, not quite what you want either, because
if there are several that match you want proper place among them.

We solve these problems with bunch of related functions.

One returns position of leftmost element that is equal or greater.

Second returns position of element that is strictly greater.

Third returns both (more efficient when both are needed).

Secondary functions: insert first, insert last, set insert, is present, count.

Implementation: not just vectors. If comparison time dominates,
minimize comparisons, even if traversal is strictly one-directional.
So code it so that Index operations only involve addition, which can be
done in case of linked lists by traversal.

Type assertions: on integers, if you repeatedly shift right, you get 0.
On Index type? How to state the sorted property?

remove (block)

Declaration

Integer ComparisonSegment::remove();

Description Removes all elements from the segment such that comp
gives a non-zero result. The number of elements that remain is returned.
This operation is not stable (the order of the elements that remain is not
preserved).

See Also st ableRemove

Time Complexity Linear. The number of comp operations performed is
exactly n, the number of elements in the segment. The number of move
operations is at most the minimum of the number of elements removed and
the number kept (and therefore is at most ln/2j).

Space Complexity Constant

Mutative? Yes

Implementation

Integer ComparisonSegment::remove()
{ register Index i = first();
register Index j = i + length();
while (i < j) <

if (comp(i)) C // Element i needs to be removed
do j--; // Search from right
while (i < j && comp(j)); // to find one to keep
if (i < j) {

move(j, i); // Use it to replace element i
i++ ;

>
else

i++ ;

>
setLength(j - first()) ;
return length();

stableRemove (block)

Declaration

Integer ~om~arison~egment::stable~emove();

Description Removes all elements such that comp gives a non-zero result,
keeping the elements that remain in the segment in the same order as they
appeared before the operation was performed (stability). The number of
remaining elements is returned.

See Also remove

Time Complexity Linear. The number of comp operations performed is
exactly n, the number of elements in the segment, and the number of move
operations is equal to the number of elements kept that lie to the right of
the f i s t element removed (and thus is at most n - 1).

Space Complexity Constant

Mutative? Yes

Implementation

Integer ComparisonSegment : : st ableRemove ()
register Index i = first();
register Index end = i + length() ;
while (i < end && !comp(i)) i++; // Find first to be removed
register Index j = i + 1;
while (j < end) (

if (! comp(j)) (// This one needs to be kept
move (j , i) ; // Move it back to position i
i++ ;

I-
j ++ ;

3
setLength(i - first ()) ;
return length();

3

remove (linked list)

Declaration

Integer ComparisonSegment::remove();

Description Removes all elements from the segment such that comp
gives a non-zero result. The number of elements that remain is returned.
This operation is not stable (the order of the elements that remain is not
preserved).

See Also stableRemove

Time Complexity Linear. The number of comp operations performed is
exactly n, the number of elements in the segment. The number of traversal
and relinking operations is linear in n.

Space Complexity Constant

Mutative? Yes

Implementation

Integer ComparisonSegment::remove()
{ reversePartition().deleteAll();
return length() ;

3

reverse (linked list)

Declaration

void MutableSegment::reverse();

Description Reverses the order of the elements in the segment.

See Also reversecopy

Time Complexity Linear. The number of traversal and relinking opera-
tions is linear in n.

Space Complexity Constant

Mutative? Yes

Implementation

void MutableSegment::reverse()
C register Index i = first () , j = i;
register Integer len = length();
register Index result = 0;
while (len) (

j++;
setlink(i, result) ;
result = i;

len- ;

3
setFirst (result) ;

I-

reversepart ition (linked list)

Declaration

Index ComparisonSegment::reversePartition();

Description Removes the elements of the segment for which comp is
nonzero and returns a list consisting of those elements. The elements that
remain, for which comp is zero, are in the reverse of the order in which they
orginally occurred in the segment, and the list of those removed is also in
reverse order of their occurrence in the segment.

See Also reverse, remove, st ableRemove

Time Complexity Linear. The number of comp operations performed is
exactly n, the number of elements in the segment. The number of traversal
and relinking operations is linear in n.

Space Complexity Const ant

Mutative? Yes

Implementation

Index ComparisonSegment::reversePartition()
(register Index i = first(), j = i;
register Integer len = length(), keeplength = 0;
register Index keep = 0, remove = 0;
while (len) (
j ++ ;
if (comp(i)) (

setLink(i , remove) ;
remove = i;

- >
else (

setLink(i , keep) ;
keep = i;
keeplength++;

>
i = j;

len- ;
>
setBoth(keep, keeplength) ;
return remove;

3

stableRemove (linked list)

Declaration

Integer ComparisonSegment::stableRemove();

Description Removes all elements from the segment such that comp
gives a non-zero result, keeping the elements that remain in the segment
in the same order as they appeared before the operation was performed
(stability). The number of remaining elements is returned.

See Also remove

Time Complexity Linear. The number of comp operations performed is
exactly n, the number of elements in the segment. Removal of elements is
accomplished by relinking, the time for which is linear in n.

Space Complexity Constant

Mutative? Yes

Implementation

Integer ComparisonSegment::stableRemove()
(reversepart it ion () . deleteAll () ;
reverse () ;
return length() ;

3

orderedpart it ion

Declaration

Index ComparisonSegment::orderedPartition();

Description The segment must contain at least one element (and nor-
mally would contain more). Permutes the segment in place, part it ioning
it into two subsegments such that for all indices i in the left subsegment
and j in the right subsegment (if any), comp(i, j) 5 0. The left subsegment
contains at least one element; the right subsegment does also unless the
whole segment has only one element. Returns the index that marks the
beginning of the right subsegment. The element that begins the right sub-
segment (or, if the right subsegment is empty, the rightmost element of the
leftsubsegment) is the value selected from the segment by select Pivot 0.
Stability is not guaranteed; that is, the relative order of elements that are
equal (according to comp) is not preserved. If stability is necessary, see
stablepart it ion.

See Also selectpivot, stablepart it ion

Time Complexity Linear. The number of comp operations performed is
exactly n, and the number of swap operations is at most LnI2J.

Space Complexity Constant

Mutative? Yes

Implement at ion

Index ComparisonSegment::orderedPartition()
(Index start = first()-1;

Index end = first() + length();
saveValue(selectPivot());
while (1)

(do {start++;) while (comp(start) < 0) ;
do (end- ;) while (comp(end) > 0) ;
if (start < end)

swap (start, end) ;
else

return (start == first()) ? start + 1 : start;
3

3

equalt o

Declaration

IndexPair SortedSegment::equalTo();

Description Returns the structure IndexPair such that its first com-
ponent is the the leftmost Index in the SortedSegment such that comp is
non-negative, and its second component is the leftmost Index such that
comp is positive. Thus, if there are any indices in the segment for which
comp is 0, first is the leftmost such index, second is the successor of the
rightmost such index, and second - first is equal to the number of the
elements in the segment for which comp is equal to 0; if there are no indices
for which comp is 0, first and second are both equal to the leftmost in-
dex such that comp is positive. first is equal to lessThan() and second
is equd to greaterThan0, but the algorithm for equalTo () avoids some
redundant computation that would result from calling lessThan () and
great erThan () separately.

See Also lessThan, greaterThan, insert, set Insert

Time Complexity Logarithmic. If n is the number of elements in the
segment then at most 110g2 nJ + 1 comp operations are performed.

Space Complexity Constant

Mutative? No

Implement at ion

IndexPair SortedSegment::equalTo()
{ register Integer len = length();
register Index start = first () ;
while (len>O)

(register Integer half = len>>l;
register Index middle = start + half;
register int temp = comp (middle) ;
if (temp < 0)

(start = middle + 1;
len = (len-half) - (~nteger) 1 ;

3
else if (temp > 0)

len = half;

f i l e : index.cpp 11/25/90 18:27:01 Page 1

c l a s s node {
node* nex t ;
Element datum;

p u b l i c :
node (Element e, node* n) {datum = e; nex t = n; 1
Element i n f o () { r e t u r n datum; }
node* l i n k () { r e t u r n nex t ; }
v o i d s e t I n f o (Element e) {datum = e; }
v o i d s e t l i n k (node* n) {nex t = n; }

1 ;

c l a s s Index {
node* ind ;

p u b l i c :
Index 0 { 1
Index(node* i) { i n d = i;}
Index (Element v e c t o r [I , I n t e g e r n) {

/ / make a l i s t from t h e e lements o f v e c t o r
i n d = 0;
f o r (I n t e g e r i = n; i; i--)

i n d = new node (v e c t o r [i-l] , i n d) ;
1
Index o p e r a t o r + + () { i n d = i n d - > l i n k () ; r e t u r n i n d ; }
Index o p e r a t o r + (I n t e g e r n) {

node* j = ind ;
w h i l e (n) {

j = j -> l i nk () ;
n--;

1
r e t u r n Index (j) ;

1
Element f r i e n d i n f o (Index i) { r e t u r n i . ind-> info () ;)
v o i d f r i e n d set I n f o (Index i, Element e) {i . i nd ->se t I n f o (e) ;)

-+ v o i d f r i e n d s e t l i n k (Index i, Index j) {i . i n d - > s e t l i n k (j . i n d) ; 1 C&
I n t e g e r o p e r a t o r - (Index i) {

node* j = i . i n d ;
I n t e g e r n = 0;
w h i l e (j != i n d) {

j = j -> l i nk () ;
n++;

1
r e t u r n n;

1
v o i d de l e t eAl l () {

node* i = ind ; node* j = i;
w h i l e (j) {

j = j - > l i n k () ;
delete i;

4
i = j;

1
i n d = 0;

1

greaterT han

Declaration

Index SortedSegment::greaterThan();

Description Returns the leftmost Index in the SortedSegment such that
comp is positive. If subtraction of indices is defined (this is not required
by the algorithm), first () + length() - greater~han() is the number of
elements in the segment for which comp is positive.

See Also lessThan, equalTo, insert, setInsert

Time Complexity Logarithmic. If n is the number of elements in the
segment then at most 110g2 nj + 1 comp operations are performed.

Space Complexity Constant

Mutative? No

Implementation

Index SortedSegment::greaterThan()
(register Index start = firsto ;

register Integer len = length();
while (len>O)
{ register Integer half = len>>l;

register Index middle = start + half;
if (comp (middle) >O)

len = half;
else
{ start = middle + 1;

len = len-half-1;
3

3
return start ;

3

e l s e
{// we found an equal element

Index savedEqua1 = middle + 1;
I n t e g e r savedLength = (l en -ha l f) - (I n t e g e r) 1 ;
// so we f i n d t h e f i r s t equal element
l e n = h a l f ;
whi le (len>O)

{ ha l f = l e n > > l ;
middle = s t a r t + h a l f ;
i f (comp (middle) (0)

(start = middle + 1;
l e n = (l en -ha l f) - (1n teger) l ;

3
e l s e

l e n = h a l f ;
3

Index f i r s t E q u a 1 = s t a r t ;
// and t h e n f i n d t h e f i r s t . g r e a t e r element
l e n = savedlength;
s t a r t = savedEqual;
while (len>O)

< ha l f = l e n > > l ;
middle = s t a r t + h a l f ;
i f (comp (middle) >O)

l e n = h a l f ;
e l s e

(start = middle + 1;
l e n = (l en -ha l f) - (1n teger) l ;

1
3

r e t u r n Indexpair (f i r s t E q u a l , s t a r t) ;
3

3
// t h e r e a r e no equal elements
r e t u r n I n d e x P a i r (s t a r t , s t a r t) ;

1

lessT han

Declaration

Index SortedSegment::lessThan();

Description Returns the leftmost Index in the SortedSegment such that
comp is non-negative. Thus, if there are any indices in the segment for which
comp is 0, lessThan () returns the leftmost such index; otherwise it returns
the leftmost index such that comp is positive. If subtraction of indices is
defined (this is not required by the algorithm), 1 ess~han() - first () is the
number of elements in the segment for which comp is negative.

See Also great erThan, equallo, insert, set Insert

Time Complexity Logarithmic. If n is the number of elements in the
segment then at most [log2 n] + 1 comp operations are performed.

Space Complexity Constant

Mutative? No

Implementation

Index SortedSegment::lessThan()
{ register Index start = first () ;

register Integer len = length();
while (len>O)
{ register Integer half = len>>l;

register Index middle = start + half;
if (comp(midd1e) < 0)
{ start = middle + 1;

len = len-half -1;
3
else

len = half;
3
return st art ;

>

	Handout #10
	position
	rotate
	reverse
	index.cpp (10/24/90)
	Classification of operations (5/25/90)
	binary search (6/18/90)
	Handout #14
	remove (block)
	stableRemove (block)
	remove (linked list)
	reverse (linked list)
	reversePartition (linked List)
	stableRemove (linked list)
	orderedPartition
	equalTo
	index.cpp (11/25/90)
	greaterThan
	lessThan

